
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 101

RESEARCH ARTICLE OPEN ACCESS

Web Application Vulnerability Detection and Mitigation with

Static Exploration

Uduakobong Asuquo Ituen [1], M. B. Mukeshkrishnan [2]

M.Tech [1] Information Security and Cyber Forensics

Assistant Professor [2], Department of Information Technology

Faculty of Engineering and Technology, SRM university

Tamil Nadu – India

ABSTRACT
The number of reported web application vulnerabilit ies is increasing dramatically. Security vulnerabilit ies in web ap plications

may result in stealing of confidential data, breaking of data integrity or affect web application availability. Thus the task of

securing web applications is one of the most urgent for now: according to Acunetix survey 60% of found vulnerabilities affect

web applications. These web applications, which can be accessed from anywhere, become so widely exposed that any existing

security vulnerability will most probably be uncovered and exp loited by hackers. The most common way of securing web

applications is searching and eliminating vulnerabilities therein. Th is paper exp lains a field study on two of the most widely

spread and critical web application vulnerab ilit ies: SQL Injection and XSS. This paper presents how these confidential data a re

really explo ited by hackers in web applications, and its presents an analysis of the source code of the scripts used to attack

hackers.

Keywords:- SQL Injection, Cross Site Scripting, Vulnerabilities, Vulnerability Exploration, Web Application Security.

I. INTRODUCTION

The issue of web application security vulnerability has grown

significantly in recent times. Th is has been mainly due to the

increase in the use of the internet. A good number of

organizations these days depend on the use of the internet to

make their business reachable by their clients and users.

Looking critically at the h istory of the internet, the internet

has been of great help to these industries and organizations, it

has caused increase in the productivity of these businesses, but

just as the internet has positive effects it also has its negative

effects too.

In recent times the numbers of people who have access to

computers have increased thereby causing the possible

number of internet users to also increase. According to web

resources the internet by definition is a global computer

network providing a variety of information and

communicat ion facilities consisting of interconnected

networks using standardized communicat ion protocol, this

simply means that the internet can be accessed from anywhere

and at any time. Most of the people who have access to

computers know little or nothing about securing these

computers. Since these computers are what makes up the Web

therefore the web id made vulnerable through these

computers. The users who have access to the internet are

served using a huge amount of data which is stored in

databases that are connected to a number of web applications

all over the world.

Furthermore, these applications play a dynamic role in

maintaining security of data stored in these databases. Web

applications which are not very secured allow well-made

injection to perform unwanted operations on back-end

database. An unauthorized user may be able to exp loit this

situation by destruction or with theft of trusted users sensitive

data stored here. The maximum amount of damage is caused

when an attacker gains fu ll control over a database or web

application as there is a possibility of system being fu lly

destroyed. The sensitive data on one’s system could be

transferred to any intermediary by in jecting a class of

vulnerability in trusted site’s dynamically generated pages.

This intermediary could be an attacker’s server. This

mechanis m could also be used in avoiding cookie protection

mechanism or same-origin-policy.

SQL (Structured Query Language) Injection and Cross -Site

Script ing (XSS), the two top most attacks according to

OWASP (Open Web Application Security Project), has been

used frequently to implement the attacks.

SQL in jection is a method used by attackers to attack data-

driven applications here SQL statements are inserted into an

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 102

entry field for execution. For an SQL injection attack to be

possible the application would have vulnerability. It is this

security vulnerability that SQL injection must explo it in an

application's software, for example, when user input is either

incorrectly filtered

SQL Injection attempts to pass SQL commands (statements)

through a web application for execution by the backend

database. If these inputs are not sanitized properly, web

application may result in SQL In jection attacks that allow

hackers to view information from the database, wipe data out,

or change data.

When the authorized user submits his details, an SQL query is

created from these details and submitted to the database for

verification. If the details are valid, the user is allowed access.

The web application which controls the login page

communicates with the database through a sequence of

planned commands so as to verify the username and password

combination. After verification, the authorized user is granted

appropriate access. Using SQL Inject ion, the hacker may input

SQL commands with the intent of bypassing the login form

security and seeing what lies behind it. This is only possible if

the inputs are not properly sanitized. SQL Inject ion

vulnerabilities provide a hacker with the means to

communicate d irectly to the database. Web servers owned by

an organization is primary target of these kinds of attack.

