
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 48

Efficient Query Processing For PIM System
U. Padma Jyothi1, A.Seenu2

Department of Computer Science and Engineering

SVECW, Bhimavaram, West Godavari District

Andhra Pradesh - India

ABSTRACT
The amount of personal data which is stored in the personal information management is increasing rapidly. There is a need of

powerful search tools to often access the data efficiently. Most of the users use hierarchical directory structure to organize their

files. Users may not know the exact location and other details about the data for what they are searching. The Search operation

should allow for some approximations during query processing to obtain the results. A novel multidimensional fuzzy search

approach was proposed that allows users to perform approximate search across three dimensions such as structure, metadata and

content. We present a scoring framework for content, metadata and structure and they are unified into single dimension. In this

proposed system we make use of indexes and algorithms to identify the relevant file, and improve the accuracy.

Keywords:- Multidimensional search, personal information management system, query processing, Scoring framework.

I. INTRODUCTION

The data which is to be stored in personal

information management systems (PIM)[1] is rapidly

increasing, Personal information management system can be

defined as the activity in order to organize, maintain and

access the data which is available in personal information

items such as files, images, emails and music. Where the

personal information management system is one of the

application of dataspace- is an abstraction method which is

mainly used to overcome some of the problems of data

integration systems. The dropping price of per byte storage in

personal system may need a powerful search tools to access

often very disparate data in a simple and efficient manner.

Such type of tools should provide both high quality scoring

mechanisms and efficient query processing capabilities.

In order to perform keyword search and locate

personal information stored in file there are numerous search

tools such as the commercial tools Google Desktop Search

[2] and Spotlight [3]. These tools are discontinued because of

some problems such as slow, buggy, and also difficult to

maintain. These commercial tools mainly concentrate on

textual part of the query for searching a file—similar to what

has been done in the Information Retrieval (IR) community,

but this community consider structure (file path) and

metadata (e.g.,file type, title, author) as filtering conditions.

Recently, the research community has turned its

focus on search over to Personal Information management

and Dataspaces [4,5,6], which consist of disparate data

collections. However, in these search tools, the work is

mainly focused on Information Retrieval style keyword

queries and use other system information to guide the

keyword-based search.

Keyword based search is often insufficient, for

example if a user want to search for a particular file, the

search is successful if and only if the exact information is

provided in a query. But by using this novel approach we can

perform the successful search, even the given data is

approximate.

For example: Consider an administrator of a college

saving personal information (college data) in the file system

of a personal computing device. The admin wants to retrieve a

photo of a passed out student because of some reasons.

Unfortunately, admin does not remember that the student

belongs to which year and branch. The file directory structure

would have been created and maintained consistently and all

photos properly indexed. In real life scenarios, this is rarely

the case: users change their file organizations over time,

inconsistently gloss their data and may gather information

from multiple places. In our example, administrator has

changed the way he organizes his photos over time when he

switched to a new computer and decided to use a new photo

organization software, and his pictures are not consistently

indexed. As a result, photos of students in distinct years match

different directory structures and do not necessarily have

matching tags, as shown in Figure 1.

This directory structure may complicates the search

for specific pictures. A content search consider only the term

“Vishnu”, where it is likely to obtain matches, of various

relevance. None of the pictures which are mentioned in the

figure1 are of exact match. There is some approximation in

the structure or the metadata of the directory structure of

personal information management.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 49

Another possibility is to write a a query that takes

into account the directory structure as well as the structural

metadata information of a file.

[Filetype=*.png AND

Content="Vishnu" AND

Structure=/photos/aa/batch14]

Current tools would answer this query by returning all files

of type *.png under the directory /photos/aa/batch14 (filtering

conditions) that have content similar to “Vishnu”. Because the

directory structure and the type of file are used as filtering

conditions, only the exact match Vishnu.png would be

returned as a result to this query, files that are very relevant to

the content search part of the query, but which do not satisfy

these exact conditions are not considered as valid answers. For

example, consider a file 0545.png, which contains the same

extension and also same path but is not in the query target

directory would not be returned although it may be a suitable

approximate match to the query.

Because of the nature of personal information

systems, we believe it is critical issue to support approximate

matches on the content and structural components of the query.

In previous work [7, 8], we presented a scoring framework

that considers relaxed query conditions on several query

dimensions. Our approach individually scores each

dimensions such as the content, metadata, and structure

dimensions and combines the resulting scores in a unified

scoring framework using an IDF-based scoring for each

dimension. We proposed an efficient and dynamic index

structures to support our scoring techniques across three

dimensions.

In this paper, we extend our query model to consider

structure within the file and relax structural conditions across

the file boundaries. Data and query model are described in

section 3.

II. SYSTEM DESIGN

The system design is the process in which the service

provider can perform the search operation based on

dimensions such as content, metadata and structure from the

repository i.e, personal information based on the DAG_path

algorithm is used to retrieve the path of the file for a given

query. Finally the results are obtained based on the given

query.

