
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 12

An Exception Monitoring Using Java
Jyoti Kumari, Sanjula Singh, Ankur Saxena

Amity University Sector 125

Noida

Uttar Pradesh – India

ABSTRACT
Many programmers do not check for all possible errors for each method as this can make code unintelligible if

each method invocation checks for all possible errors before executing next statement. This creates perplexity

between correctness (checking for all possible errors) and clarity (not cluttering the basic flow of codes with

many error checks).So, to cope up with this, a midway is required and this requirement is fulfilled by

EXCEPTIONs. Java provides an efficient way to handle unexpected conditions which occur during execution of

the program. When there is an error or bug in the program then the program terminates as soon as the error is

encountered. This leaves the program in an inconsistent state. For avoiding such situation, Java makes use of

Exception Handling which is of a great advantage so that whenever there is an exceptional condition, the

program handles it in a manner and continues with the execution of the program without leaving it in an

inconsistent way. java.lang. Throw able class handles the whole concept of exceptions and errors.

In this paper we are focused on the advantages of Exception handling and its implementation in programs to

make it robust. Exception provides a clean way to check for errors without cluttering code. We also developed

user defined exceptions to make programs more reliable. Exception handling is important feature for software

fault tolerance that enables developers to produce reliable and robust software systems.

Keywords:- Exception, Errors, try, catch, finally.

I. INTRODUCTION

Java is a modern, evolutionary computing language

that combines an elegant language design with

powerful features that were previously available

primarily in specialty languages. In addition to the

core language components, Java software

distributions include many powerful, supporting

software libraries for tasks such as database,

network, and graphical user interface (GUI)

programming.

 It provides the powerful exception handling and

type checking mechanism as compare to other

programming languages. [1] An exception is an

abnormal condition which occurs during execution

of program. A java exception is an object which

describes the error which has evolved in program

while execution. Java provides an efficient way to

handle unexpected conditions that can occur in the

program. When there is an error or bug in the

program then the program terminates as soon as an

error is encountered leaving the program in an in

consistent state, to avoid this Java makes use of

Exception. Exceptions are first-class objects in

Java. Like normal objects, they can be defined by

classes, instantiated, assigned to variables, passed

as parameters, etc. [2] Exception Handling

mechanism to a great advantage so that where ever

there is an exceptional condition then the program

handles it gracefully and continues program

execution. [3]

Various reasons are responsible for generating

exception, they are:

 A user has entered invalid data.

 A file that needs to be opened cannot be

finding.

 A network connection has been lost in

middle of communication.

 JVM had run out of memory.

Some exceptions are caused by user errors and

some of programmer error. Exceptions can be also

caused by the physical resources that have failed in

some manner.

NOTE: Run time errors are handled through

Exception handling routines of JAVA.

Some typical cases of exception handling where

exception may occur

 int a=10/0; //ArithematicException

 String s=null;

System.out.println(s.length());

//NullPointerException

 String s="abc";

int i=Integer.parseInt(s);

//NumberFormatException

 int a[]=new int a[5];

a[10]=5;

//ArrayIndexOutOfBoundsException

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 13

Problem without exception:

class jyoti

{

public static void main(String a[])

{

int d=10/0;

System.out.println(“Hello”);

}

}

output of simple.java

Java.lang.AirthmeticException: / by zero

 Solution with exception handling

class sanjula

{

public static void main(String a[])

{

try

{

int d=10/0;

}catch(ArithmeticException e)

{

System.out.println(e);

}

System.out.println(“Hello”);

}

}

output of sample.java

java.lang.AirthmeticException: /Zero

Hello

Exception Handling Mechanism

The main purpose of Exception handling

mechanism is to provide a way of detecting and

reporting “Exception circumstances” so that

appropriate action can be taken. [4] The mechanism

suggests incorporation of a separate error handling

code that performs the following task:

1. Finding the problem i.e. Hit the

Exception

2. Informing that error has occurred i.e.

Throw the Exception

3. Receiving the error information i.e. Catch

the exception
4. Take corrective action i.e. Handle the

exception

 Throws exception object

 Figure 1: Exception Handling Mechanism

Types of exception:

 Checked exceptions: The checked

exception is typically generated by the

user. For example, if a file is to be opened,

but the file cannot be found, an exception

occurs. These exceptions cannot be

ignored at compilation time.

 Runtime exceptions: The runtime

exception occurs when the programmer

probably avoided. Unlike checked

exceptions, runtime exceptions are usually

ignored at the time of compilation.