 Cross site scripting (XSS) vulnerability arises when a web

application makes use of inputs received from users in web

pages without properly checking them. When an attacker gets

a user's browser to run a specific code, the code will run

within the security zone of the hosting web site. At this

privilege level, the code is able to read, modify and trans mit

or delete any sensitive data accessible by the browser. A user

that has been attacked in this manner could have his/her

account controlled by the attacker and their browser could

also be redirected to another location. Cross -site Scripting

attacks compromise the trust that exits between a user and the

web site.

Current methods to mitigate this problem mainly focus on

effective detection of XSS vulnerabilities in the programs or

avoidance of real time XSS attacks. As more refined attack

vectors are being discovered, vulnerabilities if not removed

could be explo ited anytime. XSS usually affects victim’s web

browser on the client-side where as SQL injection occurs in

server side. These vulnerabilities could be exploited by SQL

injection or XSS to gain control over the online web

application database. In this paper we focus on various SQL

injection and XSS attacks and approaches for their detection

and prevention.

II PROBLEM DEFINITION

The security of Web applications has become increasingly

important in recent year. More and more Web based enterprise

applications have sensitive financial, medical, and personal

data which, if compromised, in addition to lost time can mean

millions of dollars (or any currency which such organization

operates) in damages. It is important that these applications

are protected from hacker attacks. However, dues to the

current state of application security it leaves much to be

desired. The 2002 Computer Crime and Security Survey

conducted by the Computer Security Institute and the FBI

revealed that, on a yearly basis, over half of all databases

experience at least one security breach and an average episode

results in close to $4 million in losses. A recent penetration

testing study performed by the Imperva Application Defense

Center included more than 250 Web applications from e-

commerce, online banking, enterprise collaboration, and

supply chain management sites.

III. EXISTING SYSTEM

 As the security of web applications has become a

major concern and it is receiv ing a lot of attention from

governments, corporations, and the research community.

Cross-site scripting (XSS) and SQL in jection (SQLi), are two

of the most common and critical vulnerabilities found in web

applications. SQL input injection attacks may serve a number

of ends. Generally, malicious users prefer method as a way to

obtain restricted data from the backend of a database or in

embedding malicious codes onto a web server that will serve

up malware to unsuspecting clients.

 According to OWASP [16], the most efficient way of

finding security vulnerab ilit ies in web applicat ions is to

review code manually. Th is method has proven to be effective

but has the disadvantage of being very time-consuming, for

this method to actually be worthwhile it requires expert skills,

and also the possibility of codes with errors to be overlooked

is high; therefore, security societies have developed automated

methodologies to finding security vulnerabilities. These

approaches are divided into two wide categories:

 Black-box testing

 White-box testing

Black-box testing: It is also called functionality testing. It

could be described as a method of testing that ignores the

internal mechanis m of a system or component and focuses

solely on the outputs generated in response to selected inputs

and execution conditions. With black box testing, the software

tester does not (or should not) have access to the source code

itself. The code is likened to a “big black box” to the tester.

This simply means the tester can’t see inside the box. The

tester only knows that in formation can be as input to the black

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 103

box, and the black box will send output. Based on the

requirements knowledge, the tester knows what the black box

is expected to send out and therefore tests to make sure the

black box sends out what it’s supposed to send out (functions

properly)

White-box testing:

 The first method is based on web application explorat ion

from the user side, assuming that source code of an

application is not available [17]. The idea is to submit various

malicious patterns into web applicat ion forms and to analyze

its output afterwards. If any application errors are observed an

assumption of possible vulnerability is made. Th is approach

does not guarantee accuracy or completeness of the obtained

results. The existing approaches for mit igating dangers to web

applications can be divided into client-side and server-side

solutions. The only client-side tool known to the authors is

Noxes [15], an applicat ion-level firewall offering protection in

case of suspected cross-site scripting (XSS) attacks that

attempt to steal user identificat ions. Server-side solutions have

the advantage of being able to discover a h igher range of

vulnerabilities, and the advantage of a security flaw fixed by

the service provider is instantly spread to all its clients. These

server-side techniques can be further classified into dynamic

and static approaches.

