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ABSTRACT 

Sorting is the most basic activity in computational world. It is helpful in analysing data from various perspectives. 

Multiple sorting alternatives exist today. Each have their own advantages and disadvantages. We can not say that a 

particular algorithm is best. For d ifferent data patterns different algorithms can be implemented to achieve better results 

in minimum time and with limited memory space. In this paper we would compare various sorting algorithms on the 

basis of complexities. In the section 1, we have introduced sorting. In section 2 and 3, we have discussed complexity  

with its type and best – Average case complexities. In the next  section we compare different algorithms on the basis of 

complexities and try to find the best one 
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I. INTRODUCTION 

Sorting is used in various computational tasks. Many 

different sorting algorithms have been introduced so far. 

For measuring performance, main ly the average number of 

operations or the average execution times is considered. 

There is no known “best” way to sort; there are many best 

methods, depending on what is to be sorted on what 

machine and for what purpose. There are many 

fundamental and advance sorting algorithms. All sorting 

algorithm are p roblem specific means they work well on 

some specific problem, not all the problems. Some sorting 

algorithms apply to small number of elements, some 

sorting algorithm suitable for floating point numbers. 

Sorting algorithm depend on pattern of data values  to  

be s orted . 

It can not be necessarily stated that one algorithm is better 

than another, since relative performance can vary 

depending on the type of data being sorted. In some 

situations, most of the data are in the correct order, with 

only a few items needing to  be sorted; In other situations 

the data are completely mixed up in a  random order and in 

others the data will tend to be in reverse order. Different 

algorithms will perform different ly according to the data 

being sorted. Performance [1] means how much 

t ime/memory/disk/... is actually  used when a program is 

run. This depends on the machine, compiler, etc. as well 

as the code. Complexity, how do the resource 

requirements of a program or algorithm scale, i.e ., what 

happens, as the size of the p roblem being  so lved gets 

larger? Co mplexity affects perfo rmance but not the other 

way around. When we consider the co mplexity of a  

method, we don't really  care about the exact number o f 

operations that are performed; instead, we care about how 

the number of operat ions relates to the prob lem size. If 

the problem size doubles, does the number of operations  

 

stay the same? Double? Increase in some other way? For 

constant-time methods like the size method, doubling the 

problem size does not affect the number of operations. 

II. ALGORITHM COMPLEXITY 
  

Complexity [1] o f the sorting algorithm can be 

expressed using asymptotic notation. These notations help 

us predict the best, average and poor behaviour of the 

sorting algorithm. The various notations are as follow [3]: 

 

1. O(x) = Worst Case Running Time 

2. Ω (x) = Best Case Running Time 

3. Θ (x) = Best and Worst case are the same 

A.   Big-O Notation 

A theoretical measure of the execut ion of an algorithm 

usually the time or memory needed, given the problem 

size n, wh ich is usually the number o f items. In fo rmally, 

saying some equat ion f (n) = O (g (n)) means it is less than 

some constant mult iple of g(n). The notation is read, "f of 

n is big oh of g of n". 

 
Definition: f (n) = O (g (n)) means there are posit ive 

constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. 

The values of c and k must be fixed  for the funct ion- f-and-

must-not-depend-on-n. 

 

B.     Theta Notation (Θ) 

A theoretical measure of the execut ion of an algorithm 

usually the time or memory needed, given the problem 

size n, wh ich is usually the number o f items. In fo rmally,  

saying  some equat ion  f(n)  =  Θ  (g(n))  means  it  is 

within  a constant mult ip le o f g(n). The equation is read, 

"f of n is theta g of n". 
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Definition: f(n) = Θ (g(n)) means there are posit ive 

constants c1, c2, and k, such that 0 ≤ c1g(n) ≤ f(n) ≤ 

c2g(n) for all n ≥ k. The values of c1, c2, and k must be 

fixed for the funct ion f and must not depend on n[2]. 

C. Omega Notation (ω) 

    A theoret ical measure of the execut ion o f algorithms 

usually the t ime o r memory needed, given the problem 

size n, which is usually the number o f items. 

Info rmally, saying some equat ion f(n) = ω (g(n)) means 

g(n) becomes insignificant relat ive to f(n) as n goes to 

infinity. 

 
   Definition: f(n) = ω (g(n)) means that for any posit ive 

constant c, there exists a constant k, such that 0 ≤ cg(n) < 

f(n) fo r all n  ≥ k. The value o f k must not depend on n, but 

may depend on c[2]. 

