
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015 

ISSN: 2347-8578                          www.ijcstjournal.org                                     Page 269 

Versatile of Hybrid Numerical Asymptotic Boundary 

Element Method framework 
K.Rekha [1], Dr.K.Thirugnanasambandam [2] 

Phd Scholar [1], Assistant Professor [2] 

Department of Mathamatics 

Manonmanium Sundaranar University, Tirunelveli [1] 

Govt Thirumagal Mills College, Gudiyattam [2] 

Tamil Nadu – India 

ABSTRACT 

In this paper we tend to summarise abundant of the one scattering HNA work before this paper, within a general 

framework which is able to conjointly embrace a broader category of issues during this paper. we tend to 

conjointly introduce and analyse a replacement approximation house, as an alternate to what has been used 

antecedently. before this thesis, HNA ways have solely been designed for issues of plane wave incidence. 

Intuitively, this approximation could also be taken as double the traditional spinoff on the edges which will see 

the incident waves. At sufficiently high frequencies, this might be an acceptable approximation, but it's not 

controllably correct. The Hybrid Numerical straight line technique improves on the Physical Optics 

Approximation by approximating the diffracted waves numerically.In previous methods such as Ψ can be written 

explicitly in terms of uinc, although an approximate representation may be sufficient. This is the case for the 

penetrable obstacles of  in which a beam tracing algorithm is used to approximate reflections inside ΩΓ. 

Keywords:-  HNA 

 

 

I. REPRESENTATION ON A SINGLE 

SIDE 

In related literature, there appears to be no 

single consistent definition of the term polygon, 

so we shall clarify a definition that is 

appropriate for what follows. 

 

DEFINITION 1.1  

 

(Polygon). We say Ω− is a polygon if it is a 

bounded Lipschitz open set with a boundary ∂Ω 

consisting only of straight line segments, such 

that the endpoint of every segment is connected 

to one other endpoint of another segment. 

We note that Definition 2.1 permits multiple 

disconnected shapes, whereas other 

conventions in the literature do not. Many 

results that follow hold for a subclass of 

polygons, which we define now (as in e.g., [50, 

Definition 1.1]) 

 

DEFINITION 1.2  

 

(Non-trapping polygon). We say that a polygon 

Ω− (in the sense of Definition 2.1) is non-

trapping if: 

(i) No three vertices of ∂Ω are co-linear, i.e. 

they lie in a straight line. 

(ii) For a ball BR with radius R > 0 

sufficiently large that Ω− ⊂ BR, there 

exists a T(R) < ∞ such that all billiard 

trajectories that start inside of BR \ Ω− 

that start at time zero T = 0 and miss the 

vertices of ∂Ω will leave BR by time 

T(R). 

In this chapter we assume that scattering 

obstacle Ω− of the general problem statement of 

§1.1 is a convex polygon, which we denote ΩΓ 

with boundary ∂Ω = Γ. We 
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Figure 1.1: Example of a five-sided polygon (nΓ = 5) with boundary Γ. 

now define a range of parameters related to the geometry of ΩΓ, on which subsequent bounds will depend. 

The parameters in these definitions will hold for any convex polygon in this thesis. 

 

DEFINITION 1.3  

 

(Parameters of a convex polygon). For an nΓ-sided polygon (in the sense of Definition 2.1) with boundary Γ, we 

denote by Pj and Pj+1 the nodes at the endpoints of each side Γj, for j = 1,...,nΓ setting PnΓ+1 := P1. Conventionally, 

the vertices are indexed anti-clockwise. We denote by Lj := |Pj+1 −Pj| the length of Γj, L˜j := Pj
ℓ=1 Lℓ, and LΓ ∈:= 

L˜nΓ. The jth exterior angle is denoted ωj, hence for a convex polygon we have ωj (π,2π). Finally we 

the constant c∗ choose 

> 0 such that kLj ≥ 

c∗ for j = 1,...,nΓ (e.g. c∗ 

= minj{kLj}), and L∗ := maxj{Lj} 

Figure 2.1 depicts a five-sided polygon with certain parameters of Definition 1.3. 