IV PROPOSED SYSTEM

 This paper, proposes an analysis of the source code

of the scripts used to attack the malicious users. And helps

developers to know about how these vulnerabilit ies are really

exploited by hackers. It could be used to aid software

developers and code inspectors in the exposure of such faults

and are also the foundation for the research of accurate

vulnerability and attack injectors that can be used to assess

security mechanis ms, such as intrusion detection systems,

vulnerability scanners and static code analyzers.

A. ADVANTAGE:

Through analysis , strong and weak type languages in

developing web applications are detected. And a method to

improve the weak type languages to decline malicious users is

suggested.

From other studies, we know weak typed languages contain

more vulnerabilities than strong typed languages which makes

the weak typed languages a constant point of attack.

i. SOFTWARE REQUIREMENTS:

Front End : Java

Environment : Eclipse/Net Beans

Back End : MySQL

Operating System : Windows XP

ii. HARDWARE REQUIREMENTS:

Processor : Pentium IV

RAM : 512 MB

Hard Disk : 80 GB

V. IMPLEMENTATION

A. construction of test web application

B. determination of web application vulnerabilities

C. classification of defect

D. inject malicious code

A. CONSTRUCTION OF TEST WEB

APPLICATION

In the attempt to analyze web security vulnerabilities a sample

web application is created using open source tools which are

available on the internet. The web applicat ion created is an

imitation of an organization’s web page.

Most information systems and business applications built

nowadays have a web front end and they need to be

universally available to clients, employees, and partners

around the world, as the digital economy is becoming more

and more prevalent in the global economy. So, when we

develop web application, we consider the security on that

business sites. The security of web applicat ions becomes a

major concern and it is receiving more and more attention

from corporations, and the research community as a whole.

Here, the organizat ion’s site is developed with secure

informat ion, success formulae, account details, partners secure

informat ion, employee details, etc. having such informat ion

present on the website and in public view makes it imperative

that security of the website should be the first thing that

should be considered.

B. DETERMINATION OF WEB APPLICATION

VULNERABILITIES

The Open Web Application Security Project Report listed the

10 most crit ical web applicat ion security risks, having SQLi at

the top, followed by XSS. Other studies also found XSS and

SQLi as the most prevalent vulnerabilities on web

applications. It is important to emphasize that each

vulnerability discovered opens a door for hackers to

successfully attack anyone of the millions of web sites

developed with a given version of the web application. SQLi

attacks take advantage of unchecked input fields in the web

application interface to maliciously tweak the SQL query sent

to the back-end database. By exp loit ing XSS vulnerability, the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 104

attacker is able to in ject into web pages unintended client-side

script code, usually HTML and Java script.

SQLi and XSS allow attackers to access unauthorized data

(read, insert, change, or delete), gain access to privileged

database accounts, impersonate other users (such as the

administrator), mimic web applications, deface web pages,

view, and manipulate remote files on the server, inject and

execute server side programs that allow the creation of botnets

controlled by the attacker, and so on. This module deals with

checking the web application to see it is vulnerable to known

attacks on the database or the user input form.

C. CLASSIFICATION OF DEFECT

This section presents the methodology to obtain and classify

the source code and the security patches of the web

applications of our field study. PHP is the most widely used

language present in web applications; we used it for the weak

typed programming language study. [1] Due to t ime

constraints, other programming languages like PERL could

not be considered. Given the h igh number of security

problems found, we only used six web applications: PHP-

Nuke (phpnuke.org), Drupal (drupal.org), PHP-Fusion

(phpfusion.co.uk), Word Press (wordpress.org), phpMyAdmin

(phpmyadmin.net), and phpBB (phpbb.com). For the strong

typed programming languages, for which we found less

security problems, we used 11 web applicat ions developed in

Java, C#, and VB: JForum (jforum.net), OpenCMS

(opencms.org), BlojSom (sourceforge.net/projects/blojsom),

Roller WebLogger (ro llerweblogger.org), JSPW iki

(jspwiki.org), SubText (subtextproject.com), Dot-NetNuke

(dotnetnuke.com), YetAnotherForum (yetanotherforum.net),

BugTracker.NET (ifdefined.com/bugtrackernet.html), Deki

Wiki (developer.mindtouch.com), and ScrewTurn Wiki

(screwturn.eu).

