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ABSTRACT  

Data mining is the discovery of new patterns from existing ones. Data mining can predict the future. Its applications 

are quite large and can be used in various domains. Data mining techniques have become fundamental for various 

applications. Pattern mining field in data mining is extensively studied. This research paper tries to discover and 

visualize structural patterns of data using python language in data mining. Python is a high level, general purpose 

programming language. Python is now widely used for data centric applications. 
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INTRODUCTION 

Data mining or the knowledge discovery is the 

computer assisted process of digging through and 

analyzing large sets of data and then extracting 

meaning of data[5]. Data mining techniques are able 

to unhide hidden facts. These techniques are enough 

themselves to create meaningful data. Data mining is 

a powerful technique to detect patterns in large 

amounts of data. We tried to formulate pattern 

discovery through python with the help of Berkley 

university website example. 

There are 5 stages of meaningful pattern discovery: 

1. Collection and visualization of data 

2. Classification and clustering of data 

3. Relationships among data is discovered 

using Regression and coefficients 

4. Compression and Visualization of 

information by reducing the number of 

dimensions in data 

5. Analyze Structured data 

We used 4 major Python Libraries to analyze and 

manipulate the data viz.numpy, matplotlib, sklearn, 

and network 

Phase 1:- Collection and Visualization of data 

 

This phase involves collection and loading of data 

from various data sources. Code of Python is 

undersigned: 

import urllib2 

url = 'http://aima.cs.berkeley.edu/data/iris.csv' 

u = urllib2.urlopen(url) 

localFile = open('iris.csv'', 'w') 

localFile.write(u.read()) 

localFile.close() 

 

In the above code we used the library urllib2 to 

access the file on the website of University of 

Berkley and stored on the disk by File object Method. 

This File Contains Iris dataset which is multivariate 

data type and contains 50 samples that consists of 3 

species of Iris Flowers (Iris setosa, Iris virginica and 

Iris versicolor). There are 4 features of each tuple. 

a) Length of Sepal in centimeters 

b) Width of Sepal in centimetres 

c) Length of Petal in centimeters 

d) Width of Petal  in centimeters 

The data type in CSV format. This dataset has 5 rows 

,while the first row contains values of features and 

last row contains class of samples.Parsing of CSV 

dataset can be done by using function genfromtxt of 

the numpy library.Code is undersigned  
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from numpy import genfromtxt, zeros 

# read the first 4 columns 

data = 

genfromtxt('iris.csv',delimiter=',',usecols=(0,1,2,3))  

# read the fifth column 

target = 

genfromtxt('iris.csv',delimiter=',',usecols=(4),dtype=s

tr)  

In the example above we created a matrix with the 

features and a vector that contains the classes. We 

can confirm the size of our dataset looking at the 

shape of the data structures we loaded: 

print data.shape 

 

(150, 4) 

 

print target.shape 

 

(150,) 

We can also know how many classes we have and 

their names: 

print set(target) # build a collection of unique 

elements 

set(['setosa', 'versicolor', 'virginica']) 

An important task when working with new data is to 

try to understand what information the data contains 

and how it is structured. Visualization helps us 

explore this information graphically in such a way to 

gain understanding and insight into the data. 

 

Using the plotting capabilities of the pylab library 

(which is an interface to matplotlib) we can build a 

bi-dimensional scatter plot which enables us to 

analyze two dimensions of the dataset plotting the 

values of a feature against the values of another one:  

from pylab import plot, show 

plot(data[target=='setosa',0],data[target=='setosa',2],'

bo') 

plot(data[target=='versicolor',0],data[target=='versico

lor',2],'ro') 

plot(data[target=='virginica',0],data[target=='virginic

a',2],'go') 

show() 

This snippet uses the first and the third dimension 

(sepal length and sepal width) and the result is shown 

in the following figure: 

 

In the graph we have 150 points and their color 

represents the class; the blue points represent the 

samples that belong to the specie setosa, the red ones 

represent versicolor and the green ones represent 

virginica.  