We parametrise Γ by 

x(1.1) 

and Γ−
j ∪Γj ∪Γ+

j , which is the straight line containing Γj, extended infinitely in both directions (defined in 

more detail in Chapter 3), by 

y . 

Now we consider the scattering problem , with solution u, for the case where the scattering object Ω− is a 

convex polygon. In such a case, there are two key physical components of the scattered field us. Firstly, the 

waves reflected by the edges Γj, for j = 1,...,nΓ. As we will see, these can be written explicitly without the 

need for numerical approximation. The second type of wave which contributes to the scattered field are the 

diffracted waves emanating from the corners Pj, for j = 1,...,nΓ. Recall that with a BIE formulation , we are 

instead solving for 

 

. In such a case, the diffracted waves move in just two directions along each side Γj, for j = 1,...,nΓ, 

making this formulation an ideal approach for approximating the diffracted waves. Moreover, it is possible 

to separate explicitly the oscillatory behaviour of these two diffracted terms; the remaining (unknown) term 

which must be approximated numerically is non-oscillatory . The full mathematical derivation depends on 

the incident wave ui (see [16, §3] for plane waves, see Chapter 3 of this thesis for more general incidence), 

however the HNA ansatz for a single impenetrable convex polygon may be written as: 

Γ 1 Γ 2 

Γ 3 

Γ 4 

Γ 5 

P 1 ω 1 

P 2 

ω 2 

P 3 ω 3 

P 4 
ω 4 

P 5 

ω 5 
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Reflected terms Diffracted 

terms ∂u 

∂n 

 First unknown envelope Second unknown envelope 

where s ∈ [L˜j−1,L˜j], for j = 1,...,nΓ, with , the (unknown) amplitudes of the 

diffracted waves are represented by 

 
reflected terms, hence we shall see later that Ψ is zero on the sides which are not illuminated by the incident 

wave. The term Ψ is often referred to as the Physical Optics Approximation for single scatterers, Associate 

in Nursing approximation that ignores diffracted waves. Intuitively, this approximation could also be taken 

as doubly the conventional spinoff on the perimeters that may see the incident waves. At sufficiently high 

frequencies, this might be an appropriate approximation, but it's not controllably correct. The Hybrid 

Numerical straight line technique improves on the Physical Optics Approximation by approximating the 

diffracted waves numerically. In previous methods such as [35], Ψ can be written explicitly in terms of uinc, 

although an approximate representation may be sufficient. This is the case for the penetrable obstacles of 

[31], in which a beam tracing algorithm is used to approximate reflections inside ΩΓ. This takes the form of 

an infinite series, which must be truncated, and is thus only approximate (although in theory, controllably 

accurate). However, the representation for the diffracted waves for penetrable ΩΓ is more complex, and does 

not fit within the framework (2.2). Similarly, the ansatz for non-convex obstacles of [15] contains an 

additional term, and does not fit within (2.2). 

It is the envelopes  that are approximated numerically, indeed our hp approximation will converge 

exponentially (from [35, Theorem 5.2]) if the following assumption holds. 

ASSUMPTION 1.4. There exists a term M(u) such that: 

(i) The functions , are analytic in the right half-plane Re[s] > 

0, where they satisfy the bounds 

 
where δj

+,δj
− ∈ (0,1/2) are given by δj

+ := 1 − π/ωj and δj
− := 1 − π/ωj+1, Cj

+ depends only on c∗ and ωj, Cj
− 

depends only on c∗ and ωj+1 

(ii) M(u) depends on the size of the solution u to (1.4) − (1.6) grows at most algebraically with k, i.e. there 

exists a β ≥ 0 such that 

 M(u) . kβ, for all k ≥ 0, (1.4) 

where a . b means that a ≤ cb, where the constant c depends only on the geometry of Ω−. 

To summarise, in order to design HNA methods we must be able to do the following: 

(i) Represent leading order behaviour accurately via Ψ. 