 Drupal, PHP-Fusion and phpBB are Web Content

Management Systems (CMS). A CMS is an application that

allows an individual or a community of users to easily create

and administrate web sites that publish a variety of contents.

The created sites can go from personal web pages and

community portals to corporate and e-commerce applications.

Drupal won first place at the 2007 Open Source CMS Award

[19]. PHP-Fusion was one of the five award overall winner

finalists at the 2007 Open Source CMS Award [19] and has a

large community of users working with it. Finally, phpBB is

the most widely used Open Source forum solution. phpBB

was the winner of the 2007 SourceForge Community Choice

Awards for Best Project for Communicat ions [18]. PHP-Nuke

is a well-known web based news automation system built as a

community portal. The news can be submitted by registered

users and commented by the community. WordPress is a

personal blog publishing platform that also supports the

creation of easy to administrate web sites. A Google search of

WordPress pages using the text "Proudly powered by

WordPress", which is at the bottom of WordPress based sites,

finds over about 7 million pages or more which are currently

powered by WordPress. phpMyAdmin is a web based MySQL

administration tool. It is one of the most popular PHP

applications and has a very large community of users.

phpMyAdmin is available in 47 languages, is included in

many Linux distributions and was the winner of the 2007

SourceForge Community Choice Awards for Best Tool or

Utility for SysAdmins [18].

D. INJECT MALICIOUS CODE

The first approach is based on web applicat ion analysis from

the user side, assuming that source code of an application is

not available [17]. The idea is to submit various malicious

patterns (implementing for example SQL inject ion or cross -

site scripting attacks) into web application forms and to

analyze its output afterwards. If any application errors are

observed an assumption of potential vu lnerability is made.

This tactic does not guarantee neither exactness nor

completeness of the obtained results.

• Another tactic to model input validation vulnerabilities is to

model syntactic configuration for sensitive operations

arguments. The notion behind this is that the web application

is susceptible to an in jection attack, if syntactic configuration

for searching operation arguments depends on the user input.

This approach was implemented by means of string analysis

in static [16, 17] and it was applied to detect SQL inject ion

[19] and XSS [18].

 Architecture Diagrams

attacker

Cloud

Attacker creates HTTP

get request to inject

command to Sql server
Script is placed on the

server and used to attack

web

sql

Directory accounts

are used to access

network computers

4.attacker uses injection

to cause additional

compromises to system

Active

directory

Other

directories

Network

users

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 105

Fig. 1 A sample SQL injection diagram showing how an attack takes place.

Fig. 2 Sample diagram showing how cross site scripting occurs

VI. SQL INJECTION EXPLAINED

A SQL in jection attack as the name implies, involves the

changes that are made to SQL statements which are used

within a web application through the use of data supplied by

an attack. This is made possible due to insufficient input

validation and inappropriate construction of SQL statements

in web applications which expose them to SQL inject ion

attacks.

 SQL injection is a p revalent and could be potentially

destructive. The Open Web Application Security Project

(OWASP) lists it as the top most threat to web applications.

Implications of Successful SQL Injection Attacks

The effects of a successful SQL injection attack may d iffer

based on the victim application and the methods used by that

application in processing data supplied by users, generally

SQL in jection can be used to for the following types of

attacks:

•Information Leak: This attack allows an attacker to acquire,

either sensitive informat ion in a database directly or

indirectly.

•Compromised Data Integrity: This is an attack which

involves the modificat ion of the contents of a database. An

attacker could use this attack to ruin a web page or more likely

to introduce malicious content into otherwise safe web pages.

• Avoid Authentication: This is an attack which allows an

attacker to log on to an application, possibly with

administrative rights, without providing a valid username and

password.

•Hinder Availability of Data: An attacker is able to delete

informat ion with the intention causing harm or delete log and

review information in a database.