Figure 2: System Architecture

III. UNIFIED DATA AND QUERY MODEL

The personal information data model (Figure 1)

mainly considers structure both direct files and the files stored

in a directory in a combined manner. The complete directory

structure can be seen as an XML document, the leaf nodes

consists of file, and internal nodes represents more general

files i.e, the union of the all the leaf nodes. This novel

multidimensional fuzzy search currently supports relaxed

query conditions on three dimensions: content for conditions

on the files (text content), metadata for conditions on the

system information about files (creation time, date), and

structure for conditions on both the directory paths to access

files and the internal structure of the file.

In this paper, lets us consider structure dimension.

Our relaxed queries can be viewed as XQuery [9] expressions,

it is a query language designed to retrieve structured and

unstructured data. Consider physical files as query results.

Which allows for various levels of granularity of query results.

A file which matches with a particular query has potential to

answer a query and such type of files gets assigned a score for

each dimension based on how close it matches to the

particular query condition.

Consider metadata dimension, we introduce a

hierarchical relaxation approach for each type of searchable

metadata to assign score. A main characteristic is hierarchical

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 50

representation is critical; that is the set of files matching a

nodes should be equal or include the set of files matching each

of its children nodes.

Scores across multiple dimensions are unified into a

single framework so that the score is used for ranking of

answers. Our scoring strategy was mainly based on an IDF-

based interpretation of scores, as introduced in [10]. For each

of the query condition, The score for files are obtained based

on the least relaxed form of the query that each file matches.

Scoring all the dimensions are mainly based on a IDF-based

(Inverse Document Frequency) which permits us to

meaningfully aggregate multiple single dimensional scores

into a unified multidimensional score. Our structure scoring

strategy extends prior work on XML structural query

relaxations [11]. In particular, we use several types of

structural relaxations, to handle the needs of user searches in a

file system.

Assuming that structure query conditions are given as

structures, these relaxations are:

•Edge Generalization is used to relax a parent-child

relationship to an ancestor-descendant relationship. For

example, applying generalization of edge to /photos/batch14

would result in /photos//batch14.

• Path Extension is used to extend a path P such that all files

within the directory sub tree rooted at P are treated as results.

For example, applying extension of path to /photos/aa would

result in /photos/aa//∗ .

• Node Deletion is used to drop a node from a path. For

example, applying deletion of node on aa from /photos/aa

/batch14 would result in /photos//batch14.

• Node Inversion is used to permute nodes within a path. For

example, applying inversion of node on aa and batch14 from

/photos/aa/batch14 would result in

/photos/(aa/batch14),allowing for both the original query

condition as well as /photos/batch14/aa.

• Node Extension is used to allow for structural conditions to

be matched by the content information contained within the

files. For example, applying node extension on /photos/aa

would result in the query /photos/{aa}, whose meaning is that

the term “aa” can be either external directory structure or

internal file or file content.

We can say that a file matches a particular query

condition if all structural relationships between the condition’s

components are preserved in the file’s unified external and

internal structure.

Finally, given a directory structure d and query q, the structure

score of a file f with respect to q is computed as:

)},(|)(max{
)(

xdFfxscoreScore idf
qYx

structure

 (1)

)log(

)log(

)(
N

N

N

xScore x
IDF , Nx=|F(d,x)| (2)

where S(q) is the set of all possible relaxations of Q, F(d,x)

is the set of all files that match a relaxation P of q or x’s

extension in d, and N is the total number of files in d.

IV. QUERY EVALUATION

We have adapted the Threshold Algorithm (TA) [12]

in this approach. Threshold Algorithm uses a threshold

condition to avoid evaluating all possible matches to a query,

instead of focussing on identifying the N best answers. To

overcome this problem a new algorithm was being proposed

DAG_Path algorithm to handle our proposed relaxations.

Procedure for DAG-path(sNode)

1. Get the score of sNode into s and consider it as

curNode.

2. Repeat

a. get Depth of curNode into targetDepth.

b. get first child of curNode as cNode.

c. exit loop when score of cNode != s or

cNode has no more childs.

d. assign cNode to curNode.

3. For each n find the target depth and score.

a. Perform bottom-up from n and identify

ancestor node set X.

b. For each m in X, set score to m.

c. For each m in X.

i. For each p on path n to m.

set score and set it as

skippable.

ii. if m is not skippable set it as

skippable.

4. Apply RandomDAG on DAG_path to obtain desire

path.

The algorithms DAG_Jump and randomDAG are referred

from [14] which are used to obtain the accurate search results.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 51

Figure 3: Example on DAG_Path Algorithm

We represent all possible matches of a query

condition, along with the corresponding IDF scores for files

that match, using a DAG structure. The DAG structure is

created by applying query relaxations to the original query

condition, the root of the DAG indicates the original exact

query. Children nodes of a DAG node are more versions of

the given query condition. The set of files matching a node

should be equal or subsume of set of files matching its child

nodes. The IDF score of a DAG node cannot be greater than

the score associated with its parent node [1, 12]. As we

expand the DAG and traverse it further away from the root,

until the exact match of a node occurs. The most relaxed

version of the query condition: //* matches all files and it has

a score of 0.