(ii) Show that Assumption 2.4 holds. 

Prior to this thesis, HNA methods have only been designed for problems of plane wave incidence, which are 

defined as: 

 uinc(x) = uinc
PW (x;α) := eikdα·x, where dα := (cosα,−sinα). (1.5) 

Unlike previous HNA papers (for e.g. [16, §2]), we choose α to be the angle that the plane wave is emanating 

from, measured against the x1-axis. This is to be consistent with previous literature on Embedding Formulae. 

REMARK 1.5 (The constant M(u) for plane waves). For problems of plane wave incidence (as in (2.5)) 

scattering by a single convex polygon Ω−, Assumption 2.4 has been shown to hold with 

M(u) = M∞(u) := sup |u(x)|, 
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x∈Ω+ 

[35, Theorem 3.2]. Numerical experiments of [16] and [15] suggest that for problems of plane wave incidence 

with convex Ω−, we have M∞(u) ∼ 1, although the strongest theoretical bound is currently M∞(u) . k1/2 log1/2 

k, for k ≥ k0 where k0 is a constant independent of k, (see [35, Theorem 4.3] for star shaped polygons, this is 

generalised to non-trapping polygons in Corollary 4.7 of this thesis). In §3.2.1 we will consider cases for 

which Assumption 2.4(i) holds, but with M∞(u) unbounded, hence requiring a different choice of M(u). 

The framework we present does not include the non-convex work of [15]; this requires an extra term in the 

ansatz which captures the oscillatory nature of the waves diffracted by the corners, as they are reflected by 

the non-convex sides. 

1.2 Approximation space 

We now design an approximation space to represent efficiently the diffracted waves emanating from the 

corners of the convex polygon Γ, 

 
a term containing all of the unknown components of (2.2) (recall that the reflected waves can be represented 

explicitly). The scaling by 1/k ensures that vΓ is dimensionless. Instead of approximating vΓ by piecewise 

polynomials, we use our knowledge of wise polynomials.  

                Both of these are singular as s tends to zero, thus the polynomiale e the oscillations e±iks and 

approximate both ) by piece-space needs a stratified mesh to confirm a 

robust approximation. during this section we have a tendency to gift 2 such approximation areas, each 

stratified and enriched with oscillating basis components. 1st we have a tendency to gift the overlapping-

mesh house, that has been employed in all previous HNA ways, enclosed here for completeness and for a 

simple comparison against the new mesh.  

 This house consists of 2 overlapping meshes, stratified towards opposite corners. second we 

have a tendency to propose a brand new different approach, the single-mesh space; actuated by doubtless 

easier implementation. 

 We shall see in Chapter four that the approximation areas we have a tendency to gift here 

aren't solely acceptable for a brand new category of incident fields, however may be used on a polygonal 

shape within a multiple scattering configuration. 

 

The overlapping-mesh hybrid space 

 

 

 

 

Nodes: 

xn = L 

 

 Widths:  xn − xn−1 = L(1 − σ) 

Figure 2.2: The nodes and widths of the mesh as described in Definition 2.6 

 
 Nodes: L − xi = L(1 − σn−i{) 

 L − xn = 0 L-xn−1 = L(1 − σ) L-x0 = L 
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 Widths:  

Figure 2.3: The nodes and widths of the mesh as described in Definition 2.6 subtracted from L, to construct 

a mesh graded in the opposite direction. 

 

DEFINITION 1.6.  

 

Given L > 0, n ∈ N and a grading parameter σ ∈ (0,1), we denote by  the 

geometrically graded mesh on [0,L] with n layers graded towards 0, whose n + 1 meshpoints x i are defined 

by 

 x0 := 0, xi := Lσn−i, for i = 1,...,n. 

For a vector p = (p1,...,pn) ∈ (N0)n we denote by  the space of piecewise polynomials on  with 

degree vector p, i.e. 

 
is a polynomial of degree at most pi for i = 1,...,no. 

