

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 24

Handling Multithreading Approach Using Java
Nikita Goel, Vijaya Laxmi, Ankur Saxena

Amity University

Sector-125, Noida

UP-201303 - India

ABSTRACT

This paper contains information on multithreading in java and application based on it. In this report we

discuss the use of multithreading, its types and its methods. Java is a multithreaded programming

language. A multithreaded program contains two or more parts that can run concurrently and each part

can handle different task at the same time making optimal use of the available resources. Multithreading

is based on the idea of multitasking in applications where specific operations within a single application

are subdivided into individual threads. With multithreading each of the threads can run in parallel. The

operating system divides processing time not only among different applications, but also among each

thread within an application. Application based on multithreading is developed using Eclipse software.

Eclipse consists of a base workspace and an extensible plug-in system for customizing the environment. It

is written mostly in Java.

Keywords:- Runnable, Thread, Multithreading, Thread Lifecycle, Thread priority, Eclipse

I. INTRODUCTION

Java is one of the most commonly used

and mature programming languages for building

enterprise applications. Over the years, Java

development has evolved from small applets run

on a Web browser to large enterprise distributed

applications run on multiple servers. Now, Java

has three different platforms, or flavors, and

each addresses certain programming

requirements.

Java is a multithreaded programming

language which means we can develop

multithreaded program using Java. A

multithreaded program contains two or more

parts that can run concurrently and each part can

handle different task at the same time making

optimal use of the available resources especially

when your computer has multiple CPUs. [1]

A thread is a line of execution and it is

the smallest unit of code that is dispatched by

the scheduler. It is an independent part of a

program which is divided in such a way that

each part is independent of the other, if there

occurs an exception in one thread, it doesn't

affect other threads. A thread is a dispatchable

unit of work. Threads are light-weight processes

within a process. Each part of such a program is

called a thread, and each thread defines a

separate path of execution.

Multithreading is a technique that

allows a program or a process to execute many

tasks simultaneously. It allows a process to run

its tasks in parallel mode on a single processor

system. Multithreading is performed to save

CPU’S deal time or waiting time. It helps to

increase the efficiency of CPU. When a program

requires user input, multithreading enables

creation of a separate thread for this task alone.

The main thread can continue with the execution

of the rest of the program. Programs not using

multithreading will have to wait until the user

has input a value for the continuation of the

execution of the program. Multithreading

extends the idea of multitasking into

applications where you can subdivide specific

operations within a single application into

individual threads. Each of the threads can run in

parallel. The OS divides processing time not

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 25

only among different applications, but also

among each thread within an application. [2]

LIFE-CYCLE OF A THREAD

A thread follows a life cycle, which

starts from the creation till it is destroyed. The

life cycle of a thread in java is controlled by

Java Virtual Machine (JVM). The 5 states are as

follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5.Terminated

Figure 1: Life cycle of a thread

New State: This is the first state when thread

object is created. Thread will be in this state

until the run method is not called off. This state

is also referred to as a born thread.

Runnable: After a newly born thread is started

using start () method, the thread becomes

runnable with the using of run () method. The

thread is in runnable state but the thread

scheduler has not selected it to be the running

thread.

Running: The thread is in running state if the

thread scheduler has selected it.

Blocked: In this state the thread is in the

memory but is temporarily suspended. Blocked

state is divided into Waiting and Time Waiting

State.

Waiting: Sometimes a thread transitions to the

waiting state while the thread waits for another

thread to perform a task. The thread transitions

back to the runnable state only when another

thread signals the waiting thread to continue

executing.

Timed waiting: A runnable thread can enter the

timed waiting state for a specified interval of

time. A thread in this state transition back to the

runnable state when that time interval expires or

when the event it is waiting for occurs.

Dead: A running method ends its life when it

has finished executing its run () method. It is a

natural death. A thread can also be killed by

using stop () method, but this throws an

exception that’s subclass of error, throwing an

exception should be a special event and not part

of normal program execution; thus the use of

stop () method is discouraged.

COMMON THREAD METHODS

• start(): This method starts the thread in a

separate path of execution and then invokes the

run() method on this Thread object.

• run(): When the thread object is instantiated

using start () , the thread is made runnable using

the run() method.

• suspend(): This method suspends the invoking

object. The thread will become runnable again

with the resume () method.

• sleep(): This method suspends execution of the

thread for the specified number of milliseconds.

It can throw an InteruptedException.

• resume(): This method restarts the suspended

thread from the point where it was halted. The

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 26

resume() method is called by some thread

outside the suspended one.

• stop(): The stop() method is used to stop the

execution of a thread before its run() method

terminates. However, the use of stop () is

discouraged because it does not always stop a

thread.

CREATION OF A THREAD IN JAVA

Threads are objects in the Java language. They

can be created by using two different

mechanisms:

1. Create a class that extends the standard

Thread class.

2. Create a class that implements the standard

Runnable interface.

That is, a thread can be defined by extending the

java.lang.Thread class or by implementing the

java.lang.Runnable interface.