An Example of SQL Injection for Authentication Bypass

One of the many possible uses for SQL injection involves

evading an application login process. The following example

shows the general operation of a SQL injection attack. The

following HTML form asks login informat ion from an

application user.

 <form method='post' action="User_login">

 <tr>

 <td> USER NAME :

</td>

 <td><input

type="text" name="u1" placeholder='USER

NAME'"/></td>

</tr>

<tr>

 <td>PASSWORD :

</td>

 <td><input type="password" color="#00c7cc"

name="p1" placeholder='PASSWORD'"/></td>

 </tr>

 </table>

<input class="submit full-width" type="submit"

value="USER LOGIN"/>

</center>

 </form>

When a user enters his or her informat ion into this form and

clicks submit, the browser sends a string to the web server that

contains the user's credentials.

An application with a vulnerable login procedure may accept

the submitted information and use it as part of the following

SQL statement, which locates a user profile that contains the

submitted username and password:

select * from Users where (username = 'submittedUser' and

password = 'submittedPassword');

If an application does not use strict input validation methods,

the application could be vulnerable to a SQL injection attack.

For instance, an application which accepts and processes data

supplied by user without any validation, an attacker can

submit a maliciously constructed username and password.

Consider the following string sent by an attacker:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 106

username=admin% 36% 29+--+&password=+

When this string is received and the URL is decoded, the

application will attempt to build an SQL statement using the

username admin') -- and a password that contains of a single

space. The SQL statement produces:

select * from Users where (username = 'admin') -- and

password = ' ')

As seen above, the attacker-constructed username changes the

logic of the SQL statement to successfully remove the

password check. In the above example, an attacker could

effectively log in to the application using the admin account

without any information about the password to that account.

The string of two dash characters (--) that appears in the input

is very significant; it indicates to the database server that the

continuing characters in the SQL statement are a comment

and should be ignored. This skill is one of the most vital tools

that is available to an attacker and without which, it would be

difficult to guarantee that the malicious SQL statements were

syntactically correct

A. PREVENTING ATTACKS ON WEB

APPLICATIONS

Due to the level to which SQL injection and Cross site

scripting (XSS) affect web applications it is of great

importance to be aware of the means by which these attacks

can be prevented in web applications.

There are various methods which have been proposed by

researchers for the prevention of these attacks, such methods

include;

B. SQL INJECTION PREVENTION:

i. Input validation:

 SQL in jection can prevented if you adopt an input validation

technique whereby user's input is authenticated against a set of

distinct rules for length, type and syntax and also against

business rules. Th is can be done in the form of whitelisting or

blacklisting, and the structure of SQL statements such that

data supplied user cannot influence the logic of the statement.

blacklisting and whitelisting

Within an application itself, there are two approaches to input

validation that can defend against SQL injection attacks:

- blacklisting

- Whitelisting

A. Blacklisting

The method of blacklisting involves the removal of known

and specific malicious characters from the user input, or

simply replacing them. This method is usually applied due to

the ease at which it is accomplished, but it is not as effective

as whitelisting. The approach of b lacklisting could fail

because it is impossible to have knowledge of all the

malicious characters that could be used to attack an

application; it is made worse by the fact that new characters

are created by attackers every now and then, and if not

properly handled could allow an attacker to disrupt filters and

potentially inject SQL statements.

A. Whitelisting

Whitelisting in turn examines each piece of user input against

a list of characters permitted. This method is more effective in

allev iating the risk of SQL injection, as it is more restrain ing

concerning which types of input are allowed in the form. A

whitelisting which is well-implemented should examine each

piece of data supplied by user against the expected data

format.

The input validation and sanitization functions that are used to

filter SQL injection supporting characters can potentially be

generalized and used to filter characters that are indicative of

cross-site scripting attacks.

The application must perform a precise check when it receives

invalid characters from a user. Dissimilar levels of response

should be applied based on the conditions in which the

unexpected data is used and the effect it could have.

An example, applications should reject users that submit

- Two dash characters (--)

- A semi-colon character (;)

- Apostrophe (‘)

 As part of the login name or password, and a high-severity

alert should be sent to application administrators. This could

be an issue if the input containing the above character is part

of an address, it should still be alerted to the administrator.