 

III. BEST-CASE AND AVERAGE–CASE 

COMPLEXITY 
 

Some methods may requ ire different amounts o f time 

on different calls, even when the problem size is  the same 

for both calls. For example, we know that if add before is 

called with a sequence o f length N, it  may require t ime 

proportional to N (to move all o f the items and/or to 

expand the array). This is what happens in the worst case. 

However, when the current item is the last item in the 

sequence, and the array is not full, add Before will on ly 

have to move one item, so in  that case its t ime is 

independent of the length o f the sequence; i.e., constant 

time. In general, we may want to consider the best and 

average t ime requ irements of a method as well as its 

worst-case time requ irements. Which is considered the 

most important will depend on several factors. For 

example, if a method is part of a  t ime-crit ical system like 

one that controls an airp lane, the worst-case[4] t imes are 

probably the most important (if the p lane is flying 

towards a mountain and the controlling p rogram can't 

make the next course correct ion until it has perfo rmed a 

computation, then the best-case and average- case times 

for that computation are not relevant - the computat ion 

needs to be guaranteed to be fast enough to finish before 

the plane hits the mountain). 

 

On  the  other  hand,  if  occasionally  wait ing  a  long  

time  for  an  answer  is  merely inconvenient (as opposed 

to life-threatening), it may be better to use an algorithm 

with a s low worst-case time and a fast average-case 

t ime, rather than one with so-so times in both the 

average and worst cases. 

For add Before, fo r a sequence o f length N, the 

worst-case time is O(N)[5], the best-case time is O(1), 

and the average-case t ime (assuming that each item is 

equally  likely to  be the current item) is O(N), because on 

average, N/2 items will need to be moved. 

 

Note that calculat ing the average-case time for a  

method can be tricky. You need to consider all possible 

values for the important factors, and whether they will be 

distributed evenly. Recall that when we use big-O notation, 

we drop constants and low-order terms. This is because 

when the problem size gets sufficient ly large, those terms 

don't matter. However, th is means that two algorithms 

can have the same big-O time co mplexity, even though 

one is always faster than the other. For example, 

suppose algorithm 1 requires N
2 

time, and algorithm 2 

requires 10 *  N
2 

+ N time. For both algorithms, the 

t ime is  O(N
2

), but algorithm 1 will always be faster than 

algorithm 2 [2]. In this case, the constants and low- o rder 

terms do  matter in terms of which algorithm is actually 

faster. 

 

However, it is important to note that constants do not 

matter in  terms o f the quest ion o f how an algorithm 

"scales" (i.e., how does the algorithm's time change when 

the problem size doubles). Although an algorithm that 

requires N
2 

t ime will always be faster than an algorithm 

that requires 10*N
2 

time, for both algorithms, if the 

problem size doubles, the actual t ime will quadruple. 

When two algorithms have different big-O time 

complexity [3], the constants and low-order terms on ly 

matter when the problem size is small. 

 

IV. ANALYSIS OF SORTING 

ALGORITHMS 
 

All the sorting algorithms are problem specific. Each  

sorting algorithms work well on specific kind of problems. 

In this table we described some problems and analyses that 

which sorting algorithm is more suitable for that problem. 

In table 1, we see that a sorting algorithm depends upon 

the characteristics of problem. Like given list is sorted so 

that maintain  the relative order o f records with equal keys, 

repeated value occurs more t imes and the elements in 

the list are small ,counting sort is efficient. Quick sort 

and heap sort both are use for large number and  also 

satisfy the property of unstable. The worst case running 

time for quick sort [5] is O(n
2

) which is unacceptable 

for large sets but typically faster due to better cache 

performance. Heap sort also  competes  with  merge  

sort[5]  ,which  has  the  same  time  bound  but  requires  

O(n) auxiliary space, whereas heap sort requires on ly a 

constant amount. Heap sort [5] is unstable while quick sort 

is stable sort. Bucket sort is used when give list is sorted 

according to address and the elements of list are uniformly  

distributed over a range (01]. Insertion sort and selection 

sort both are internal sorting but one is stable and another 

is unstable. Therefore to chose a best sorting algorithm 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep-Oct 2015  

ISSN: 2347-8578                          www.ijcstjournal.org                                               Page 141 

 

first of all analyse the characteristics of problem. 

TABLE I 

Problem Definition and Sorting algorithms 

 

Problem Definition Sorting 

Algorithms 

When sufficient memory is available and 

data to be sorted is small enough to fit 

into a processor’s memory and no extra 

space is required to sort the data values.. 

Bubble sort, 

Insertion Sort, 

Selection Sort 

When data size is too large to 

accommodate data into main memory 

Merge  Sort 

The input elements are uniformly 

distributed within the range [0, 1]. 