 EXTENDING THE THREAD CLASS:

In this method a thread can be created by

defining a class that is a derived from the Thread

class which is built into Java. An object of this

derived class will be a thread.

The run () method should be overridden and

should contain the code that will be executed by

the new thread. This method must be public with

a void return type and should not take any

arguments.

The steps for creating a thread by extending

Thread class are:

1. Create a class by extending the Thread class

and override the run () method:

class MyThread extends Thread {

public void run () {

// thread body of execution

}

}

2. Create a thread object:

MyThread thr1 = new MyThread();

3. Start Execution of created thread:

thr1.start();

 IMPLEMENTING RUNNABLE

INTERFACE:

Creation of a thread object using Runnable

interface is the easiest way of creating a Thread

object. The Runnable interface contains only run

() method, which should be included in classes

implementing them.

The steps for creating a thread by implementing

runnable interface are:

1. Create a class that implements the interface

Runnable and override run () method:

class MyThread implements Runnable {

public void run() {

// thread body of execution

}

}

2. Creating Object:

MyThread myObject = new MyThread();

3. Creating Thread Object:

Thread thr1 = new Thread(myObject);

4. Start Execution:

thr1.start();

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 27

THREAD PRIORITIES

In Java, all the thread instances that the

developer creates have the same priority, which the

processor will schedule without any specific order.

It is important for different threads to

have different priorities. Important threads

should always have higher priority than less

important ones, while threads that need to run

quietly may only need the lowest priority.

For example, the garbage collector

thread, this thread just needs the lowest priority

to execute, which means it will not be executed

before all other threads are scheduled to run.

Thread priority can be controlled using the java

API’S, the Thread.setPriority() method serves

this purpose.

Three constants values defined in Thread class

are:

• MIN_PRIORITY =1

• NORM_PRIORITY=5

• MAX_PRIORITY=10

The priority range of the thread should be

between the minimum and the maximum

number.

II . RELATED WORK

A thread of execution by definition is a "fork" of

a computer program into two or more

concurrently running tasks [3]. The

implementation of threads and processes differs

from one operating system to another operating

system. In most cases, a thread is contained

inside a process. Multiple threads exist within

the same process and share resources such as

memory, but different processes do not share

this data.

Figure 2: Four threads running on a single core processor

sharing the same resources

The threaded programming model provides an

abstraction of concurrent execution, and when

applied to a single process it enables parallel

execution on a multi-core system. This

advantage of a multithreaded program allows it

to operate faster on computer systems that have

multiple CPUs, CPUs with multiple cores, or

across a cluster of machines. This is because the

threads of the program naturally lend themselves

to truly concurrent execution [3].

An example that illustrates the above idea is

shown in

Figure 3: Multi mobile robot simulation sequence

In the non threaded approach when

dealing with simulating multi robot systems, the

robots are put in an array, and then sequentially

the CPU resources are passed to each of them, in

their turn, to calculate their actions, and when

each of them finishes, then the available

resources are passed to the next robot, and so on,

until all robots in the array do their jobs. Then

this cycle starts again, from the first robot to

decide its next step, and so on. The performance

of this approach is acceptable when all robots

are of the same type, or if they need similar time

to complete their decision making process. In

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 28

the case of a scenario like the one shown in

Figure 3, in which we are simulating four robots

at the same time (each of them needing a

different time to accomplish its control strategy

calculations), we encounter the following

situation: the Robot3 will need 50 milliseconds

to finish the calculations in order to take a

decision, and this will affect the simulated

Robot4, since it cannot start its own calculations

until Robot3 finishes. This situation causes a lag

that the Robot4 is not responsible of. This is one

shortcoming of not using threads in the

programming. Threading will eliminate this

problem even when we only have single core

processor, because if we use multithreading and

assign a separate thread to each simulated robot,

then the slow robot (Robot3) will not slow down

all the simulation and other robots till it finishes

its calculations. Instead, each robot will only

affect itself, and the robot with easy calculations

will be simulated normally as it should be, while

the complex robot will stay in its place until

finishing its calculations without affecting the

other robots on their simulation.

Figure 4: : A Multi-Core Processor architecture

On single processor systems, the threads

are executed sequentially and the processor

switches between the threads quickly enough

that both processes appear to occur

simultaneously. In multi-core processors threads

can run more or less independently of each other

without requiring thread switches to get at the

resources of the processor.

The approach of making a separate

thread for each mobile robot is most suitable

when we simulate heterogeneous robots,

because each of them needs a different amount

of calculations. The operating system will switch

between threads on a time basis. This way, it

assures a fair distribution of processing

resources among the threads, assuming we give

all the robot threads the same priority. We can

think of the robot threads as agents (Figure 5),

and the set of robots is a multi-agent system, this

is because each robot thread meets the

requirement for being considered as an agent,

since it is autonomous (or partly autonomous

depending on the user needs), each has its own

local view to the world, and decentralization is

met, since there is no controlling agent, each

agent acts separately, reading from its

environment through its sensors, and then sends

its actions to the actuators as commands

according to the duty (task) that the agent has to

perform [4].

