
International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 40

Study of HADOOP
Bhawana Sahare1, Ankit Naik2, Kavita Patel3

Research Scholar1&3, Lecturer2

Department of Computer Science and Engineering

Kirodimal Institute of Technology

Raigarh

Chhattisgarh – India

ABSTRACT

Hadoop is a software framework that supports data intensive distributed application. Hadoop creates clusters of machine and

coordinates the work among them. It include two major component, HDFS (Hadoop Distributed File System) and Map Reduce.

HDFS is designed to store large amount of data reliably and provide high availability of data to user application running at

client. It creates multiple data blocks and store each of the block redundantly across the pool of servers to enable reliable,

extreme rapid computation. Map Reduce is software framework for the analyzing and transforming a very large data set in to

desired output. This paper describe introduction of hadoop, types of hadoop, architecture of HDFS and Map Reduce, benefit of

HDFS and Map Reduce.

Keywords:- Hadoop, HDFS, Node, MapRoot

I. INTRODUCTION

Hadoop a newly emerged Java-based software framework,

supports applications that can process a vast amount of data

in an efficient -friendly for distributed application

developers because it mitigates complicated managements

manner. Hadoop is a well-known implementation of the

Map Reduce model platform, which is an open-source

supported by the Apache Software Foundation.

II. TYPES OF HADOOP

Hadoop consists of two main parts: Map Reduce and

Hadoop Distributed File System (HDFS) , in which Map

Reduce is responsible of parallel computing and the HDFS

is responsible for data management. In the Hadoop system,

Map Reduce and HDFS management parallel process jobs

and data, respectively. Hadoop partitions a job and data

into tasks and blocks, and assigns them to nodes in a

cluster. Hadoop adopts master/slave architecture, in which

a master node manages other slave nodes in the cluster. In

the Map Reduce model, the master is called Job Tracker,

and each slave is called TaskTracker. In the HDFS, the

master is called Name Node, and each slave is called Data

Node. Job and data distri-butions are managed by the

master to assign nodes for computing and storing. In the

default setting of Hadoop, node computing ca-pacity and

storage capacity are the same in the Hadoop cluster. In

such a homogeneous environment, the data placement

strategy of Hadoop can enhance the efficiency of the Map

Reduce model.

Hadoop uses the distributed architecture that can greatly

im-prove the efficiency of reading and computing, and also

uses numerous general PCs that can build a high-

performance computing platform. Spending large amounts

of money to buy high-end servers is unnecessary. For

example, assume that the price of a high-end server can

buy 10 or more PCs, but the performance of a high-end

server is lower than 10 sets of the overall performance of

the PCs. This can further reduce the cost for the data

centre. This is also one of the reasons why Hadoop is

frequently used.[9]

III. HDFS

The HDFS is implemented by Yahoo! based on the Google

File System, which is used with the MapReduce model. It

consists of a NameNode and many DataNodes. The

NameNode is responsible for the management of the entire

file system, file information (such as namespace and

metadata), and storage and management. It also partitions

the files that are written in HDFS into many same sized

blocks, and then allocates these blocks to different

DataNodes. By contrast, DataNodes are responsible for

storing data blocks. The initial default block size of the

HDFS is 64 MB. When a file is less than 64 MB and does

not take up an entire block, it does not waste the extra

space. When an HDFS client reads data from the HDFS, it

asks the NameNode to find DataNodes that have data

blocks that must be read, and then data from those

DataNodes are read simul-taneously and finally combined

into a complete file.

When writing data, an HDFS client first requests the

NameNode for creating a file. After the NameNode

accepted, the HDFS client directly writes the file to the

assigned DataNodes[9].The Hadoop Distributed File

System (HDFS) is a distributed file system designed to run

on commodity hardware. It has many similarities with

existing distributed file systems. However, the differences

from other distributed file systems are significant. HDFS is

highly fault-tolerant and is designed to be deployed on low-

cost hardware. HDFS provides high throughput access to

application data and is suitable for applications that have

large data sets. HDFS relaxes a few POSIX requirements to

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 41

enable streaming access to file system data. HDFS was

originally built as infrastructure for the Apache Nutch web

search engine project. HDFS is part of the Apache Hadoop

Core project. The project URL is

http://hadoop.apache.org/core/.[1]

Fig.1.The overview of HDFS read and writes.

