
International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5 , Sep-Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 139

Basics of Algorithm Selection : A Review
Niharika Singh [1], DR. R. G. Tiwari [2]

Department of Computer Science and Engineering
SRMGPC, Lucknow

India

ABSTRACT

Sorting is the most basic activity in computational world. It is helpful in analysing data from various perspectives.

Multiple sorting alternatives exist today. Each have their own advantages and disadvantages. We can not say that a

particular algorithm is best. For d ifferent data patterns different algorithms can be implemented to achieve better results

in minimum time and with limited memory space. In this paper we would compare various sorting algorithms on the

basis of complexities. In the section 1, we have introduced sorting. In section 2 and 3, we have discussed complexity

with its type and best – Average case complexities. In the next section we compare different algorithms on the basis of

complexities and try to find the best one

Keywords :-Sorting, Analyses, Complexity, Performance.

I. INTRODUCTION

Sorting is used in various computational tasks. Many

different sorting algorithms have been introduced so far.

For measuring performance, main ly the average number of

operations or the average execution times is considered.

There is no known “best” way to sort; there are many best

methods, depending on what is to be sorted on what

machine and for what purpose. There are many

fundamental and advance sorting algorithms. All sorting

algorithm are p roblem specific means they work well on

some specific problem, not all the problems. Some sorting

algorithms apply to small number of elements, some

sorting algorithm suitable for floating point numbers.

Sorting algorithm depend on pattern of data values to

be s orted .

It can not be necessarily stated that one algorithm is better

than another, since relative performance can vary

depending on the type of data being sorted. In some

situations, most of the data are in the correct order, with

only a few items needing to be sorted; In other situations

the data are completely mixed up in a random order and in

others the data will tend to be in reverse order. Different

algorithms will perform different ly according to the data

being sorted. Performance [1] means how much

t ime/memory/disk/... is actually used when a program is

run. This depends on the machine, compiler, etc. as well

as the code. Complexity, how do the resource

requirements of a program or algorithm scale, i.e ., what

happens, as the size of the p roblem being so lved gets

larger? Co mplexity affects perfo rmance but not the other

way around. When we consider the co mplexity of a

method, we don't really care about the exact number o f

operations that are performed; instead, we care about how

the number of operat ions relates to the prob lem size. If

the problem size doubles, does the number of operations

stay the same? Double? Increase in some other way? For

constant-time methods like the size method, doubling the

problem size does not affect the number of operations.

II. ALGORITHM COMPLEXITY

Complexity [1] o f the sorting algorithm can be

expressed using asymptotic notation. These notations help

us predict the best, average and poor behaviour of the

sorting algorithm. The various notations are as follow [3]:

1. O(x) = Worst Case Running Time

2. Ω (x) = Best Case Running Time

3. Θ (x) = Best and Worst case are the same

A. Big-O Notation

A theoretical measure of the execut ion of an algorithm

usually the time or memory needed, given the problem

size n, wh ich is usually the number o f items. In fo rmally,

saying some equat ion f (n) = O (g (n)) means it is less than

some constant mult iple of g(n). The notation is read, "f of

n is big oh of g of n".

Definition: f (n) = O (g (n)) means there are posit ive

constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k.

The values of c and k must be fixed for the funct ion- f-and-

must-not-depend-on-n.

B. Theta Notation (Θ)

A theoretical measure of the execut ion of an algorithm

usually the time or memory needed, given the problem

size n, wh ich is usually the number o f items. In fo rmally,

saying some equat ion f(n) = Θ (g(n)) means it is

within a constant mult ip le o f g(n). The equation is read,

"f of n is theta g of n".

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep-Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 140

Definition: f(n) = Θ (g(n)) means there are posit ive

constants c1, c2, and k, such that 0 ≤ c1g(n) ≤ f(n) ≤

c2g(n) for all n ≥ k. The values of c1, c2, and k must be

fixed for the funct ion f and must not depend on n[2].

C. Omega Notation (ω)

 A theoret ical measure of the execut ion o f algorithms

usually the t ime o r memory needed, given the problem

size n, which is usually the number o f items.

Info rmally, saying some equat ion f(n) = ω (g(n)) means

g(n) becomes insignificant relat ive to f(n) as n goes to

infinity.

 Definition: f(n) = ω (g(n)) means that for any posit ive

constant c, there exists a constant k, such that 0 ≤ cg(n) <

f(n) fo r all n ≥ k. The value o f k must not depend on n, but

may depend on c[2].

III. BEST-CASE AND AVERAGE–CASE

COMPLEXITY

Some methods may requ ire different amounts o f time

on different calls, even when the problem size is the same

for both calls. For example, we know that if add before is

called with a sequence o f length N, it may require t ime

proportional to N (to move all o f the items and/or to

expand the array). This is what happens in the worst case.

However, when the current item is the last item in the

sequence, and the array is not full, add Before will on ly

have to move one item, so in that case its t ime is

independent of the length o f the sequence; i.e., constant

time. In general, we may want to consider the best and

average t ime requ irements of a method as well as its

worst-case time requ irements. Which is considered the

most important will depend on several factors. For

example, if a method is part of a t ime-crit ical system like

one that controls an airp lane, the worst-case[4] t imes are

probably the most important (if the p lane is flying

towards a mountain and the controlling p rogram can't

make the next course correct ion until it has perfo rmed a

computation, then the best-case and average- case times

for that computation are not relevant - the computat ion

needs to be guaranteed to be fast enough to finish before

the plane hits the mountain).

