
 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 263

Software Quality Management Measured

Based Code Assessments
Salman Zakariya [1], Mohammed Belal [2]

Department of Computer Science [1] & [2]
Helwan university, Cairo, Egypt

ABSTRACT
Software quality has been a major concern for those involved in the area o f software engineering, and researchers as

well as practit ioners of the domain have proposed instruments to measure it. In order to produce a good software

product, several measures for software quality attributes need to be taken into account. System complexity measurement

plays a vital role in controlling and managing software quality because it generally affects the software quality attributes

like software reliability, software testability and software maintainability. This term paper is primarily is concerned on

software development process that affect software quality management, Software quality metrics, Software

measurement process, and quality models. These aspects of software development and measurement process include

software reliability measurement, ISO approach applicable to software quality and some aspects related to software

testing improvement. In this paper we develop a tool named as (SWMetrics) using Microsoft Visual Studio-C# to

compute a metrics of LOC, SLOC and Complexity based the Cyclomat ic of quality measurement fo r many format

languages of source of code.

Keywords:- Software Measurements, Software Testing, Quality Assurance, LOC, Cyclomatic Complexity

I. INTRODUCTION

Improving software quality by using program analysis &

measurement tools and SQA (Software Quality Assurance)

method is at the appropriate points during the process of

development [3]. Although using various program analysis

tools and techniques are effect ive fo r quality management

and measurement.

Period ic analysis and quality measurements of software

products throughout the life -cycle are very important to

manage and improve software quality [3] [4]. Software

development departments are faced with some difficu lties

when using the tools and techniques for analysis and

measurement. Moreover Software measurement has

become a key aspect of good software engineering practice.

Measurement activities adds value and keeps us actively

involved in, and informed of, all phases of the development

process[18].

Period ic analysis and quality measurements of software

products throughout the life -cycle are very important to

manage and improve software quality [3] [4]. Software

development departments are faced with some difficu lties

when using the tools and techniques for analysis and

measurement. The main problems are typically as follows:

1) It is often not easy to understand and utilize

analyzed results and measured data obtained by

measurement tools and techniques.

2) Most development departments often do not have

enough time to evaluate the tools and to prepare the

environment needed to apply them practically.

3) Continuous activity and repeated experience are

required to acquire the know-how for using tools

and measurement data effectively and

incorporating this in a timely fashion with the

software development process [3].

The software industry has performed a significant

amount of research on improving software quality. Also

development team skill has a significant effect on the

quality of a software product [1] [12]. Organizat ions

involved in such research include the National Institute of

Standards and Technology (NIST), the National Space and

Aeronautics Administration (NASA), the Motor Industry

Software Reliability Association (MISRA), and many

others.

NASA is one example where getting the software right

the first time is critical since they may only get one chance.

Applying the best practices of industry including coding

standards, software tools, configuration management and

other practices will produce better quality code in less time.

Good quality code will also be easier to write, understand,

maintain and upgrade. Th is document is a template. An

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 264

electronic copy can be downloaded from the conference

website. For questions on paper guidelines, please contact

the conference publications committee as indicated on the

conference website. Informat ion about final paper

submission is available from the conference website.

II. BACKGROUND AND RELATED WORK

Software complexity is one branch of software metrics

that is focused on direct measurement of software attributes,

as opposed to indirect software measures such as project

milestone status and reported system failu res. Eldrandaly

(2008) at [17] d iscussed different quality mode ls and how

industries should choose these models according to their

software. He introduced a prototype knowledge based

advisory system for checking SQA of software industries.

In this prototype, different steps were introduced through

which industries or their members can choose quality

model according to their requirements. Farooq et al. (2011)

as [18] exp lained the importance of software quantitative

and qualitative metrics. In this study, software

characteristics were explained and discussed how they are

tested using software metrics. This study emphasized on

software testing process. Iftikhar and Ali (2011) at [19]

deliberated the role of quality measurement in software

industries of Pakistan. It was discussed how quality

assurance is measured in different industries and how they

are compared. In this study, a survey has been conducted to

differentiate more experience firms from less experience

firms on the basis of quality assurance.