 

Another common way to look at data is to plot the 

histogram of the single features. In this case, since 

the data is divided into three classes, we can compare 

the distributions of the feature we are examining for 

each class. With the following code we can plot the 

distribution of the first feature of our data (sepal 

length) for each class:  

from pylab import figure, subplot, hist, xlim, show 

xmin = min(data[:,0]) 

xmax = max(data[:,0]) 

figure() 

subplot(411) # distribution of the setosa class (1st, on 

the top) 

hist(data[target=='setosa',0],color='b',alpha=.7) 

xlim(xmin,xmax) 

subplot(412) # distribution of the versicolor class 

(2nd) 

hist(data[target=='versicolor',0],color='r',alpha=.7) 

xlim(xmin,xmax) 

subplot(413) # distribution of the virginica class (3rd) 

hist(data[target=='virginica',0],color='g',alpha=.7) 

xlim(xmin,xmax) 

subplot(414) # global histogram (4th, on the bottom) 

hist(data[:,0],color='y',alpha=.7) 

xlim(xmin,xmax) 

show() 

The result should be as follows: 
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Looking at the histograms above we can understand 

some characteristics that could help us to tell apart 

the data according to the classes we have. For 

example, we can observe that, on average, the Iris 

setosa flowers have a smaller sepal length compared 

to the Iris virginica. 

II.  CLASSIFICATION 

Classification is a data mining function that assigns 

samples in a dataset to target classes. The models that 

implement this function are called classifiers. There 

are two basic steps to using a classifier: training and 

classification. Training is the process of taking data 

that is known to belong to specified classes and 

creating a classifier on the basis of that known data. 

Classification is the process of taking a classifier 

built with such a training dataset and running it on 

unknown data to determine class membership for the 

unknown samples. 

 

The library sklearn contains the implementation of 

many models for classification and in this section we 

will see how to use the Gaussian Naive Bayes in 

order to identify iris flowers as either setosa, 

versicolor or virginica using the dataset we loaded in 

the first section. To this end we convert the vector of 

strings that contain the class into integers:  

t = zeros(len(target)) 

t[target == 'setosa'] = 1 

t[target == 'versicolor'] = 2 

t[target == 'virginica'] = 3 

Now we are ready to instantiate and train our 

classifier: 

from sklearn.naive_bayes import GaussianNB 

classifier = GaussianNB() 

classifier.fit(data,t) # training on the iris dataset 

The classification can be done with the predict 

method and it is easy to test it with one of the sample: 

print classifier.predict(data[0]) 

 

[ 1.] 

 

print t[0] 

 

1 

In this case the predicted class is equal to the correct 

one (setosa), but it is important to evaluate the 

classifier on a wider range of samples and to test it 

with data not used in the training process. To this end 

we split the data into train set and test set, picking 

samples at random from the original dataset. We will 

use the first set to train the classifier and the second 

one to test the classifier. The function train_test_split 

can do this for us: 

from sklearn import cross_validation 

train, test, t_train, t_test = 

cross_validation.train_test_split(data, t, … 

test_size=0.4, random_state=0) 

The dataset have been split and the size of the test is 

40% of the size of the original as specified with the 

parameter test_size. With this data we can again train 

the classifier and print its accuracy: 

classifier.fit(train,t_train) # train 

print classifier.score(test,t_test) # test 

 

0.93333333333333335 

In this case we have 93% accuracy. The accuracy of a 

classifier is given by the number of correctly 

classified samples divided by the total number of 

samples classified. In other words, it means that it is 

the proportion of the total number of predictions that 

were correct. 

 

Another tool to estimate the performance of a 

classifier is the confusion matrix. In this matrix each 

column represents the instances in a predicted class, 

while each row represents the instances in an actual 

class. Using the module metrics it is pretty easy to 

compute and print the matrix:  

from sklearn.metrics import confusion_matrix 

print confusion_matrix(classifier.predict(test),t_test) 

 

[[16  0  0] 
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[ 0 23  3] 

[ 0  0 18]] 

In this confusion matrix we can see that all the Iris 

setosa and virginica flowers were classified correctly 

but, of the 26 actual Iris versicolor flowers, the 

system predicted that three were virginica. If we keep 

in mind that all the correct guesses are located in the 

diagonal of the table, it is easy to visually inspect the 

table for errors, since they are represented by the 

non-zero values outside of the diagonal. 