Where pi = p for i = 1,...,n, we write . 

The space ) is designed to approximate vj
+, enrichment with oscillatory functions provides a space 

suitable to approximate vj
+e±iks. We first define two spaces for each side Γj, j = 1,...,nΓ, using nj ∈ N to 

determine the degree of mesh grading and the vectors pj to determine the polynomial degree on each mesh 

element: 

, 

, 

In the space , the argument of ˜ρ decreases as s increases. This is related to the mesh depicted in Figure 

2.3. The overlapping-mesh approximation space can now be defined as HNA 

 V N (Γ) := span, 

HNA where N refers to the number of degrees of freedom in the space V N (Γ), 

and depends on parameters pj and nj for j = 

1,...,nΓ. The single-mesh hybrid space 

i=n,...,2n−2 

Nodes:xn = Lxz(1i =−Lσ(1)}−| σxi−2nn+1−1{)= L 

 

Widths:  

 

DEFINITION 1.7.  

 

Given L > 0, n ∈ N and a grading parameter σ ∈ (0,1/2), we denote by Mn(0,L) = {x0,...,x2n−1} the symmetric 

geometrically graded mesh on [0,L] with n layers in each direction, whose 2n 

meshpoints xi are defined by 

x0 := 0, xi := Lσn−i, for, xi := L(1 − σi), for i = n,...,2n − 2, x2n−1 
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For a vector p = (p1,...,pn) ∈ (N0)n we denote by Pp,n the space of piecewise polynomials on Mn(0,L) with 

degree 

vector 

p, i.e. 

and p,n(0 ) :=. 

are polynomials of degree at most pi for i = 1,...,n 

In the case where pi = p for i = 1,...,n, we write Pp,n for Pp,n. 

We first define two spaces for each side Γj, j = 1,...,nΓ, using nj ∈ N to determine the degree of mesh grading 

and the vectors pj to determine the polynomial degree on each mesh element: 

, 

, 

As is explained in Remark 2.8, to avoid ill conditioning of the discrete system we must remove certain basis 

functions. 

Vej := span where 

 xnej := maxnxi ∈ Mnj(0,Lj) such that  (1.7) 

and αj is a parameter chosen such that 0 < αj < Ljk/(4π), bounded independently of k and and pj, used to fine 

tune the space. Put simply, there are two basis functions on elements sufficiently far from the corners, and 

one basis element on elements close to the corners. The parameter αj determines the threshold referring to 

precisely what is meant by sufficiently close. Hence the single-mesh approximation space is defined as 

nΓ 

V NHNA(Γ) := span [ V˜j. 

j=1 

 

REMARK 1.8  

 

(Why elements of  are removed). Since the mesh is strongly graded to approximate the singularities of

, some of its elements are much smaller than the wavelength of the problem, thus e±iks are roughly constant on 

them and the functions  supported on these elements are numerically indistinguishable from those on 

, leading to an ill-conditioned discrete system of Galerkin methods set in . To avoid this, in 

these elements we maintain only one of these two contributions. Intuitively, αj can be thought of as the value 

such that in all elements with distance multiplied with only one of the waves e±iks. As the parametere αj 

increases, fewer from one of the segment endpoints smaller than αj, the space Vj supports polynomials 

degrees of freedom are used and the conditioning of the discrete system is improved, but the accuracy of the 

method is reduced, hence care must be taken when selecting αj. 

As has become standard for HNA BEM , in the numerical experiments of §3.2.3 and §4.5 we choose a grading 

parameter of σ = 0.15, which is a prudent over-refinement of the value suggested by [32, Theorem 3.2]. We 

note that our definition of each approximation space results in symmetric grading and distribution of 

polynomial degrees. For the more complex asymmetric definition on the overlapping mesh, see for example 

[35, §5]. 