On the other hand, there are hundreds of software

complexity measures, ranging from the simple, such as

source lines of code, to the esoteric, such as the number of

variable definition/usage associations.

1) Coding standards for software

Every organization that develops software should use a

coding standard document this coding standards document

tells developers how they must write their code. Instead of

each developer coding in their own preferred style, they

will write all code to the standards outlined in the

document. This makes sure that a large project is coded in

a consistent style, parts are not written differently by

different programmers. Not only does this document make

the code easier to understand, it also ensures that any

developer who looks at the code will know what to expect

throughout the entire application [5]

2) ISO Approach to Software Quality

Management

According to ISO 9126, quality is defined as a set of

features and characteristics of a product or service that bear

on its ability to satisfy stated or implied needs [5]. ISO

9000 describes quality assurance elements that can be

applied to any business regardless of the products or

services offered. The ISO 9000 quality assurance models

treat an enterprise as a network of interconnected processes.

For a quality system to be an ISO-compliant, these

processes must address the areas identified in the standard.

ISO 9000 describes the elements of a quality assurance

system in general terms. The overall quality of a p roduct

can be then expressed by a combination of the a set of six

independent high-level quality characteristics:

Functionality, Reliab ility, Usability, Efficiency,

Maintainability and Portability which are defined as a set

of attributes of a software product by which its quality is

described and evaluated[4].

Figure 1. The Quality Characteristic and sub-

characteristics

3) IS0 91 26 specify the attributes that insure high

quality software [5]:

a) Functionality: Are the required functions

available in the software?

b) Reliability: How reliable is the software?

c) Usability: Is the software easy to use?

d) Efficiency: How efficient is the software?

e) Maintainability: How easy' is it to modify the

software?

f) Portability: How easy is it to transfer the

software to another environment?

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 265

 High quality software has all of these attributes.

III. SOFTWARE TOOLS

The Software quality evaluation tool, ESQUT, measures

the quality metrics which are listed previously. A software

tool properly used makes the job easier. Tools may be used

to help in understanding the code and find problems

quickly. Code browsers, static error analysis and rule

enforcement tools are discussed in this section.

3.1. Code Browser Tools

A code browser is much more powerful than the

typical editor included with a compiler. It enables one to

step through the code with just a few mouse clicks. It can

also display a tree hierarchy of the function calls as shown

in Figure 2using the Understand far C++ tool.

Figure 2. Sample call_Timex Hierarchy Diagram

It will also display unused functions and unused variables.

A browser can also display the definition of a variable and

all the places it's used in a cross reference table. A code

browser may also have metric capability such as

Understand for C++.

3.2 Static Error Analysis Tools

A 'C' compiler will p roduce a list of warnings and error

messages catching most syntactic problems. Always set

error checking to the highest level of detection and correct

all the problems causing errors or warnings. This is a good

start but a number o f errors still get through. A’ static

analysis tool such as PC-lint is required to catch the rest of

the errors. A lint tool will find errors in the code that

compilers miss and warn you of many possible problems

caused by common coding mistakes.

3.3. Rule Enforcement Tools

Organizations like MISRA have developed sets of rules for

programmers to follow to minimize defects. Examples

include: Don’t use “goto” statements and don’t comment

out code. A software tool such as Code Wizard has over

500 rules to compare with code. Some programmers don’t

like to follow rules because it “cramps their style” or it

takes too much time to learn the rules. There is a disparity

between personal preference and following rules that lead

to better quality code.

For example, the placement of curly is supports after “if,”

“for,” and “while” statements is a personal preference, but

leaving them out may lead to programming errors.

The rule enforcement process can be tedious and

cumbersome without the use of automated tools. After the

code has been compiled and found to be error free, a ru le-

formatting tool can be used to automatically reformat the

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 266

source to conform to the ru les. Such tools are few and far

between.

