
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 152

Discovery and Visualization of Patterns in Data Mining

Through Python Language
Shipra Bansal1, Nitin Bansal2

Assistant Professor1 & 2

Master of Computer Application1

Master of Business Administration2

ABSTRACT

Data mining is the discovery of new patterns from existing ones. Data mining can predict the future. Its applications

are quite large and can be used in various domains. Data mining techniques have become fundamental for various

applications. Pattern mining field in data mining is extensively studied. This research paper tries to discover and

visualize structural patterns of data using python language in data mining. Python is a high level, general purpose

programming language. Python is now widely used for data centric applications.

Keywords:- Data mining, Python, pattern discovery, pattern visualization, CSV (Comma Separated values).

INTRODUCTION

Data mining or the knowledge discovery is the

computer assisted process of digging through and

analyzing large sets of data and then extracting

meaning of data[5]. Data mining techniques are able

to unhide hidden facts. These techniques are enough

themselves to create meaningful data. Data mining is

a powerful technique to detect patterns in large

amounts of data. We tried to formulate pattern

discovery through python with the help of Berkley

university website example.

There are 5 stages of meaningful pattern discovery:

1. Collection and visualization of data

2. Classification and clustering of data

3. Relationships among data is discovered

using Regression and coefficients

4. Compression and Visualization of

information by reducing the number of

dimensions in data

5. Analyze Structured data

We used 4 major Python Libraries to analyze and

manipulate the data viz.numpy, matplotlib, sklearn,

and network

Phase 1:- Collection and Visualization of data

This phase involves collection and loading of data

from various data sources. Code of Python is

undersigned:

import urllib2

url = 'http://aima.cs.berkeley.edu/data/iris.csv'

u = urllib2.urlopen(url)

localFile = open('iris.csv'', 'w')

localFile.write(u.read())

localFile.close()

In the above code we used the library urllib2 to

access the file on the website of University of

Berkley and stored on the disk by File object Method.

This File Contains Iris dataset which is multivariate

data type and contains 50 samples that consists of 3

species of Iris Flowers (Iris setosa, Iris virginica and

Iris versicolor). There are 4 features of each tuple.

a) Length of Sepal in centimeters

b) Width of Sepal in centimetres

c) Length of Petal in centimeters

d) Width of Petal in centimeters

The data type in CSV format. This dataset has 5 rows

,while the first row contains values of features and

last row contains class of samples.Parsing of CSV

dataset can be done by using function genfromtxt of

the numpy library.Code is undersigned

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 153

from numpy import genfromtxt, zeros

read the first 4 columns

data =

genfromtxt('iris.csv',delimiter=',',usecols=(0,1,2,3))

read the fifth column

target =

genfromtxt('iris.csv',delimiter=',',usecols=(4),dtype=s

tr)

In the example above we created a matrix with the

features and a vector that contains the classes. We

can confirm the size of our dataset looking at the

shape of the data structures we loaded:

print data.shape

(150, 4)

print target.shape

(150,)

We can also know how many classes we have and

their names:

print set(target) # build a collection of unique

elements

set(['setosa', 'versicolor', 'virginica'])

An important task when working with new data is to

try to understand what information the data contains

and how it is structured. Visualization helps us

explore this information graphically in such a way to

gain understanding and insight into the data.

Using the plotting capabilities of the pylab library

(which is an interface to matplotlib) we can build a

bi-dimensional scatter plot which enables us to

analyze two dimensions of the dataset plotting the

values of a feature against the values of another one:

from pylab import plot, show

plot(data[target=='setosa',0],data[target=='setosa',2],'

bo')

plot(data[target=='versicolor',0],data[target=='versico

lor',2],'ro')

plot(data[target=='virginica',0],data[target=='virginic

a',2],'go')

show()

This snippet uses the first and the third dimension

(sepal length and sepal width) and the result is shown

in the following figure:

In the graph we have 150 points and their color

represents the class; the blue points represent the

samples that belong to the specie setosa, the red ones

represent versicolor and the green ones represent

virginica.