IV. DATA DISTRIBUTION IN HDFS

HDFS support operation to read, write and delete file as

well as to create and delete directories. For reading a file,

the HDFS client request the NameNode for the list of

DataNodes that host the replicas of the data blocks of the

file. Then it directly contacts the DataNode and request the

transfer of desired blocks. During writes, the client request

the NameNode to choose a list of DataNode that can host

the replicas of the first block of the file. After choosing the

client establishes a pipeline from node to node and sends

the data block. After storing the first block, the client

request for a new set of DataNode to host the replicas of

the next block of the same file. New pipeline will be

established between the new set of DataNodes and client

sends the further bytes of the file[1]

Fig 2. Interaction among HDFS client, Name Nodes and Data Nodes

HDFS provide APIs to retrieve the location of a file block

in the cluster. This allow to schedule the task to the node

where data are located, thereby improving the read

performance. This allows the application to set the

replication factor of a file. By default the replication factor

is three. For files which are frequently accessed or critical,

setting the replication factor improves their tolerance

against faults and increases the read bandwidth.[1]

HDFS Architecture:

Fig 3 HDFS Architecture

The NameNode and DataNode are pieces of software

designed to run on commodity machines. These machines

typically run a GNU/Linux operating system (OS). HDFS

is built using the Java language; any machine that supports

Java can run the NameNode or the DataNode software.

Usage of the highly portable Java language means that

HDFS can be deployed on a wide range of machines. A

typical deployment has a dedicated machine that runs only

the NameNode software. Each of the other machines in the

cluster runs one instance of the DataNode software. The

http://www.ijcstjournal.org/
http://hadoop.apache.org/core/.%5b1

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 42

architecture does not preclude running multiple DataNodes

on the same machine but in a real deployment that is rarely

the case. The existence of a single NameNode in a cluster

greatly simplifies the architecture of the system. The

NameNode is the arbitrator and repository for all HDFS

metadata. The system is designed in such a way that user

data never flows through the NameNode.[2]

V. THE BENEFITS OF HDFS

There is little debate that HDFS provides a number of

benefits for those who choose to use it.

Below are some of the most commonly cited :

Built-In Redundancy and Fail over

HDFS supplies out-of-the-box redundancy and failover

capabilities that require little to no manual intervention

(depending on the use case). Having such features built into

the storage layer allows system administrators and

developers to concentrate on other responsibilities versus

having to create monitoring systems and/or programming

routines to compensate for another set of storage software

that lacks those capabilities. Moreover, with downtime

being a real threat to many modern businesses’ bottom line,

features that minimize outages and contribute to keeping a

batch analytic data store up, operational, and feeding any

online system that requires its input are welcomed by both

IT and business professionals.

Big Data Capable

The hallmark of HDFS is its ability to tackle big data use

cases and most of the characteristics that comprise them

(data velocity, variety, and volume). The rate at which

HDFS can supply data

to the programming layers of Hadoop equates to faster

batch processing times and quicker answers to complex

analytic questions.

Portability

Any tenured data professional can relay horror stories of

having to transfer, migrate, and convert

huge data volumes between disparate storage/software

vendors. One benefit of HDFS is its portability between

various Hadoop distributions, which helps minimize

vendor lock-in.

Cost-Effective

As previously stated, HDFS is open source software, which

translates into real cost savings for its users. As many

companies can attest, high-priced storage solutions can take

a significant bite out of IT budgets and are many times

completely out of reach for small or startup companies.

Other benefits of HDFS exist, but the four above are the

primary reasons why many users deplo HDFS as their

analytic storage solution[5]

MapReduce

MapReduce is a programming model used in clusters that

have numerous nodes and use considerable computing

resources to manage large amounts of data in parallel.

MapReduce is proposed by Google in 2004. In the

MapReduce model, an application to be executed is called

a “job”. A job can be divided into two parts: “map tasks”

and “reduce tasks”, in which the map-tasks run the map

function and the reduce-tasks run the reduce function. Map

function processes input data assigned by the master and

produce many intermediate _key, value_pairs. Based on

_key, value_pairs that are generated by map function

processes, the reduce function then merges, sorts, and

finally returns the result.[9]

The Map Reduce model mainly entails applying the idea of

di-vide and conquer. It distributes a large amount of data to

many nodes to perform parallel processing, which reduces

the execution time and improves the performance. At

runtime, input data are divided into many of the same sized

data blocks; these blocks are then assigned to nodes that

perform the same map function in par-allel. After the map

function is performed, the generated output is an

intermediate datum composed of several _key, value_pairs.