However looking at it from a security standpoint, it must be

assumed that any and all types of data will orig inate from a

user's browser, notwithstanding the safeguards that are placed

on the client side. Nonetheless, client-side data validation

methods can enhance application usability.

ii. Strong typing:

Usage of strongly typed parameterized query APIs with

placeholder replacement markers, even when calling stored

procedures. If these techniques perform all required escaping

of dangerous characters before the SQL statement is passed to

the underlying database system.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 107

The following example represents the use of prepared

statements in Java:

String sql = "select * from Users where (username = ? and

password = ?)";

PreparedStatement preparedStmt =

connection.prepareStatement(sql);

preparedStmt.setString(1, Username);

preparedStmt.setString(2, Password);

results = preparedStmt.executeQuery();

It should be noted that prepared statement if used incorrectly

is considered insecure and could leave the application open to

SQL injection attacks.

iii. Use of explanatory error messages:

An application should be able to catch and remove all SQL-

generated error messages before they reach a user. Depending

on the structure of the error message, each piece of

informat ion could assist attackers in creating their applicat ion

input, and also increases the possibility of the attack being

successful.

iv. Stored procedures:

Show care when using stored procedures since they are

generally safe from inject ion. However, careful as they can be

injectable (such as via the use of exec() or concatenating

arguments within the stored procedure).

v. Use least privileges:

 Attention should be taken ensure that users with the

permission to access the database have the least privileges.

Likewise, you should always make sure that a database user is

created only for a specific application and this user is not able

to access other applications. Another method for preventing

SQL injection attacks is to remove all stored procedures that

are not in use [21].

VII. CROSS SITE SCRIPTING

EXPLAINED

Cross site scripting can simply be described as an injection of

client side scripts into a website. These scripts can be HTML

scripts or JavaScript scripts. According to White Hat Security

Top Ten which states that more than 50% of the websites are

vulnerable to cross site scripting

Cross site scripting (XSS) can be used in a d ifferent ways to

cause severe problems. The customary use of XSS is that it

gives an attacker the ability to steal session cookies thereby

allowing an attacker to pose as a victim. The use of XSS is

not only about stealing cookies, XSS has been used by

attackers to cause destruction on social networks, steal

credentials, spread viruses, deface websites.

Cross-site Scripting (XSS) can be classified into three major

categories

- Stored XSS,

- Reflected XSS

- DOM-based XSS

A. Stored XSS

Stored XSS also known as Persistent XSS is the most

destructive type of XSS. This type of attacks involves an

attacker inject ing a script (also called payload) on the target

application. This payload is permanently stored on the target

application for example within a database.

B. Reflected XSS

This is the second, and it is also the most common type of

XSS. In Reflected XSS, the attacker’s payload script must be

placed in such a way that becomes part of the request which is

sent to the web server and echoed back in such a way that the

HTTP response includes the payload from the HTTP request.

For this method to be successful the attacker lures the victims

to make a request to the server which comprises of the XSS

script and thus ends-up executing the script that is reflected

and implemented inside the browser using methods such as;

Phishing emails and other social engineering techniques.

Attackers mostly make use of social networks for the

distribution of Reflected XSS attacks.

C. DOM-based XSS

DOM-based XSS is a modified version of both persistent and

reflected XSS. In a DOM-based XSS attack, the malicious

string is not actually parsed by the victim's browser until the

website's legitimate JavaScript is executed.

First the attacker crafts a URL containing a malicious string

and sends it to the vict im; this URL is used to trick the vict im

into requesting the URL from the website. When the website

receives the request, it does not include the malicious string in

the response, thus allowing the vict im's browser to execute the

legitimate script inside the response, causing the malicious

script to be inserted into the page, while the vict im's browser

executes the malicious script inserted into the page, it sends

the victim's cookies to the attacker's server.[22]

The difference between DOM based and the other two types

of XSS is that in the other two types, the server inserts the

malicious script into the page, which is then sent in a reply to

the victim. When the victim's browser receives the reply, it

assumes the malicious script to be part of the page's valid

content and automatically executes it during page load as with

any other valid script. While in DOM based there is no

malicious script inserted as part of the page; the only script

that is automatically executed during page load is a valid part

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 108

of the page. The malicious JavaScript is executed at some

point after the page has loaded, as a result of the page's

legitimate JavaScript treating user input in an unsafe way.