 Errors: Errors are not exceptions , but

problems that arise beyond the control of

the programmer. These are ignored in the

code because you can rarely do anything

about an error. Example, if a stack

overflow occurs, an error can arise. These

are also ignored at the time of

compilation.

 Mainly there are two types of errors:

1. Compile time errors: These errors occur

due to violation of programming

language’s syntax rules.

2. Run-time errors: These errors occur

during execution of program. When the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 14

JAVA interpreter encounters an error

during runtime it throws an exception. [5]

try and catch

When there is any possibility of an exception being

generated in a program, it is better to handle it

explicit manner. This can be achieve with the try

and catch keywords. The code sequence, which

needs to be guarded, should be placed inside the try

block. The catch clause should immediately follow

the try block. Each catch block is an exception

handler that handles the type of exception indicated

by its argument. [6] The catch clause can consist of

statements explaining the cause of the exception

generated. The scope of each catch is restricted to a

try block. The execution of the program can be

continued once the exception has been handled.

Some points of exception:

 A catch does not exist without a try

statement.

 It is not compulsory to have finally clauses

when a try/catch block is present.

 The try block cannot work without either

catch or finally clause.

 Any sort of code cannot be present in

between the try, catch, finally blocks.

Syntax:

try

{

<code>

} catch (<exception type> <parameter>)

{

<statements>

}

}

try with Multiple catch

Multiple catch statements are required in the

program when one than one exception is generated

by a program. These catch statements are searched

by the exception thrown in order. The first matches

catch clause is executed. Finally, if the exception

does not find a multiple catch clause, it is passed on

the default handler.

Syntax:

try

{

<code>

} catch (<exception type1> <parameter1>)

{

<statements>

}

}

catch (<exception type2> <parameter2>)

{

<statements>

}

}

At a time only one Exception is occurred and at a

time only one catch is executed.

finally Block

The finally block is used for freeing resources,

cleaning up, closing connections. The finally block

contains code that will be run whether or not an

exception is thrown [7] in a try block. If the finally

clock executes a control transfer statement such as

a return or a break statement, then this control

statement determines how the execution will

proceed regardless of any return or control

statement present in the try or catch.

Syntax:

try

{

<code>

} catch (<exception type1> <parameter1>)

{

<statements>

}

}

 finally

 { // finally block

<statements>

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 15

}

Nested try catch

Some situation may arise where a part of a block

may cause one error and the entire block itself may

cause another error. [8] These cases, Exception

handlers have to be nested.

Syntax:

try

{

statement1;

statement2;

 try

{

statement1;

statement2;

}

catch(Exception e)

{

}

}

catch (Exception e)

{

}

II. IMPLEMENTATION

Customized exception is necessary to handle

abnormal conditions of application created by the

programmer. The advantage of creating such an

exception class is that, according to situation

defined by the user an exception can be thrown.

That is possible to set any condition or value to a

variable and generate user-defined exception.

Declaring you own Exception: You can create

your own exceptions in Java. Follow the following

points in mind when writing your own exception

classes:

 All exceptions must be a child of

Throwable class.

 When we want to write a checked

exception that is automatically forced by

the Handle or Declare Rule, you need to

extend the Exception class.

 When we want to write a runtime

exception, you need to extend the

RuntimeException class.

You can define our own Exception class as below:

class MyException extends Exception

{

}

You need to extend the Exception class to create

your own Exception class. These are considered to

be checked exceptions.

Following example InsufficientFundsException

class is a user-defined exception that extends the

Exception class, making it a checked exception.

// File Name InsufficientFundsException.java

import java.io.*;

public class InsufficientFundsException extends

Exception

{

 private double amount;

 public InsufficientFundsException(double

amount)

 {

 this.amount = amount;

 }

 public double getAmount()

 {

 return amount;

 }

}

To demonstrate using our user-defined exception,

the following CheckingAccount class contains a

withdraw() method that throws an

InsufficientFundsException.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 16

// File Name CheckingAccount.java

import java.io.*;

public class CheckingAccount

{

 private double balance;

 private int number;

 public CheckingAccount(int number)

 {

 this.number = number;

 }

 public void deposit(double amount)

 {

 balance += amount;

 }

 public void withdraw(double amount) throws

InsufficientFundsException

 {

 if(amount <= balance)

 {

 balance -= amount;

 }

 else

 {

 double needs = amount - balance;

 throw new

InsufficientFundsException(needs);

 }

 }

 public double getBalance()

 {

 return balance;

 }

 public int getNumber()

 {

 return number;

 }

}

The following BankDemo program demonstrates

invoking the deposit() and withdraw() methods of

CheckingAccount.