We shall shortly present a new result, a best approximation result analogous to the overlapping mesh case of 

adapted for the single mesh. First, we motivate why a modification to the overlapping mesh theorem is 

required, outlining the differences between the two spaces. The basis functions on the graded regions of the 

mesh, which are designed to handle the singularities of vj
±, will also be used to approximate a smooth wave 
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propagating in the opposite direction, for which the 2(nj −nej)−1 elements [Lej−1 +xnej,Lej−1 +xnej+1],...,e [Lej 

−xnej+1,Lej−1 +xnej] coincide grading is not necessary. The elements of the space Vj supported on the larger 

central 

with those of span( ), thus the HNA approximation results of [35, §5] apply. However, on the first 

and final nj mesh elements of Mn(0,Lj), the elements of the discrete space contain only one of the two 

oscillating factors ee ±iks. For example, in functions of the form ee e )efor a polynomiale ρ, 

need to approximate both the the first nj smaller elements [

], the basis 

singular function  −1 . Here the approximation theory of [35] applies again, and the smooth 

function vj
−(Lj − s)e−iks, for which we prove approximation bounds in the next theorem. These correspond to 

the approximation of  away from its singularity with piecewise polynomials. In particular 

we want to control the dependence of the error on the wavenumber k. In the 

remaining nj elements closest to  the same reasoning applies with basis functions of 

the form e 

For the overlapping-mesh space, best approximation estimates were derived in [35, Theorem 5.4] 

(summarised shortly in Corollary 2.11). The single-mesh space is a relatively new approach to HNA methods, 

and prior to this thesis no analogous result had been derived. The following theorem provides such estimates, 

and illustrates the dependence of the best approximation on the parameter αj. 

 

THEOREM 1.9.  

 

Suppose that the polynomial degree pj is constant across the elements of the side Γj, that Assumption 2.4 

holds, nj ≥ cjpj for cj > 0 of Definition 2.3, and xn˜j ≤ Ljk/(2+ǫj)π for some 0 < ǫj ≤ 1. Then we have the following 

bound, concerning the best approximation of the single-mesh space, on a single side Γj of a convex polygon: 

  (1.8) 

  (1.9) 

where 

, 

Ij := Lj − xnej(1 + ǫj/2) > 0, and 

 , 

with C4 as in [35, Theorem 5.5]. 

Proof. We give only the details for the case of vj
+, that of vj

− follows by similar arguments. From the definition 

of  we have 

 . 

By Assumption 2.4, g(z) = vk
+(z/k) satisfies the estimates required in [35, Theorem 5.2], and using |eiks| = 1 

the first term on the right-hand side is hence bounded as in [35, Theorem 5.4], leading to the first two terms 

in the brackets in (2.8). Focusing on the second term, we multiply by eik· and scale by a factor k: 
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 . 

To bound this term we define the open ellipse by E := {w ∈ C : |w − k(Lj − xnej)| + |w − kLj| < R} with R := (1 

+ ǫj)kxnej and appeal to [35, Lemma A.2] to obtain 

 , 

where . Noting that 

+ 2) 

and 

inf{Re(w) : w ∈ E} = kLj − kxnej(1 + ǫj/2), it follows from Assumption 2.4 that 

from which the result follows, recalling that   

In this proof we have approximated vj
+(·/k)e2i· over nj small elements with a single polynomial of degree pj; 

sharper estimates may be derived along the lines of the proofe of [35, Theorem 5.2], which admits different 

polynomials in each element. A slightly sharper bound may be achievable by choosing non-oscillating 

functions √  

on the elements close to the corners, yielding the constant eαjπ ǫj(ǫj+2) in place of √  

e2αjπ ǫj(ǫj+2). However this would also require separate bounds close to the singularity of , we would be unable 

to use the bounds of [35, Theorem 5.2], making the proof more complex. If αj is chosen independently of k 

and sufficiently small, then the first and the last nj elements of Mn(0,Lj) are smaller than a given fraction of 

the wavelength of the problem.e 

Construction of the stiffness matrix will have approximately similar CPU time for the single- and overlapping-

mesh approach (assuming that the same quadrature routine is used in each method) for similar degrees of 

freedom, because the inner products are very similar. Provided αj is chosen correctly, we expect the 

implementation of the single-mesh to be advantageous because implementation is easier, as there are fewer 

types of inner products that need computing for the Galerkin method and it is easily adapted from a standard 

hp solver, which would not generally be defined over an overlapping mesh. Secondly, controlling the number 

of degrees of freedom of the discrete space enables us to control the conditioning of the discrete system. 