 

A function that gives us a complete report on the 

performance of the classifier is also available:  

from sklearn.metrics import classification_report 

print classification_report(classifier.predict(test), 

t_test, target_names=['setosa', 'versicolor', 

'virginica']) 

            precision    recall  f1-score   support 

 

    setosa       1.00      1.00      1.00        16 

versicolor       1.00      0.85      0.92        27 

 virginica       0.81      1.00      0.89        17 

 

avg / total       0.95      0.93      0.93        60 

Here is a summary of the measures used by the 

report: 

 Precision: the proportion of the predicted 

positive cases that were correct 

 Recall (or also true positive rate): the 

proportion of positive cases that were 

correctly identified 

 F1-Score: the harmonic mean of precision 

and recall 

The support is just the number of elements of the 

given class used for the test. However, splitting the 

data, we reduce the number of samples that can be 

used for the training, and the results of the evaluation 

may depend on a particular random choice for the 

pair (train set, test set). To actually evaluate a 

classifier and compare it with other ones, we have to 

use a more sophisticated evaluation model like Cross 

Validation. The idea behind the model is simple: the 

data is split into train and test sets several consecutive 

times and the averaged value of the prediction scores 

obtained with the different sets is the evaluation of 

the classifier. This time, sklearn provides us a 

function to run the model: 

from sklearn.cross_validation import cross_val_score 

# cross validation with 6 iterations  

scores = cross_val_score(classifier, data, t, cv=6) 

print scores 

 

[ 0.84  0.96  1.    1.    1.    0.96] 

As we can see, the output of this implementation is a 

vector that contains the accuracy obtained with each 

iteration of the model. We can easily compute the 

mean accuracy as follows: 

from numpy import mean 

print mean(scores) 

 

0.96 

III.  CLUSTERING 

Often we don't have labels attached to the data that 

tell us the class of the samples; we have to analyze 

the data in order to group them on the basis of a 

similarity criteria where groups (or clusters) are sets 

of similar samples. This kind of analysis is called 

unsupervised data analysis. One of the most famous 

clustering tools is the k-means algorithm, which we 

can run as follows: 

from sklearn.cluster import KMeans  

kmeans = KMeans(k=3, init='random') # 

initialization 

kmeans.fit(data) # actual execution 

The snippet above runs the algorithm and groups the 

data in 3 clusters (as specified by the parameter k). 

Now we can use the model to assign each sample to 

one of the clusters: 

c = kmeans.predict(data) 

And we can evaluate the results of clustering, 

comparing it with the labels that we already have 

using the completeness and the homogeneity score: 

from sklearn.metrics import completeness_score, 

homogeneity_score 

print completeness_score(t,c) 

 

 

0.7649861514489815 

 

 

print homogeneity_score(t,c) 
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0.7514854021988338 

The completeness score approaches 1 when most of 

the data points that are members of a given class are 

elements of the same cluster while the homogeneity 

score approaches 1 when all the clusters contain 

almost only data points that are member of a single 

class. 

 

We can also visualize the result of the clustering and 

compare the assignments with the real labels visually:  

figure() 

subplot(211) # top figure with the real classes 

plot(data[t==1,0],data[t==1,2],'bo') 

plot(data[t==2,0],data[t==2,2],'ro') 

plot(data[t==3,0],data[t==3,2],'go') 

subplot(212) # bottom figure with classes assigned 

automatically 

plot(data[c==1,0],data[tt==1,2],'bo',alpha=.7) 

plot(data[c==2,0],data[tt==2,2],'go',alpha=.7) 

plot(data[c==0,0],data[tt==0,2],'mo',alpha=.7) 

show() 

The following graph shows the result: 

 

Observing the graph we see that the cluster in the 

bottom left corner has been completely indentified by 

k-means while the two clusters on the top have been 

identified with some errors. 

IV. REGRESSION 

Regression is a method for investigating functional 

relationships among variables that can be used to 

make predictions. Consider the case where we have 

two variables, one is considered to be explanatory, 

and the other is considered to be a dependent. We 

want to describe the relationship between the 

variables using a model; when this relationship is 

expressed with a line we have the linear regression. 

 

In order to apply the linear regression we build a 

synthetic dataset composed as described above:  

from numpy.random import rand 

x = rand(40,1) # explanatory variable 

y = x*x*x+rand(40,1)/5 # depentend variable 

Now we can use the LinearRegression model that we 

found in the module sklear.linear_model. This model 

calculates the best-fitting line for the observed data 

by minimizing the sum of the squares of the vertical 

deviations from each data point to the line. The usage 

is similar to the other models implemented in sklearn 

that we have seen before: 

from sklearn.linear_model import LinearRegression 

linreg = LinearRegression() 

linreg.fit(x,y) 

And we can plot this line over the actual data points 

to evaluate the result: 

from numpy import linspace, matrix 

xx = linspace(0,1,40) 

plot(x,y,'o',xx,linreg.predict(matrix(xx).T),'--r') 

show() 

The plot should be as follows: 

 

In this graph we can observe that the line goes 

through the center of our data and enables us to 

identify the increasing trend. 