There are several challenges in order to perform querying

processing very efficiently:

• The set of all possible relaxations is query dependent and the

size of the DAG grows exponentially with the query size, i.e.,

the number of path nodes in the query. As there is a chance to

get the matched node at the beginning of the node. So there is

no need to visit the remaining DAG. However, if the nodes

are more than the index building and traversal techniques are

critical issues.

• Query processing algorithms should be adapted to handle

the proposed relaxations in an efficient manner.

V. EXPERIMENTAL RESULTS

Our study mainly focuses on the performance of the

techniques which are used for searching a file. For each of the

target file, we constructed queries based on the structure and

content as shown in table 1.

Consider the data set which consists of 2345 photos

which are organized in 115 directories. The target file is

/photos/aa/batch14/Vishnu.png and structure condition is

/photos/aa/batch14 which is considered as /p/a/b. Query1

consider only the content of file. Query 2 consists all the

dimensions data. Query 3 consists of the filename with wrong

file type. Query 4 consists of correct file type but with no date

and path. Similarly other queries are considered based on

different combinations of the structure and metadata.

Even the given condition is approximate the results

are obtained for a given query which are not exact. By

considering these techniques we can perform the search very

effectively compare to the existing tools like google desktop

search, spotlight. These results provide us a flexible search

approach which is used to improve the accuracy rate of the

result.

Table 1: Target files-rank returned by a set of queries

VI. CONCLUSIONS AND FUTURE WORK

A unified framework is presented where the scores of

all dimensions are unified into single framework. This

framework provides flexible query processing on content and

structure dimensions of personal information systems. We

proposed query matching algorithms to efficiently evaluate

ranked search queries over our unified framework.

This ranking framework is used to obtain the

accurate results of a particular query over existing content

based methods by leveraging information from both structure

and content as well as relationships between the terms. Our

work provides importance of search on approximation in

personal information queries and opens important research

directions for efficient and high quality search tools. In this

paper, we have focused on files as the result unit. In the future,

we will relax this restriction to allow for logical units of data

to be returned. For example, a set of photos taken at the same

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 52

time and location thread could constitute and be returned as a

single logical entity.

In the future, we can extend our work by considering

another dimension i.e, file context information. By using these

techniques we make a fuzzy search approach practical for

daily usage.

REFERENCES

[1] http://en.wikipedia.org/wiki/Personal_information_

management.

[2] Google desktop. http://desktop.google.com.

[3] Apple MAC OS X spotlight.

http://www.apple.com/macosx/features/spotlight.

[4] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J.

Madhavan. Personal Information Management with

SEMEX. In Proc. of the ACM Intl. Conference on

Management of Data (SIGMOD), 2005.

[5] J.-P. Dittrich and M. A. Vaz Salles. iDM: A Unified and

Versatile Data Model for Personal Dataspace

Management. In Proc. of the Intl. Conference on Very

Large Databases (VLDB), 2006.

[6] M. Franklin, A. Halevy, and D. Maier. From Databases

to Dataspaces: a New Abstraction for Information

Management. SIGMOD Record, 34(4), 2005.

[7] C. Peery, W. Wang, A. Marian, and T. D. Nguyen.

Fuzzy Multi-dimensional Search in the Wayfinder File

System. In Proc. of the International Conference on Data

Engineering (ICDE), 2008.

[8] C. Peery, W. Wang, A. Marian, and T. D. Nguyen. Multi-

Dimensional Search for Personal Information

Management Systems. In Proc. of the International

Conference on Extending Database Technology (EDBT),

2008.

[9] An XML Query Language.

http://www.w3.org/TR/xquery/.

[10] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava,

and D. Toman. Structure and Content Scoring for XML.

In Proc. of the International Conference on Very Large

Databases (VLDB), 2005.

[11] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.

FleXPath: Flexible Structure and Full-Text Querying for

XML. In Proc. of the ACM International Conference on

Management of Data (SIGMOD), 2004.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation

Algorithms for Middleware. Journal of Computer and

System Sciences, 2003.

[13] Ameilie marian, Wei Wang “flexible Querying of

personal information” IEEE transactions and knowledge

data ,2008.

[14] Wei Wang, Christopher Peery, Am´elie Marian, Thu D.

Nguyen “Efficient Multi-dimensional Fuzzy Search for

Personal Information Management Systems” IEEE

transactions on knowledge and data engineering,2011.

http://www.ijcstjournal.org/
http://en.wikipedia.org/wiki/Personal_information_%20management
http://en.wikipedia.org/wiki/Personal_information_%20management
http://desktop.google.com/
http://www.apple.com/macosx/features/spotlight
http://www.w3.org/TR/xquery/