Figure 2.4 suggests that the conditioning remains stable as the number of degrees of freedom increases, for 

αj = min{(p)i/2,2} on the ith mesh element, for j = 1,2,3, whilst the conditioning for the overlapping-mesh 

space appears to grow exponentially for a similar number of degrees of freedom. It should be noted that the 

value of αj is larger here than that which is used to produce the numerical results in §3.2.3 and §4.5, and we 

would expect a larger value of αj to produce less accurate results. Hence an advantage of the single-mesh 

approach is that the user has control over the conditioning of the discrete system (by tweaking the parameter 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015 

ISSN: 2347-8578                          www.ijcstjournal.org                                     Page 277 

αj), but this may come at a cost (a loss of accuracy). Indeed, Figure 3.11 suggests that the condition number 

for αj = min{(p)i/8,2} grows exponentially, whilst Figure 4.4 suggests that the larger choice αj = min{(p)i/4,2} 

can lead to inaccurate results. 

 
Figure 1.4: The condition number of the Galerkin stiffness matrix corresponding to scattering by a single 

regular triangle, with each side length 2π and wavenumber k = 5, for a single- and double-mesh discretisation 

as described in Remark 2.8. The maximal polynomial degrees used are p = 0,...,9 for the single-mesh space 

and p = 1,...,7 for the overlapping-mesh space; the polynomial degrees in the small elements are decreased as 

in Remark 2.10. 

 

REMARK 1.10 

 

It is shown in [35, Theorem A.3] for V N (Γ) that it is possible to reduce the number of degrees of freedom on 

Γ, whilst maintaining exponential convergence, by reducing the polynomial degree in the smaller mesh 

elements. For example, given p > 1, suppose that we define for each side Γj, j = 1,...,nΓ, a degree vector p by 

 
where n∗ is the largest i ∈ {1,...,n−1} such that xi−1/2 < 1. Numerical experiments in §3.2.3 and §4.5 suggest 

that a similar result holds for , although we do not prove this here. To this purpose, one has to use 

the technique of [35, Theorem A.3], relying on different approximation bounds on each mesh element, while 

the technique used in the proof of Theorem 2.9 requires the presence of high-order polynomials on each 

element. 

Now we present a result which compares the best approximation of the single-mesh and overlapping-mesh 

spaces, over the whole boundary Γ. 

 

COROLLARY 1.11 

 

 If Assumption 2.4 and the conditions for Theorem 2.9 hold for a convex polygon Γ, then we have the 

following best approximation bound for the diffracted wave vΓ (see (2.6)): 

 , (1.10) 

where CΓ is a constant independent of k and 

J(k) := 
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International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 4, Jul-Aug 2015 

ISSN: 2347-8578                          www.ijcstjournal.org                                     Page 278 

(1 + kL 

)1/2−δ∗ + 

log1/2(2 

+ kL 

), V HNA(Γ) = V (Γ) 

with . For 

HNA the case , it follows that CΓ = maxj{Cj}. For the case V N (Γ), CΓ is equal to the constant C4 

of [35, Theorem 5.5]. 

Proof. For (Γ), the result follows by extending Theorem 2.9 to all sides, noting 

HNA the scaling of (2.6). The case V N (Γ) is proved in [35, Theorem 5.5].

  
In the above Corollary 1.11, we note that there is an additional term in the 

best approximation error of (Γ), namely √k(kI∗)−δ∗. By definition, for convex polygons we 

have that δ∗ > 1/2, hence it follows that J(k) ∼ log1/2 k as k → ∞. 