Another common way to look at data is to plot the

histogram of the single features. In this case, since

the data is divided into three classes, we can compare

the distributions of the feature we are examining for

each class. With the following code we can plot the

distribution of the first feature of our data (sepal

length) for each class:

from pylab import figure, subplot, hist, xlim, show

xmin = min(data[:,0])

xmax = max(data[:,0])

figure()

subplot(411) # distribution of the setosa class (1st, on

the top)

hist(data[target=='setosa',0],color='b',alpha=.7)

xlim(xmin,xmax)

subplot(412) # distribution of the versicolor class

(2nd)

hist(data[target=='versicolor',0],color='r',alpha=.7)

xlim(xmin,xmax)

subplot(413) # distribution of the virginica class (3rd)

hist(data[target=='virginica',0],color='g',alpha=.7)

xlim(xmin,xmax)

subplot(414) # global histogram (4th, on the bottom)

hist(data[:,0],color='y',alpha=.7)

xlim(xmin,xmax)

show()

The result should be as follows:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 154

Looking at the histograms above we can understand

some characteristics that could help us to tell apart

the data according to the classes we have. For

example, we can observe that, on average, the Iris

setosa flowers have a smaller sepal length compared

to the Iris virginica.

II. CLASSIFICATION

Classification is a data mining function that assigns

samples in a dataset to target classes. The models that

implement this function are called classifiers. There

are two basic steps to using a classifier: training and

classification. Training is the process of taking data

that is known to belong to specified classes and

creating a classifier on the basis of that known data.

Classification is the process of taking a classifier

built with such a training dataset and running it on

unknown data to determine class membership for the

unknown samples.

The library sklearn contains the implementation of

many models for classification and in this section we

will see how to use the Gaussian Naive Bayes in

order to identify iris flowers as either setosa,

versicolor or virginica using the dataset we loaded in

the first section. To this end we convert the vector of

strings that contain the class into integers:

t = zeros(len(target))

t[target == 'setosa'] = 1

t[target == 'versicolor'] = 2

t[target == 'virginica'] = 3

Now we are ready to instantiate and train our

classifier:

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

classifier.fit(data,t) # training on the iris dataset

The classification can be done with the predict

method and it is easy to test it with one of the sample:

print classifier.predict(data[0])

[1.]

print t[0]

1

In this case the predicted class is equal to the correct

one (setosa), but it is important to evaluate the

classifier on a wider range of samples and to test it

with data not used in the training process. To this end

we split the data into train set and test set, picking

samples at random from the original dataset. We will

use the first set to train the classifier and the second

one to test the classifier. The function train_test_split

can do this for us:

from sklearn import cross_validation

train, test, t_train, t_test =

cross_validation.train_test_split(data, t, …

test_size=0.4, random_state=0)

The dataset have been split and the size of the test is

40% of the size of the original as specified with the

parameter test_size. With this data we can again train

the classifier and print its accuracy:

classifier.fit(train,t_train) # train

print classifier.score(test,t_test) # test

0.93333333333333335

In this case we have 93% accuracy. The accuracy of a

classifier is given by the number of correctly

classified samples divided by the total number of

samples classified. In other words, it means that it is

the proportion of the total number of predictions that

were correct.

Another tool to estimate the performance of a

classifier is the confusion matrix. In this matrix each

column represents the instances in a predicted class,

while each row represents the instances in an actual

class. Using the module metrics it is pretty easy to

compute and print the matrix:

from sklearn.metrics import confusion_matrix

print confusion_matrix(classifier.predict(test),t_test)

[[16 0 0]

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 155

[0 23 3]

[0 0 18]]

In this confusion matrix we can see that all the Iris

setosa and virginica flowers were classified correctly

but, of the 26 actual Iris versicolor flowers, the

system predicted that three were virginica. If we keep

in mind that all the correct guesses are located in the

diagonal of the table, it is easy to visually inspect the

table for errors, since they are represented by the

non-zero values outside of the diagonal.

A function that gives us a complete report on the

performance of the classifier is also available:

from sklearn.metrics import classification_report

print classification_report(classifier.predict(test),

t_test, target_names=['setosa', 'versicolor',

'virginica'])

 precision recall f1-score support

 setosa 1.00 1.00 1.00 16

versicolor 1.00 0.85 0.92 27

 virginica 0.81 1.00 0.89 17

avg / total 0.95 0.93 0.93 60

Here is a summary of the measures used by the

report:

 Precision: the proportion of the predicted

positive cases that were correct

 Recall (or also true positive rate): the

proportion of positive cases that were

correctly identified

 F1-Score: the harmonic mean of precision

and recall

The support is just the number of elements of the

given class used for the test. However, splitting the

data, we reduce the number of samples that can be

used for the training, and the results of the evaluation

may depend on a particular random choice for the

pair (train set, test set). To actually evaluate a

classifier and compare it with other ones, we have to

use a more sophisticated evaluation model like Cross

Validation. The idea behind the model is simple: the

data is split into train and test sets several consecutive

times and the averaged value of the prediction scores

obtained with the different sets is the evaluation of

the classifier. This time, sklearn provides us a

function to run the model:

from sklearn.cross_validation import cross_val_score

cross validation with 6 iterations

scores = cross_val_score(classifier, data, t, cv=6)

print scores

[0.84 0.96 1. 1. 1. 0.96]

As we can see, the output of this implementation is a

vector that contains the accuracy obtained with each

iteration of the model. We can easily compute the

mean accuracy as follows:

from numpy import mean

print mean(scores)

0.96

III. CLUSTERING

Often we don't have labels attached to the data that

tell us the class of the samples; we have to analyze

the data in order to group them on the basis of a

similarity criteria where groups (or clusters) are sets

of similar samples. This kind of analysis is called

unsupervised data analysis. One of the most famous

clustering tools is the k-means algorithm, which we

can run as follows:

from sklearn.cluster import KMeans

kmeans = KMeans(k=3, init='random') #

initialization

kmeans.fit(data) # actual execution

The snippet above runs the algorithm and groups the

data in 3 clusters (as specified by the parameter k).

Now we can use the model to assign each sample to

one of the clusters:

c = kmeans.predict(data)

And we can evaluate the results of clustering,

comparing it with the labels that we already have

using the completeness and the homogeneity score:

from sklearn.metrics import completeness_score,

homogeneity_score

print completeness_score(t,c)

0.7649861514489815

print homogeneity_score(t,c)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 156

0.7514854021988338

The completeness score approaches 1 when most of

the data points that are members of a given class are

elements of the same cluster while the homogeneity

score approaches 1 when all the clusters contain

almost only data points that are member of a single

class.

We can also visualize the result of the clustering and

compare the assignments with the real labels visually:

figure()

subplot(211) # top figure with the real classes

plot(data[t==1,0],data[t==1,2],'bo')

plot(data[t==2,0],data[t==2,2],'ro')

plot(data[t==3,0],data[t==3,2],'go')

subplot(212) # bottom figure with classes assigned

automatically

plot(data[c==1,0],data[tt==1,2],'bo',alpha=.7)

plot(data[c==2,0],data[tt==2,2],'go',alpha=.7)

plot(data[c==0,0],data[tt==0,2],'mo',alpha=.7)

show()

The following graph shows the result:

Observing the graph we see that the cluster in the

bottom left corner has been completely indentified by

k-means while the two clusters on the top have been

identified with some errors.

IV. REGRESSION

Regression is a method for investigating functional

relationships among variables that can be used to

make predictions. Consider the case where we have

two variables, one is considered to be explanatory,

and the other is considered to be a dependent. We

want to describe the relationship between the

variables using a model; when this relationship is

expressed with a line we have the linear regression.

In order to apply the linear regression we build a

synthetic dataset composed as described above:

from numpy.random import rand

x = rand(40,1) # explanatory variable

y = x*x*x+rand(40,1)/5 # depentend variable

Now we can use the LinearRegression model that we

found in the module sklear.linear_model. This model

calculates the best-fitting line for the observed data

by minimizing the sum of the squares of the vertical

deviations from each data point to the line. The usage

is similar to the other models implemented in sklearn

that we have seen before:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(x,y)

And we can plot this line over the actual data points

to evaluate the result:

from numpy import linspace, matrix

xx = linspace(0,1,40)

plot(x,y,'o',xx,linreg.predict(matrix(xx).T),'--r')

show()

The plot should be as follows:

In this graph we can observe that the line goes

through the center of our data and enables us to

identify the increasing trend.

We can also quantify how the model fits the original

data using the mean squared error:

from sklearn.metrics import mean_squared_error

print mean_squared_error(linreg.predict(x),y)

0.01093512327489268

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 157

This metric measures the expected squared distance

between the prediction and the true data. It is 0 when

the prediction is perfect.

Correlation

We study the correlation to understand whether and

how strongly pairs of variables are related. This kind

of analysis helps us in locating the critically

important variables on which others depend. The best

correlation measure is the Pearson product-moment

correlation coefficient. It's obtained by dividing the

covariance of the two variables by the product of

their standard deviations. We can compute this index

between each pair of variables for the iris dataset as

follows:

from numpy import corrcoef

corr = corrcoef(data.T) # .T gives the transpose

print corr

[[1. -0.10936925 0.87175416 0.81795363]

 [-0.10936925 1. -0.4205161 -0.35654409]

 [0.87175416 -0.4205161 1. 0.9627571]

 [0.81795363 -0.35654409 0.9627571 1.]]