IV. SOFTWARE QUALITY METRICS

Application of software metrics has proven to be an

effective technique for estimating, assessing and improving

software quality and productivity [7], there is many types

of software metrics [2]. Two general types of software

metrics are pro ject management and software quality

metrics. Pro ject management metrics are used to track the

progress of software development and estimate the target

complet ion date. Software quality metrics provide a risk

assessment of the software defects [11]. Pro ject

management metrics are quantitative but may also be used

in calcu lating software quality metrics. What is the purpose

of this metrics? Examples of the purposes include [11]:

 Facilitating private self-assessment and

improvement.

 Evaluating project status (to facilitate

management of the project or related projects).

 Evaluating staff performance.

 informing others (e.g. potential customers) about

the characteristics (such as development status or

behaviour)

5.1. Project Management Metrics

Useful project management metrics count

functions and lines of code completed versus the number of

outstanding defects remain ing. Pro ject management

metrics can be used to keep track of costs and detect

improvements made to the development process. Software

quality management help organizations ensure that all

software development activities meet uniform expectations

around security, reliability, performance and

maintainability.

V. THE PROPOSED APPROACH

In this research, we develop a tool for the quality

measurement of software by using Microsoft Visual

Studio-C# language. The tool working fo r many format file

language, therefor we can select from the list in the

application, this format file like {.vb, .java, .cs, .aspx,

.html, .c;h;cpp, .jsc). Then the calculation of the metrics

will be determinate, which are the metrics is Line Of Code

(LOC) it will be compute all the line of code in the

software including the comment line. And the Source Line

Of Code (SLOC) it will be compute the line of source code

in software without comment line, Number o f operation (#

op) it compute all operation in the software like (+ , - , / ,

….) , this metric will be needed in the determine the

complexity of the system.

The more import ants in this tool is to calculate the

complexity of the system base the more general metrics,

which is the cyclomat ic metric o f quality measurement of

software is one of the most popular metrics in SW

development life cycle (SDLC). A broad measure of

soundness and confidence for a program, it measures the

number of linearly independent paths through a program

module.

The McCabe Cyclomat ic Complexity is determined by

counting the number of basic paths through a function and

it is calculated using the equation: If G is the control flow

graph of program P, and G has e edges (arcs) and n nodes,

then:

 Cyclomatic number V (G) = e - n + 2

 Where e and n are the number of edges and nodes in the

control flow graph

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 267

Figure 3. Snapshot of the Main Menu of the system

Figure 3 shows the snapshot of the prototype of the

software with the sample example of the file in format html

in web application and it has files 1 php. In the example we

see the computing of the all function of the software in

separately, and for all the metrics for every specific metrics

the column viewed the number this number it describe the

function for the name of the column name.

The Cyclomatic complexity metric can be applied in

several areas:

1) Code development risk analysis: While code is

under development, it can be measured for

complexity to assess inherent risk or risk build up.

2) Change risk analysis in maintenance: Code

complexity tends to increase as it is maintained

over time. By measuring the complexity before

and after a proposed change, this build-up can be

monitored and used to help decide how to

minimize the risk of the change.

3) Test Planning: Mathematical analysis has shown

that Cyclomatic complexity gives the exact

number of tests needed to test every decision point

in a program.

4) Reengineering: Cyclomatic complexity analysis

provides the knowledge of the structure of the

operational code of a system.

The risk involved in reengineering a piece of code is

related to its complexity.

The independent of the complexity and size of software

by line code

There is a big difference between complexity and size.

There is no consistent relationship between the two.

Just as 10 is a common limit for Cyclomatic complexity, 60

is a common limit for the number of lines of code. Many

modules with no branching of control flow (and hence the

minimum cyclomatic complexity of one) consist of far

greater than 60 lines of code, and many modules with

complexity greater than ten have far fewer than 60 lines of

code.

Thus, although the number of lines of code is an important

size measure, it is independent of complexity and should

not be used for the same purposes.

VI. CONCLUSION

In this paper, we proposed a prototype to enhancing the

effectiveness of testing and to improve the software quality.