D. PREVENTION OF CROSS SITE SCRIPTING

XSS can only be p revented by carefully sanitizing all input

which is not known to be secure. [20] Classes of input which

is known NOT to be secure include:

 HTTP referrer object

 The URL

 GET parameters

 POST parameters

 Window.location

 Document.referrer

 document.location

 document.URLUnencoded

 All headers

 Cookie data

 Potentially data from your own database (if not

properly validated on input)[20]

i. Encoding:

A common technique for preventing XSS vulnerabilit ies is

"escaping". The purpose of character and string escaping is to

make sure that every part of a string is interpreted as a string

primitive, not as a control character or code. Encoding is the

action of escaping user input so that the browser reads it only

as data, not as code. The most recognizable type of encoding

in web development is HTML escaping, it converts characters

like < and > into < and > respectively. [22]

ii. Validation

Validation is the action of siev ing user input so that all

malicious parts of it are detached, without necessarily

removing all code in it. One of the most noticeable types of

validation in web development is allowing some HTML

elements (such as and) but disallowing others

(such as <script>). [22]

VIII. RESULT

The results of this analysis show that a wide range of things

could cause an application to be vulnerab le to SQL inject ion

and cross site scripting. These reasons do not necessarily all

have to do with errors in coding but could also be as a result

of the Human factor, it is usually said that the weakest link in

any security situation is the human factor.

The cause of security vulnerabilities in web applications

includes but is not limited to the following;

• Buffer overflows

• Unvalidated input

• Race conditions

• Access-control problems

• Weaknesses in authentication and/or authorization

I was also able to run the preventive measures (codes) using

different parameters e.g.

- stored procedure,

- input validation

- None explanatory error messages.

There is no perfect system we can only take measures to

minimize the effect of attack on applications.

IX. CONCLUSION

This paper analyzes vulnerabilities and exp loits of some web

applications using field data on past security fixes. Some web

applications were written in a weak typed language and others

in strong typed languages. Results suggest that applications

written with strong typed languages have a smaller number of

reported vulnerabilit ies and explo its. Consideration was made

to more strong typed applications to obtain a fair amount of

vulnerabilities when compared to the weak typed.

According to findings, weak typed are the preferred targets for

the development of exploits. We saw that the fault types

responsible for XSS and SQLi belong to a narrow list, which

points a path to the improvement of web applications, namely

in the context of code inspections and the use of tools for

static analysis. This study showed that the way programmers

fix vulnerabilities seems to have a degree of dependence with

the type of language used. However, the number of

vulnerabilities analyzed in this and other studies show that

there is no guarantee of a completely safe applicat ion even

when a strong typed language is used in building that

application and does not prevent vulnerabilities. No

application is completely secure.

X. FUTURE WORK

The easiest and probably most preferred form of prevention

for this type of attack is to restrict the valid input to be free of

characters that have special meanings under the HTML

specification. For example, if the value of a user input should

be a number, and is validated by the web application as such,

we are sure that it cannot be used to launch a cross -site

scripting attack. A collective problem in software

development is that software developers tend to allow too

much freedom in terms of what values an input can take. They

do not ask themselves relevant questions like, Does an input

value have to allow for characters such as greater than (<) and

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep -Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 109

double quotes(“), single quotes (‘) ? Many developers ignore

such issues at design time or choose to allow unnecessary

flexib ility. Restricting the input set can greatly simplify a

program and reduce its vulnerability.

REFERENCES

[1] Acunetix Ltd., “Is Your Website Hackab le? Do a Web

Security Audit with Acunetix Web Vulnerability

Scanner,” http://www.acunetix.com/security-

audit/index/, May 2013.

[2] G. _ Alvarez and S. Petrovic, “A New Taxonomy of

Web Attacks Suitable for Efficient Encoding,”

Computers and Security, vol. 22,no. 5, pp. 435-449,

July 2003.