The function corrcoef returns a symmetric matrix of

correlation coefficients calculated from an input

matrix in which rows are variables and columns are

observations. Each element of the matrix represents

the correlation between two variables.

Correlation is positive when the values increase

together. It is negative when one value decreases as

the other increases. In particular we have that 1 is a

perfect positive correlation, 0 is no correlation and -1

is a perfect negative correlation.

When the number of variables grows we can

conveniently visualize the correlation matrix using a

pseudocolor plot:

from pylab import pcolor, colorbar, xticks, yticks

from numpy import arrange

pcolor(corr)

colorbar() # add

arranging the names of the variables on the axis

xticks(arange(0.5,4.5),['sepal length', 'sepal width',

'petal length', 'petal width'],rotation=-20)

yticks(arange(0.5,4.5),['sepal length', 'sepal width',

'petal length', 'petal width'],rotation=-20)

show()

The following image shows the result:

Looking at the color bar on the right of the figure, we

can associate the color on the plot to a numerical

value. In this case red is associated with high values

of positive correlation and we can see that the

strongest correlation in our dataset is between the

variables "petal width" and "petal length."

Dimensionality Reduction

In the first section we saw how to visualize two

dimensions of the iris dataset. With that method

alone, we have a view of only a part of the dataset.

Since the maximum number of dimensions that we

can plot at the same time is 3, to have a global view

of the data it's necessary to embed the whole data in a

number of dimensions that we can visualize. This

embedding process is called dimensionality

reduction. One of the most famous techniques for

dimensionality reduction is the Principal Component

Analysis (PCA). This technique transforms the

variables of our data into an equal or smaller number

of uncorrelated variables called principal components

(PCs).

This time, sklearn provides us all we need to perform

our analysis:

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

In the snippet above we instantiated a PCA object

which we can use to compute the first two PCs. The

transform is computed as follows:

pcad = pca.fit_transform(data)

And we can plot the result as usual:

plot(pcad[target=='setosa',0],pcad[target=='setosa',1],'

bo')

plot(pcad[target=='versicolor',0],pcad[target=='versic

olor',1],'ro')

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 158

plot(pcad[target=='virginica',0],pcad[target=='virgini

ca',1],'go')

show()

The result is as follows:

We notice that the figure above is similar to the one

proposed in the first section, but this time the

separation between the versicolor specie (in red) and

the virginica specie (in green) is more clear.

The PCA projects the data into a space where the

variance is maximized and we can determine how

much information is stored in the PCs looking at the

variance ratio:

print pca.explained_variance_ratio_

[0.92461621 0.05301557]

Now we know that the first PC accounts for 92% of

the information of the original dataset while the

second one accounts for the remaining 5%. We can

also print how much information we lost during the

transformation process:

print 1-sum(pca.explained_variance_ratio_)

0.0223682249752

In this case we lost 2% of the information.

At this point, we can apply the inverse transformation

to get the original data back:

data_inv = pca.inverse_transform(pcad)

Arguably, the inverse transformation doesn't give us

exactly the original data due to the loss of

information. We can estimate how much the result of

the inverse is likely to the original data as follows:

print abs(sum(sum(data - data_inv)))

2.8421709430404007e-14

We have that the difference between the original data

and the approximation computed with the inverse

transform is close to zero. It's interesting to note how

much information we can preserve by varying the

number of principal components:

for i in range(1,5):

 pca = PCA(n_components=i)

 pca.fit(data)

 print sum(pca.explained_variance_ratio_) *

100,'%'

The output of this snippet is the following:

92.4616207174 %

97.7631775025 %

99.481691455 %

100.0 %

The more PCs we use the more the information is

preserved, but this analysis helps us to understand

how many components we can use to save a certain

amount of information. For example, from the output

of the snippet above we can see that on the Iris

dataset we can save almost 100% of the information

just by using three PCs.

V. NETWORKS MINING

Often, the data that we have to analyze is structured

in the form of networks, for example our data could

describe the friendships between a group of facebook

users or the coauthorships of papers between

scientists. Here, the objects to study are described by

nodes and by edges that describe connections

between them.