The nodes that perform the reduce function obtain these

intermediate data, and finally generate the output data.

Fig.4 shows the MapReduce flow chart.[9]

Fig 4. Map Reduce Architecture

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 6, Nov-Dec 2014

ISSN: 2347-8578 www.ijcstjournal.org Page 43

Advantage of map reduce:-

The advantage of Map Reduce is that it is easy to use. By

using this model, many parallel computing details are

hidden. The sys-tem automatically assigns nodes that

differ from the mapper and reducer for computing. When

programming, a programmer does not need to spend extra

time on data and program division. There-fore, a

programmer does not need to have a deep understanding

of parallel computing. A programmer must simply focus

on the nor-mal function processing rather than the parallel

processing. This can simplify the application development

process substantially and shorten the development

time.[9]

VI. CONCLUSIONS

The HDFS is capable of storing large synchrophasor data

sets whereas traditional databases wouldn't have enough

scalability. It provides additional redundancy to take care

of non-operational nodes; if a single node is lost, the data is

still safe in the other nodes. Finally, Hadoop is simple and

provides a fast developing environment Its Map Reduce

scheme keeps the flowchart simple for programmers and its

installation can be easily modified in little time .in case of

utility or a user does not have the resources to install the

platform, it is easily accessible on the cloud too.[6] Hadoop

represent an increasingly important approach for data-

intensive computing. This paper explore through the

components of the Hadoop system, HDFS and Map

Reduce. It also successfully pointed out the architecture of

HDFS, distribution of data across the cluster based on the

client applications.[1]

REFERENCES

[1] S. Chandra Mouliswaran and Shyam Sathyan”

 STUDY ON REPLICA MANAGEMENT AND

HIGH AVAILABILITY IN HADOOP

DISTRIBUTED FILE SYSTEM (HDFS)” Journal

of Science / Vol 2 / Issue 2 / 2012 / 65-70.

[2] The Hadoop Distributed File System: Architecture

and Design by Dhruba Borthakur

[3] Antony Rowstron Dushyanth Narayanan Austin

Donnelly Greg O’Shea Andrew Douglas” Nobody

ever got fired for using Hadoop on a cluster”

HotCDP 2012 - 1st International Workshop on Hot

Topics in Cloud Data Processing April 10, 2012,

Bern, Switzerland.

[4] Jeffrey Shafer, Scott Rixner, and Alan L. Cox” The

Hadoop Distributed Filesystem: Balancing

Portability and Performance”

[5] Comparing the Hadoop Distributed File System

 (HDFS) with the Cassandra File System (CFS)

White Paper BY DATASTAX CORPORATION

August 2013

[6] Matthew Edwards, Aseem Rambani, Yifeng Zhu*a,

Mohamad Musavi “Design of Hadoop-based

Framework for Analytics of Large Synchrophasor

Datasets”1877-0509 © 2012 Published by Elsevier

B.V. Selection and/or peer-review under

responsibility of Missouri University of Science and

Technology. doi: 10.1016/j.procs.2012.09.065

[7] Jiong Xiea,b, FanJun Mengc, HaiLong Wangc,

HongFang Panb, JinHong Chengb, Xiao Qina”

Research on Scheduling Scheme for Hadoop

clusters” 1877-0509 © 2013 The Authors. Published

by Elsevier B.V. Selection and peer review under

responsibility of the organizers of the 2013

International Conference on Computational Science.

 doi: 10.1016/j.procs.2013.05.423.

[8] Samson Oluwaseun Fadiyaa*, Serdar Saydamb,

Vanduhe Vany Zirac” Advancing big data for

humanitarian needs” 1877-7058 © 2014 Published

by Elsevier Ltd. This is an open access article under

the CC BY-NC-ND license

 (http://creativecommons.org/licenses/by-nc-nd/3.0/).

 Selection and peer-review under responsibility of

the Organizing Committee of HumTech2014

 doi: 10.1016/j.proeng.2014.07.043.

[9] Chia-WeiLeea, Kuang-YuHsieha,

 Sun-YuanHsieha,b,∗, Hung-ChangHsiaoa “A

Dynamic Data Placement Strategy for Hadoop in

Heterogeneous Environments” Big Data Research 1

(2014) 14–22.

http://www.ijcstjournal.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/