 

We can also quantify how the model fits the original 

data using the mean squared error:  

from sklearn.metrics import mean_squared_error 

print mean_squared_error(linreg.predict(x),y) 

 

0.01093512327489268 
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This metric measures the expected squared distance 

between the prediction and the true data. It is 0 when 

the prediction is perfect. 

Correlation 

We study the correlation to understand whether and 

how strongly pairs of variables are related. This kind 

of analysis helps us in locating the critically 

important variables on which others depend. The best 

correlation measure is the Pearson product-moment 

correlation coefficient. It's obtained by dividing the 

covariance of the two variables by the product of 

their standard deviations. We can compute this index 

between each pair of variables for the iris dataset as 

follows: 

from numpy import corrcoef 

corr = corrcoef(data.T) # .T gives the transpose 

print corr 

 

[[ 1.         -0.10936925  0.87175416  0.81795363] 

 [-0.10936925  1.         -0.4205161  -0.35654409] 

 [ 0.87175416 -0.4205161   1.          0.9627571 ] 

 [ 0.81795363 -0.35654409  0.9627571   1.        ]] 

The function corrcoef returns a symmetric matrix of 

correlation coefficients calculated from an input 

matrix in which rows are variables and columns are 

observations. Each element of the matrix represents 

the correlation between two variables. 

 

Correlation is positive when the values increase 

together. It is negative when one value decreases as 

the other increases. In particular we have that 1 is a 

perfect positive correlation, 0 is no correlation and -1 

is a perfect negative correlation. 

 

When the number of variables grows we can 

conveniently visualize the correlation matrix using a 

pseudocolor plot:  

from pylab import pcolor, colorbar, xticks, yticks 

from numpy import arrange 

pcolor(corr) 

colorbar() # add 

# arranging the names of the variables on the axis 

xticks(arange(0.5,4.5),['sepal length',  'sepal width', 

'petal length', 'petal width'],rotation=-20) 

yticks(arange(0.5,4.5),['sepal length',  'sepal width', 

'petal length', 'petal width'],rotation=-20) 

show() 

The following image shows the result: 

 

Looking at the color bar on the right of the figure, we 

can associate the color on the plot to a numerical 

value. In this case red is associated with high values 

of positive correlation and we can see that the 

strongest correlation in our dataset is between the 

variables "petal width" and "petal length." 

Dimensionality Reduction 

In the first section we saw how to visualize two 

dimensions of the iris dataset. With that method 

alone, we have a view of only a part of the dataset. 

Since the maximum number of dimensions that we 

can plot at the same time is 3, to have a global view 

of the data it's necessary to embed the whole data in a 

number of dimensions that we can visualize. This 

embedding process is called dimensionality 

reduction. One of the most famous techniques for 

dimensionality reduction is the Principal Component 

Analysis (PCA). This technique transforms the 

variables of our data into an equal or smaller number 

of uncorrelated variables called principal components 

(PCs). 

 

This time, sklearn provides us all we need to perform 

our analysis:  

from sklearn.decomposition import PCA 

pca = PCA(n_components=2) 

In the snippet above we instantiated a PCA object 

which we can use to compute the first two PCs. The 

transform is computed as follows: 

pcad = pca.fit_transform(data) 

And we can plot the result as usual: 

plot(pcad[target=='setosa',0],pcad[target=='setosa',1],'

bo') 

plot(pcad[target=='versicolor',0],pcad[target=='versic

olor',1],'ro') 
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plot(pcad[target=='virginica',0],pcad[target=='virgini

ca',1],'go') 

show() 

The result is as follows: 

 

We notice that the figure above is similar to the one 

proposed in the first section, but this time the 

separation between the versicolor specie (in red) and 

the virginica specie (in green) is more clear. 

 

The PCA projects the data into a space where the 

variance is maximized and we can determine how 

much information is stored in the PCs looking at the 

variance ratio:  

print pca.explained_variance_ratio_ 

[ 0.92461621  0.05301557] 

Now we know that the first PC accounts for 92% of 

the information of the original dataset while the 

second one accounts for the remaining 5%. We can 

also print how much information we lost during the 

transformation process: 

print 1-sum(pca.explained_variance_ratio_) 

0.0223682249752 

In this case we lost 2% of the information. 