In this section we will see the basic steps for the

analysis of this kind of data using networkx, which is

a library that helps us in the creation, the

manipulation and the study of the networks. In

particular, we will see how to use a centrality

measure in order to build a meaningful visualization

of the data and how to find a group of nodes where

the connections are dense.

Using networkx, we can easily import the most

common formats used for the description of

structured data:

G = nx.read_gml('lesmiserables.gml',relabel=True)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 159

In the code above we imported the coappearance

network of characters in the novel Les Miserables,

freely available at

https://gephi.org/datasets/lesmiserables.gml.zip, in

the GML format. We can also visualize the loaded

network with the following command:

nx.draw(G,node_size=0,edge_color='b',alpha=.2,font

_size=7)

The result should be as follows:

In this network each node represents a character of

the novel and the connection between two characters

represents the coappearance in the same chapter. It's

easy to see that the graph is not really helpful. Most

of the details of the network are still hidden and it's

impossible to understand which are the most

important nodes. In order to gain some insights about

our data we can study the degree of the nodes. The

degree of a node is considered one of the simplest

centrality measures and it consists of the number of

connections a node has. We can summarize the

degrees distribution of a network looking at its

maximum, minimum, median, first quartile and third

quartile:

deg = nx.degree(G)

from numpy import percentile, mean, median

print min(deg.values())

print percentile(deg.values(),25) # computes the 1st

quartile

print median(deg.values())

print percentile(deg.values(),75) # computes the 3rd

quartile

print max(deg.values())10

1

2.0

6.0

10.0

36

From this analysis we can decide to observe only the

nodes with a degree higher than 10. In order to

display only those nodes we can create a new graph

with only the nodes that we want to visualize:

Gt = G.copy()

dn = nx.degree(Gt)

for n in Gt.nodes():

 if dn[n] <= 10:

 Gt.remove_node(n)

nx.draw(Gt,node_size=0,edge_color='b',alpha=.2,fon

t_size=12)

The image below shows the result:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 1, Jan-Feb 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 160

This time the graph is more readable. It makes us

able to observe the most relevant characters and their

relationships.

VI. CONCLUSION

It is also interesting to study the network through the

identification of its cliques. A clique is a group where

a node is connected to all the other ones and a

maximal clique is a clique that is not a subset of any

other clique in the network. We can find the all

maximal cliques of the our network as follows:

from networkx import find_cliques

cliques = list(find_cliques(G))

And we can print the biggest clique with the

following command:

print max(cliques, key=lambda l: len(l))

[u'Joly', u'Gavroche', u'Bahorel', u'Enjolras',

u'Courfeyrac', u'Bossuet', u'Combeferre', u'Feuilly',

u'Prouvaire', u'Grantaire']

We can see that most of the names in the list are the

same of the cluster of nodes on the right of the graph.

REFERENCES

[1] NLTK, Natural Language Toolkit, suite of

modules, data and documentation for research

and development in natural language processing.

[http://nltk.org/]

[2] OpenCV, one of the most important libraries for

image processing and computer vision.

[http://opencv.willowgarage.com/]

[3] Pandas, provides fast, flexible, and expressive

data structures designed to make working with

"relational" or "labeled" data both easy and

intuitive. [http://pandas.pydata.org/]

[4] Scipy, it is build on top of numpy and provides a

huge collection of algorithms and facilities for

advanced math, signal processing, optimization

and statistics. [http://www.scipy.org/]

[5] Usama Fayyad, "Mining Databases: Towards

Algorithms for Knowledge Discovery", Bulletin

of the IEEE Computer Society Technical

Committee on Data Engineering, vol. 21, no. 1,

March 1998.

[

http://www.research.microsoft.com/research/db/

debull/98mar/issue.htm]

[6] Christopher Matheus, Philip Chan, and Gregory

Piatetsky-Shapiro, "Systems for Knowledge

Discovery in Databases", IEEE Transactions on

Knowledge and Data Engineering, 5(6):903-913,

December 1993.

[7] Rakesh Agrawal and Tomasz Imielinski,

"Database Mining: A Performance Perspective",

IEEE Transactions on Knowledge and Data

Engineering, 5(6):914-925, December 1993.

http://www.ijcstjournal.org/
http://nltk.org/
http://opencv.willowgarage.com/
http://pandas.pydata.org/
http://www.scipy.org/
http://www.research.microsoft.com/research/db/debull/98mar/issue.htm
http://www.research.microsoft.com/research/db/debull/98mar/issue.htm
http://www.research.microsoft.com/research/db/debull/98mar/issue.htm