Bucket Sort 

Constant alphabet (ordered alphabet of 

constant size, multi set of characters can 

be stored in linear time), sort records 

that are of multiple fields. 

Radix Sort 

The input elements are too large. Merge Sort, 

Shell Sort, 

Quick Sort, 

Heap Sort 

The data available in the input list are 

repeated more times i.e. 

Re-occurrence of value in the list. 

Counting Sort 

The input elements are sorted 

according to address  

 

 

Bucket Sort 

The input elements are repeated in the 

list and sorted the list in order to 

maintain the relative order of record with 

equal keys. 

Bubble Sort, 

Merge Sort, 

Insertion

 Sor

t, counting sort 
The input elements are repeated in the 

list and sorted the list so that their 

relative orders are not maintain with equal 

keys. 

Quick Sort, 

Heap Sort, 

Selection Sort, 

 

A sequence of values, a0, a1… an-1, such 

that there exists an  i, 0≤ i ≤ n −1, a0  to 

ai  is monotonically increasing and ai  to 

an-1  is monotonically decreasing. 

(sorting network) 

Biotonic -merge 

Sort 

Adaptive sorting algorithms that are 

comparison based and do not put any 

restriction on the type of keys, uses data 

structure like linked list, stack, queue. 

Stack sort , 

 

Min-max sort 

V. COMPARISON OF VARIOUS 

SORTING 
 

In the fo llowing table, compare sorting algorithms 

according to their complexity, method used  by  them  like  

exchange,  insertion,  selection,  merge  and  also  mention  

their advantages and disadvantages. In the following table, 

n represent the number of elements to be sorted. The 

column Average and worst case give the time complexity 

in each case. These all are comparison sort.  

 
TABLE 2 

Comparison of Comparison Based Sort 

 

Name Average  

Case 

Worst 

Case 

Metho

d 

Bubble Sort 
O(n

2
) O(n

2
) 

Excha

nge 

Insertion Sort 
O(n

2
) O(n

2
) 

Inserti

on 

Selection Sort 
O(n

2
) O(n

2
) 

Selecti

on 

Heap Sort O(n log n) O(n log 

n) 

Selecti

on 

Merge Sort O(n log n) O(n log 

n) 

Merge 

In  place- merge Sort O(n log n) O(n log 

n) 

Merge 

Shell Sort O(n log n) O(nlog

2n) 

Inserti

on 

Quick Sort O(n log n) O(n2) Partiti

on 

 

VI. COMPARISON OF NON 

COMPARISON BASED SORTING 

ALGORITHM 
 

Table 3 describes sorting algorithm which  are not based 

on comparison sort. Complexit ies below are in terms of n, 

the number o f item to be sorted, k the size of each key and 

s is the chunk size use by implementation. Some of them 
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are based on the assumption that the key size is large 

enough that all entries have unique key values, and hence 

that n << 2
k
. 

 
TABLE 3 

Comparison of non comparison based sorting algorithms 

 

 

Name 

Average 

Case 

Worst  Case  

n<<2
K

 

Bucket Sort O(n.k) O(n
2
.k) No 

Counting Sort O(n+2
k
) O(n+2

k
) Yes 

Radix Sort O(n. k/s) O(n. k/s) No 

MSD Radix Sort  

O(n. k/s) 

 

 

 

 

O(n. k/s) 

 

 

No 

LSD Radix Sort 

O(n. k/s) 

 

 

 

O(n. k/s) 

No 

VII. ADVANTAGES AND 

DISADVANTAGES 
 

Every sorting algorithm has some advantages and 

disadvantages. In the following table we are tried  to show 

the strengths and weakness of some sorting algorithms 

according to their order, memory used, stability, data type 

and complexity. To determine the good sorting  

algorithm  ,speed  is  the  top  consideration  but  other  

factor include  handling various data type, consistency of 

performance, length and complexity of code, and the 

prosperity of stability. 

 
Table 4 

Advantages and memory consumption in various Algorithms 

 

sort order     worst 

case 

memory 

   quick 

sort 

n log n 
n

2
 

    

NK+NP+STACK 

merge n log n n log n     NK+2NP+STACK 

heap n log n n log n NK+NP 

Shell n (log 

n)2 

n NK+NP 

insertion 
n

2
 n

2
 

NK+NP 

selecti
on 

n2 n2 NK+NP 

 

VIII. CONCLUSION 
 

We have compared  various algorithms popular for 

sorting data of varied type. We found that selection of 

algorithm should depend on specific type of data available. 

We need to analyse data then implement sorting according 

to the data. We have discussed strengths and shortcomings 

of all major algorithms.  
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