 

At this point, we can apply the inverse transformation 

to get the original data back:  

data_inv = pca.inverse_transform(pcad) 

Arguably, the inverse transformation doesn't give us 

exactly the original data due to the loss of 

information. We can estimate how much the result of 

the inverse is likely to the original data as follows: 

print abs(sum(sum(data - data_inv))) 

 

2.8421709430404007e-14 

We have that the difference between the original data 

and the approximation computed with the inverse 

transform is close to zero. It's interesting to note how 

much information we can preserve by varying the 

number of principal components:  

for i in range(1,5): 

    pca = PCA(n_components=i) 

    pca.fit(data) 

    print sum(pca.explained_variance_ratio_) * 

100,'%' 

The output of this snippet is the following: 

92.4616207174 % 

97.7631775025 % 

99.481691455 % 

100.0 % 

The more PCs we use the more the information is 

preserved, but this analysis helps us to understand 

how many components we can use to save a certain 

amount of information. For example, from the output 

of the snippet above we can see that on the Iris 

dataset we can save almost 100% of the information 

just by using three PCs. 

V.  NETWORKS MINING 

Often, the data that we have to analyze is structured 

in the form of networks, for example our data could 

describe the friendships between a group of facebook 

users or the coauthorships of papers between 

scientists. Here, the objects to study are described by 

nodes and by edges that describe connections 

between them.  

 

In this section we will see the basic steps for the 

analysis of this kind of data using networkx, which is 

a library that helps us in the creation, the 

manipulation and the study of the networks. In 

particular, we will see how to use a centrality 

measure in order to build a meaningful visualization 

of the data and how to find a group of nodes where 

the connections are dense. 

 

Using networkx, we can easily import the most 

common formats used for the description of 

structured data:  

G = nx.read_gml('lesmiserables.gml',relabel=True) 
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In the code above we imported the coappearance 

network of characters in the novel Les Miserables, 

freely available at 

https://gephi.org/datasets/lesmiserables.gml.zip, in 

the GML format. We can also visualize the loaded 

network with the following command: 

nx.draw(G,node_size=0,edge_color='b',alpha=.2,font

_size=7) 

The result should be as follows: 

 

In this network each node represents a character of 

the novel and the connection between two characters 

represents the coappearance in the same chapter. It's 

easy to see that the graph is not really helpful. Most 

of the details of the network are still hidden and it's 

impossible to understand which are the most 

important nodes. In order to gain some insights about 

our data we can study the degree of the nodes. The 

degree of a node is considered one of the simplest 

centrality measures and it consists of the number of 

connections a node has. We can summarize the 

degrees distribution of a network looking at its 

maximum, minimum, median, first quartile and third 

quartile: 

deg = nx.degree(G) 

from numpy import percentile, mean, median 

print min(deg.values()) 

print percentile(deg.values(),25) # computes the 1st 

quartile 

print median(deg.values()) 

print percentile(deg.values(),75) # computes the 3rd 

quartile 

print max(deg.values())10  

1 

2.0 

6.0 

10.0 

36 

From this analysis we can decide to observe only the 

nodes with a degree higher than 10. In order to 

display only those nodes we can create a new graph 

with only the nodes that we want to visualize: 

Gt = G.copy() 

dn = nx.degree(Gt) 

for n in Gt.nodes(): 

 if dn[n] <= 10: 

  Gt.remove_node(n) 

nx.draw(Gt,node_size=0,edge_color='b',alpha=.2,fon

t_size=12) 

The image below shows the result: 
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This time the graph is more readable. It makes us 

able to observe the most relevant characters and their 

relationships. 

VI.   CONCLUSION 

It is also interesting to study the network through the 

identification of its cliques. A clique is a group where 

a node is connected to all the other ones and a 

maximal clique is a clique that is not a subset of any 

other clique in the network. We can find the all 

maximal cliques of the our network as follows:  

from networkx import find_cliques 

cliques = list(find_cliques(G)) 

And we can print the biggest clique with the 

following command: 

print max(cliques, key=lambda l: len(l)) 

[u'Joly', u'Gavroche', u'Bahorel', u'Enjolras', 

u'Courfeyrac', u'Bossuet', u'Combeferre', u'Feuilly', 

u'Prouvaire', u'Grantaire'] 

We can see that most of the names in the list are the 

same of the cluster of nodes on the right of the graph. 
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