 

REMARK 1.12  

 

(Collocation vs Galerkin HNA BEM). The collocation (see (1.19)) HNA method for the problem of the two-

dimensional screen was investigated in [47]. A key component of the investigation was a comparison between 

single- and overlappingmesh collocation, although no conclusions were drawn regarding how the collocation 

points should be chosen when an overlapping mesh is used. In certain cases, choosing Chebyshev nodes 

resulted in a non-convergent numerical method. Given this result, HNA the single-mesh space V N (Γ) would 

be the recommended choice when coupled with a collocation HNA method. The key advantage of collocation 

is that the integrals in the discrete system are of one dimension less, making for easier implementation, and 

faster run time. The disadvantage of collocation is that there is (currently) no applicable theory on stability 

constants for collocation HNA BEM, however there are many problems (for example, looking ahead to 

multiple obstacle HNA BEM (4.22)) for which there are also no stability bounds available for the Galerkin 

method (see (1.18)) either, hence case there is no theoretical advantage to implementing the more complex 

Galerkin method. Stability analysis of collocation HNA BEM is a possible area for future work, as it has been 

proved (see for example [2]) for certain problems (not including HNA BEM), that collocation and Galerkin 

methods produce the same result, in which case the same error analysis can be applied. In summary, there are 

advantages and disadvantages to Collocation and Galerkin methods, depending on implementation time 

available and desirability of a priori error bounds. 

 

1.3 HNA Galerkin method for a single convex polygon 

 

Here we summarise the HNA Galerkin method for a single convex polygon Γ. We write VN
HNA(Γ) to denote 

either of the two approximation spaces of §2.2. The continuous BIE to solve may be written by combining 

(1.2), (1.6) and (1.14) with either choice of A, 

 , on Γ, 

and the Galerkin problem (see (1.18)) to solve is: find vN ∈ VN
HNA(Γ) such that 

  , for all ϕ ∈ VN
HNA(Γ), (1.11) 

where (·,·)L2(Γ) denotes the L2 inner product on Γ (see §A.2). For A = Ak,η it follows by [16, Theorem 5.2] 

that there exists an N0 > 0 such that (2.11) has a unique solution for N ≥ N0. For A = Ak we have N0 = 1 (see 

Remark 2.13 for details). Provided the conditions of Assumption 2.4 and Corollary 2.11 are satisfied, we may 

bound the error in our approximation on a single convex scatterer, kvΓ − vNkL2(Γ) ≤ Ck−1/2Cq(k)M(u)J(k)e−pτΓ, 

for N ≥ N0, (1.12) 

( 
(1+ kL ∗ ) 

1 / 2 − δ ∗ + log 1 / 2 (2+ kL ∗ )+ 
√ 
k ( kI ∗ ) 

− δ ∗ , V HNA 
N (Γ)= V 

HNA 
N (Γ) 

∗ ∗ N 
HNA 
N 
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where C, p, J and τΓ are as in Corollary 2.11. The bound (1.12) follows by combining the best approximation 

error with [16, Theorem 5.2], and is a natural generalisation of [35, (5.11)] to multiple approximation spaces 

(recalling that J depends on the choice of approximation space). The constant Cq(k) ≥ 1 denotes the stability 

or quasi-optimality constant, which determines the relationship between the best approximation available in 

the space VN
HNA(Γ) and the solution to the Galerkin equations (1.11), as these need not be the same thing. 

The stability constant depends on the formulation used, and has been the subject of much investigation, which 

we will summarise now: 

 

REMARK 1.13 

 

 (The stability constant Cq for HNA methods on convex polygons). Here Cq represents the quasi-optimality 

constant associated to the Galerkin method. If A = Ak (of Definition 1.3) then N0 = 1 and Cq . k1/2 for k ≥ k0, 

where k0 > 0 is fixed and independent of k. This follows from the coercivity of Ak, by C´ea’s lemma (see [52] 

and [35, Theorem 6.1]). Numerical experiments of [8, Table 6.1] show that Ak,k is coercive for the square 

and equilateral triangle, with a coercivity constant uniform in k, hence Cq ∼ kAk,kk; given the current best 

available bounds on Ak,η ( [20, Theorem 1.4]), we have Cq . k1/4 logk in these particular cases. Such a result 

has not yet been proved for Ak,η with general convex polygonal scatterers. Instead we may use the more 

general theory (see for example [3, Theorem 3.1.1]), given that Ak,η is a compact perturbation of a coercive 

operator [16, p620] we have existence of N0 and Cq, although this provides no mechanism to bound either in 

terms of known parameters. 