[3] P. Anbalagan and M. Vouk, “Towards a Unify ing

proach in Understanding Security Problems,” Proc.

Int’l Symp. Software Reliab ility Eng., pp. 136-145,

2009.

[4] A. Avizienis, J.C. Laprie, B. Randell, and C.

Landwehr, “Basic Concepts and Taxonomy of

Dependable and Secure Computing,” IEEE Trans.

Dependable and Secure Computing, vol. 1, no. 1, pp.

11-33, Jan.-Mar. 2004.

[5] US - CERT Vulnerability Notes Database,

“Homepage,” http://www.kb.cert.o rg/vuls/, May

2013.

[6] R . Chillarege, I.S. Bhandari, J.K. Chaar, M.J.

Halliday, D. Moebus, B. Ray, and M. Wong,

“Orthogonal Defect Classification—A Concept for

In-Process Measurement,” IEEE Trans. Software

Eng.,vol. 18, no. 11, pp. 943-956, Nov. 1992.

[7] S. Christey, “Unforg ivable Vulnerabilit ies,” Proc.

Black Hat Briefings,2007.

[8] J. Christmansson and R. Chillarege, “Generation of an

Error Set That Emulates Software Fau lts,” Proc.

IEEE Fault To lerant Computing Symp., pp. 304-313,

1996.

[9] S. Clowes, “A Study in Scarlet, Exploit ing Common

Vulnerabilities in PHP Applications,”

http://www.securereality.com.au/ studyinscarlet.txt,

2013.

[10] T. Manjaly, “C# Coding Standards and Best

Practices,”

http://www.codeproject.com/KB/cs/c__coding_stand

ards.aspx, May 2013.[11] J. Cohen, Statistical Power

Analysis for the Behavioral Sciences, second ed.,

Lawrence Erlbaum, 1988.

[12] M. Cukier, R. Berth ier, S. Panjwani, and S. Tan, “A

Statistical Analysis of Attack Data to Separate

Attacks,” Proc. Int’l Conf. Dependable Systems and

Networks, pp. 383-392, 2006.

[13] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese, Y.

Deswarte, K.Kursawe, J.C. Laprie, D. Powell, B.

Randell, J. Riordan, P. Ryan, W. Simmonds, R.

Stroud, P. Verissimo, M. Waidner, and A.Wespi,

“Conceptual Model and Architecture of MAFTIA,”

Project IST-1999-11583,

https://docs.di.fc.ul.pt/jspui/bitstream/10455/2978/1/

03-1.pdf, 2003.

[14] Dotnet Spider, “C# Coding Standards and Best

Programming Pract ices,”

http://www.dotnetspider.com/tutorials/BestPractices.

aspx, May 2013.

[15] Engin Kirda, Christopher Kruegel, Giovanni Vigna,

and Nenad Jovanovic. Noxes: A client-side solution

for mit igating cross-site scripting attacks. In The 21st

ACM Symposium on Applied Computing (SAC

2006), 2006.

[16] Curphey, M., W iesman, A., Van der Stock, A.,

Stirbei, R.: ―A Guide to Build ing Secure Web

Applications and Web Services‖. OWASP (2005).

[17] Andrews, M.: ―The State of Web Security‖. IEEE

Security & Privacy, vol. 4, no. 4, pp. 14-15 (2006).

[18] sourceforge, December, 2007,

http://sourceforge.net/community/index.php/2007108

/0l/community-choice-awards-winnersl

[19] Packt Publishing Ltd, December, 2007,

http://www.packtpub.com

[20] Golem Technologies

http://www.golemtechnologies.com /articles/prevent-

xss#how-to-prevent-cross-site-scripting

[21] Veracode http://www.veracode.com/security/sql-in.

[22] Excess XSS a comprehensive tutorial on Cross site

scripting http://excess-xss.com/

[23] Cisco online Resource, http://www.cisco.com

[24] Symantec Online Resource, www.symantec.com

http://www.ijcstjournal.org/
http://www.golemtechnologies.com/
http://www.cisco.com/