// File Name BankDemo.java

public class BankDemo

{

 public static void main(String [] args)

 {

 CheckingAccount c = new

CheckingAccount(101);

 System.out.println("Depositing 5000...");

 c.deposit(500.00);

 try

 {

 System.out.println("\nWithdrawing 1000...");

 c.withdraw(100.00);

 System.out.println("\nWithdrawing 6000...");

 c.withdraw(600.00);

 }catch(InsufficientFundsException e)

 {

 System.out.println("Sorry, but you are short "

+ e.getAmount());

 e.printStackTrace();

 }

 }

}

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 17

Figure 2: Output of BankDemo .java

III. RELATED WORKS

The exception monitoring system is implemented

in Java based on Barat [9] ,which is a front-end for

a Java compiler. Barat builds an abstract syntax

tree for an input Java program and enriches it with

type and name analysis information. It also

provides interfaces for traversing abstract syntax

trees, based on visitor design pattern in [10]. Barat

provides several visitors as basic visitors:

Descending Visitor which traverses every AST

node in depth-first order and Ouput Visitor which

outputs input programs by traversing AST nodes.

We can develop a static analyzer by implementing

visitors to do necessary actions or operations at

visiting AST nodes by extending basic visitors.

 Figure 3: Architecture of BARAT

Users can select files from the package, the

window displays a list of exceptions, handlers and

methods based on the static analysis information

from the menu window. Then, users can select only

interesting exceptions, handlers and methods

among them. By selecting options, users can get

only interesting trace information an

focus on interesting exceptions when debugging.

 Figure 4: Menu Window

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 18

To provide users with options, they implement a

static analyzer to extract exception-related

constructs by extending DescendingVisitor. It

extracts static information about possible

exceptions and methods by analyzing input

programs statically. In particular, it extracts static

program constructs on exception raising, handling

and methods. They also implement a program

transformer called TransformVisitor by extending

OuputVisitor, which transforms an input program P

into a program P’ by inlining codes so as to trace

handling and propagation of thrown exceptions

according to selected options.

Structure of Transform Visitor

Class TransformVisitor extends OutputVisitor{

visitThrow{

// Print the location of thrown exception and its

type

}

visitTry{

// Print the location of try statement

}

visitCatch{

// Print the location of catch statement, the type of

caught exception

// call printStackTrace() method

}

visitMethod{

// Print the method information and record

exception propagation

// via this method

}

}

IV. CONCLUSION AND FUTURE

WORK

In this paper we focused on advantages of

Exception Handling and how it should be

implemented. The basic purpose of exception

handling is to maintain the normal flow of the

application, irrespective of errors or exceptions

which might occur during execution. If these

exceptions are not handled properly then the

application flow will be disrupted during its

execution.

Although exception handling is an important aspect

of application development but it is often neglected

during development time which results into

unknown errors during production time which can

kill the system and produces results which are

unexpected. So, improper exception handling is one

of the major causes for real time applications

failure and at that point it is very difficult to

redesign the application and implement exception

handling mechanism.

REFERENCES

[1] A. Trottier, Java 2 Core Language Little Black Book, Paraglyph Press, 2002.

[2] K. Y. Sukyoung Ryu, "Exception Analysis for Multithreaded Java Programs," Daejeon,Korea.

[3] H. O. a. B.-M. Chang, "An Exception Monitoring System for Java," RISE, pp. 71-81, 2005.

[4] A Saxena, TechnoWorld II, Noida: GRAM, 2014.

[5] M. (. Ben-Ari, "Compile and Runtime errors in Java," Rehovot, 2007.

[6] "The Java Tutorials," Oracle, [Online]. Available:

http://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html.

[7] "Use of 'finally' in Java," JavaSamples, [Online]. Available: http://www.java-

samples.com/showtutorial.php?tutorialid=296.

[8] "Java Exception Handling: Nested try block example - javatpoint," JavaTpoint, [Online]. Available:

http://www.javatpoint.com/nested-try-block. [Accessed 25 12 2013].

[9] A. S. B. Bokowski, "Barat A Front-End for Java," 1998.

[10] R. H. R. J. a. J. V. E. Gamma, Design Patterns:Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

http://www.ijcstjournal.org/