 

THEOREM 1.14. 

 

 Suppose that the stability constant Cq(k) grows at most algebraically with k, that Assumption 2.4 holds, A is 

a compact perturbation of a coercive operator, and either approximation space is used with the following 

condition on the polynomial degree vector on the jth side: 

 (pj)i = pj ≤ nj/cj for i = 1,...,nj with cj ≥ 1 for j = 1,...nΓ, 

where cj is the constant from Theorem 2.9. Then the solution of the Galerkin equations (1.11) converges 

exponentially to the true solution of (1.14) as p → ∞ on L2(Γ), where p := minj{pj}. 

Proof. It follows by Assumption 1.4 and Corollary 1.11 that Cq(k)M(u)J(k) grows only algebraically in k. 

Hence there exists an N ≥ N0, where N grows with p, such that e−pτΓ will dominate the algebraic terms, given 

the bound (2.12).  

The above theorem highlights the importance of obtaining algebraic bounds on M(u) (thus showing that 

Assumption 1.4 holds), which is a key component . Although much work has been done to understand the 

growth of the stability constant Cq(k) for star-shaped Ω− (as discussed in Remark (1.13)), This provides the 

first bound for multiple scattering problems. Given the solution of (1.11), we can approximate quantities of 

practical interest using the Definitions (1.2) and (1.6), noting that vN is an approximation to vΓ, to obtain 

 , on Γ, 

where p is the polynomial degree used to obtain the approximation with N degrees of freedom (there are 

parameters other than p, in particular cj, which determine N). From this, an approximation to the total field u 

of (1.10) follows immediately, by inserting into (1.10) 

 u ≈ uN := uinc − Skνp, in Ω+, 

and we have that 

ku − uNkL∞(Ω+) ≤ CM(u)k1/2 log1/2(2 + L∗k)J(k)e−pτΓ. 

Likewise, we have the following approximation to the far-field coefficient of (1.16) 

u∞(θ) ≈ u∞N (θ) := Z e−ik[y1 cosθ+y2 sinθ]νp(y)ds(y), 

Γ 

with error estimate (from [35, Theorem 6.4]) 

θ ∈ [0,2π), (1.13) 

 . (1.14) 
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II. CONCLUSION 

The investigation was a comparison between single- 

and overlappingmesh collocation, although no 

conclusions were drawn regarding how the 

collocation points should be chosen when an 

overlapping mesh is used. In certain cases, choosing 

Chebyshev nodes resulted in a non-convergent 

numerical method. Given this result, HNA the 

single-mesh space V N (Γ) would be the 

recommended choice when coupled with a 

collocation HNA method. The key advantage of 

collocation is that the integrals in the discrete system 

are of one dimension less, making for easier 

implementation, and faster run time. The 

disadvantage of collocation is that there is 

(currently) no applicable theory on stability 

constants for collocation HNA BEM, however there 

are many problems (for example, looking ahead to 

multiple obstacle HNA BEM  for which there are 

also no stability bounds available for the Galerkin 

method (see (1.18)) either, hence case there is no 

theoretical advantage to implementing the more 

complex Galerkin method. Stability analysis of 

collocation HNA BEM is a possible area for future 

work, as it has been proved for certain problems (not 

including HNA BEM), that collocation and Galerkin 

methods produce the same result, in which case the 

same error analysis can be applied. In summary, 

there are advantages and disadvantages to 

Collocation and Galerkin methods, depending on 

implementation time available and desirability of a 

priori error bounds. 
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