Software development process must make transitions to

higher software culture. Software testing techniques,

methodologies, tools and standards can only aid to measure

software complexity but it is the management and the

people involved who have to plan for and carry out

effective testing. In this paper we compute a metrics LOC,

SLOC and Complexity based the Cyclomat ic o f quality

measurement for many fo rmat languages of source of code.

This term paper is primarily is concerned on software

development process that affect software quality

management, Software quality metrics, Software

measurement process, and quality models.

REFERENCES

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 268

[1] Nasib S. Gill,” Factors Affecting Effective Software

Quality Management,” Revisited.ACM SIGSOFT

Software Engineering, 1 March 2005 Volume 30

Number 2

[2] homas B. Hilburn, Massood Towhidnejad,” Software

Quality: A Curriculum Postscript?” SIGCSE 2000

3/00 Austin, TX, USA, 2000 ACM.

[3] Takeshi Tanaka, Minoru A izawa, Hideto Ogasawara,

Atsushi Yamada,” Software Quality Analysis &

Measurement Service Activity in the Company,”

Software, IEEE,(summer 1998)

[4] G.Zayaraz, Dr. P. Thambidurai, Madhu Srin ivasan,

Dr. Paul Rodrigues, "Software Quality Assurance

through COSMIC FFP," ACM SIGSOFT Software

Engineering September 2005 Volume 30 Number 5

[5] J. L. Anderson Jr.,” USING SOFTWARE TOOLS

AND METRICS TO PRODUCE, BETTER

QUALITY TEST SOFTWARE,” 2004 IEEE

AUTOTESTCON

[6] William A.Ward, Jr.,” Some Observations on

Software Quality,” February 26, 1993 to August 31,

1998.

[7] Shahid Nazir Bhatti J. Kepler University Linz.,” Why

Quality? ISO 9126 Software Quality Metrics

(Functionality) Support by UML Suite ACM

SIGSOFT Software Engineering March 2005 Volume

30 Number 2

[8] DROMEY, R. GEOFF, ‘‘Cornering the Chimera,’’

IEEE Software, vol. 13, no. 1, pp. 33-43, January

1996.

[9] ARTHUR, L. J., Improving software quality-an

insider’s guide to TQM, John Wiley & Sons, New

York, 1993.

[10] F Georgios Gousios, Vassilios Karakoidas.,

‘‘Software Quality Assessment of Open Source

Software1,2 ‘,PCI 2007, volume A, pages 303–315,

Athens, May 2007

[11] Cem Kaner, Senior Member, IEEE, and Walter P.

Bond,” Software Engineering Metrics: What Do They

Measure and How Do We Know?”, 10TH

INTERNATIONAL SOFTWARE METRICS

SYMPOSIUM, METRICS 2004

[12] Justin M. Beaver , Guy A. Schiavone ,” The Effects

of Development Team Skill on Software Product

Quality “,ACM SIGSOFT Software Engineering

Notes, May 2006 Volume 31 Number3.

[13] Hideto Ogasawara, Atsushi Yamada, Mich iko Kojo.”

Experiences of Software Quality Management Using

Metrics through the Life-Cycle”, Proceedings of

ICSE-18,!EEE 1996.

[14] Suite, “Why Quality? ISO 9126 Software Quality

Metrics”, ACM SIGSOFT Software Engineering

Notes Volume 30 Numbers 2 March 2005.

[15] Wikipedia: http://www.wikipedia.org

[16] Ian Sommerv ille. Software Engineering, 8th Edit ion.

Addison Wesley, 2006.

[17] Eldrandaly, K., 2008. A knowledge-based advisory

system for software quality assurance. Int. Arab J.

Inform. Technol., 5(3): 304-310

[18] Farooq, S.U., S. Quadri and N. Ahmad, 2011.

Software measurements and metrics: Role in effective

software testing. Int. J. Eng. Sci. Technol., 3(1): 671-

680.

[19] Iftikhar, A. and S.M. Ali, 2011. Software quality

assurance a study based on Pakistan’s software

industry. Pak. J. Eng. Technol. Sci., 1(2): 65-73.

http://www.ijcstjournal.org/