Figure 5: A mobile robot as an agent

 In the non threaded approach when dealing with

simulating multi robot systems, the robots are

put in an array, and then sequentially the CPU

resources are passed to each of them, in their

turn, to calculate their actions, and when each of

them finishes, then the available resources are

passed to the next robot, and so on, until all

robots in the array do their jobs [3]. Then this cycle

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 29

starts again, from the first robot to decide its next

step, and so on [5].

The key to utilizing Java’s

multithreading features effectively is to think

concurrently rather than serially. For an

instance, when there are two subsystems within

a program that can execute concurrently, make

them individual threads .With the help of

multithreading very efficient programs can be

created. If a number of threads are created, the

performance of your program is actually

degraded [6].

III. IMPLEMENTATION

Eclipse is an integrated development

environment (IDE). It contains a base workspace

and an extensible plug-in system for

customizing the environment. [5]

An application has been developed with

a class name called message to contain method

dips, this method accepts a string argument and

displays the same ,it should wait for 1000

miliseconds and print “end of message”. After

creating a class sender which creates threads

within its constructor and start then the

constructor accepts a message object and a string

as parameter. Finally we create a class syntest

which creates objects of sender class, with

different strings.

class Message

{

void dips (String m)

{

System.out.println (“Message:” +m);

try

{

Thread.sleep (500);

} catch (InterruptedException e) {}

System.out.println (“End of Message”);

}

}

The class Message contains a Method,

which accepts a string as argument and display

the same. It waits for 5 seconds and prints the

last print statement.

class Sender implements Runnable

{

Message m;

Thread t;

String s;

public Sender (Message g, String i)

{

m=g;

s=i;

t=new Thread (this);

t.start ();

}

public void run ()

{

synchronized (m)

{

m.disp(s);

}

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 30

}

}

The sender class is responsible for

creating threads. Its constructor takes a message

object and a string as argument.

class syntest

{

public static void main (String a [])

{

Message e=new Message ();

Sender s1=new Sender (e,”Welcome”);

Sender s2=new Sender (e,”Welcome to

synchronized”);

Sender s3=new Sender (e,”Good”);

try

{

s1.t.join ();

s2.t.join ();

s3.t.join ();

} catch (InterruptedException o) {}

}

}

Figure 6: Output of application

 The main method of syntest class creates

objects s Sender class which it turns creates

threads. The respective messages are displayed,

not necessarily in order. At the end of this

display, all the child threads are destroyed and

the program terminates.

IV. FUTURE WORK AND

REFERENCES

Multithreaded software applications are

programs that run multiple tasks (threads) at the

same time to increase performance for heavy

workload scenarios, are already positioned to

take advantage of multi-core processors. The

implementation of threads and processes differs

from one operating system to another. The use

of multithreading programming is the key to

take advantage of the increasing number of

processing cores in central processing units in

each new generation of processors.

V. CONCLUSION

This study is based on multithreading in

java. This study is based on multithreading in

java in which various aspects of multithreading

has been covered which comprises of

multithreading and its states and its methods . A

multithreaded program contains two or more

parts that can run concurrently and each part can

handle different task at the same time making

optimal use of the available resources.

Multithreading is based on the idea of

multitasking in applications where specific

operations within a single application are

subdivided into individual threads. With

multithreading each of the threads can run in

parallel. The operating system divides

processing time not only among different

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 2, Mar-Apr 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 31

applications, but also among each thread within

an application.

Multithreading has many advantages for

application operations where it's okay to

interleave user actions, making a GUI

multithreaded can be very useful. It can even

help to improve end user productivity by

allowing a number of application operations to

proceed in parallel. However, the power that

multithreaded programming provides should be

used with care. If you use shared data across

threads, then it's quite easy to get into some very

difficult debugging scenarios.

Application based on multithreading is

developed using ECLIPSE software. Eclipse is

an integrated development environment (IDE) to

develop applications using java.

REFERENCES

[1] K. P. &. D. Sharma, "Multithreading In

Java," International Journal of Research

(IJR), Vols. Vol-1, no. Issue-10, November

2014.

[2] F. F. E. a. I. P. Mondada, "Mobile robot

miniaturisation: A tool for investigation in

control algorithms." Proceedings of the 3rd

International Symposium on Experimental

Robotics," Kyoto, Japan, 1993.

[3] B. Lewis, "Threads Primer: A Guide to

Multithreaded Programming," Prentice Hall,

1995.

[4] I. Fadi1, O. Olumide2 and I. Dumitrache,

"On multi robot simulation: multi-threading

approach for implementation," GESJ:

Computer Science and Telecommunications,

2011.

[5] Gerkey, B. P., Vaughan, R. T. and A.

Howard, "The Player/Stage Project: Tools

for Multi-Robot and Distributed Sensor

Systems," Coimbra, Portugal, pp. 317-323,

203.

[6] H. Schildt, Java:The complete reference,

2007.

[7] G. Pandey and D. Dani, "Android Mobile

Application Build on Eclipse," International

Journal of Scientific and Research

Publications,, vol. 4, no. 2, February 2014.

http://www.ijcstjournal.org/