On the other hand, if occasionally wait ing a long

time for an answer is merely inconvenient (as opposed

to life-threatening), it may be better to use an algorithm

with a s low worst-case time and a fast average-case

t ime, rather than one with so-so times in both the

average and worst cases.

For add Before, fo r a sequence o f length N, the

worst-case time is O(N)[5], the best-case time is O(1),

and the average-case t ime (assuming that each item is

equally likely to be the current item) is O(N), because on

average, N/2 items will need to be moved.

Note that calculat ing the average-case time for a

method can be tricky. You need to consider all possible

values for the important factors, and whether they will be

distributed evenly. Recall that when we use big-O notation,

we drop constants and low-order terms. This is because

when the problem size gets sufficient ly large, those terms

don't matter. However, th is means that two algorithms

can have the same big-O time co mplexity, even though

one is always faster than the other. For example,

suppose algorithm 1 requires N
2

time, and algorithm 2

requires 10 * N
2

+ N time. For both algorithms, the

t ime is O(N
2

), but algorithm 1 will always be faster than

algorithm 2 [2]. In this case, the constants and low- o rder

terms do matter in terms of which algorithm is actually

faster.

However, it is important to note that constants do not

matter in terms o f the quest ion o f how an algorithm

"scales" (i.e., how does the algorithm's time change when

the problem size doubles). Although an algorithm that

requires N
2

t ime will always be faster than an algorithm

that requires 10*N
2

time, for both algorithms, if the

problem size doubles, the actual t ime will quadruple.

When two algorithms have different big-O time

complexity [3], the constants and low-order terms on ly

matter when the problem size is small.

IV. ANALYSIS OF SORTING

ALGORITHMS

All the sorting algorithms are problem specific. Each

sorting algorithms work well on specific kind of problems.

In this table we described some problems and analyses that

which sorting algorithm is more suitable for that problem.

In table 1, we see that a sorting algorithm depends upon

the characteristics of problem. Like given list is sorted so

that maintain the relative order o f records with equal keys,

repeated value occurs more t imes and the elements in

the list are small ,counting sort is efficient. Quick sort

and heap sort both are use for large number and also

satisfy the property of unstable. The worst case running

time for quick sort [5] is O(n
2

) which is unacceptable

for large sets but typically faster due to better cache

performance. Heap sort also competes with merge

sort[5] ,which has the same time bound but requires

O(n) auxiliary space, whereas heap sort requires on ly a

constant amount. Heap sort [5] is unstable while quick sort

is stable sort. Bucket sort is used when give list is sorted

according to address and the elements of list are uniformly

distributed over a range (01]. Insertion sort and selection

sort both are internal sorting but one is stable and another

is unstable. Therefore to chose a best sorting algorithm

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep-Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 141

first of all analyse the characteristics of problem.

TABLE I

Problem Definition and Sorting algorithms

Problem Definition Sorting

Algorithms

When sufficient memory is available and

data to be sorted is small enough to fit

into a processor’s memory and no extra

space is required to sort the data values..

Bubble sort,

Insertion Sort,

Selection Sort

When data size is too large to

accommodate data into main memory

Merge Sort

The input elements are uniformly

distributed within the range [0, 1].

Bucket Sort

Constant alphabet (ordered alphabet of

constant size, multi set of characters can

be stored in linear time), sort records

that are of multiple fields.

Radix Sort

The input elements are too large. Merge Sort,

Shell Sort,

Quick Sort,

Heap Sort

The data available in the input list are

repeated more times i.e.

Re-occurrence of value in the list.

Counting Sort

The input elements are sorted

according to address

Bucket Sort

The input elements are repeated in the

list and sorted the list in order to

maintain the relative order of record with

equal keys.

Bubble Sort,

Merge Sort,

Insertion

 Sor

t, counting sort
The input elements are repeated in the

list and sorted the list so that their

relative orders are not maintain with equal

keys.

Quick Sort,

Heap Sort,

Selection Sort,

A sequence of values, a0, a1… an-1, such

that there exists an i, 0≤ i ≤ n −1, a0 to

ai is monotonically increasing and ai to

an-1 is monotonically decreasing.

(sorting network)

Biotonic -merge

Sort

Adaptive sorting algorithms that are

comparison based and do not put any

restriction on the type of keys, uses data

structure like linked list, stack, queue.

Stack sort ,

Min-max sort

V. COMPARISON OF VARIOUS

SORTING

In the fo llowing table, compare sorting algorithms

according to their complexity, method used by them like

exchange, insertion, selection, merge and also mention

their advantages and disadvantages. In the following table,

n represent the number of elements to be sorted. The

column Average and worst case give the time complexity

in each case. These all are comparison sort.

TABLE 2

Comparison of Comparison Based Sort

Name Average

Case

Worst

Case

Metho

d

Bubble Sort
O(n

2
) O(n

2
)

Excha

nge

Insertion Sort
O(n

2
) O(n

2
)

Inserti

on

Selection Sort
O(n

2
) O(n

2
)

Selecti

on

Heap Sort O(n log n) O(n log

n)

Selecti

on

Merge Sort O(n log n) O(n log

n)

Merge

In place- merge Sort O(n log n) O(n log

n)

Merge

Shell Sort O(n log n) O(nlog

2n)

Inserti

on

Quick Sort O(n log n) O(n2) Partiti

on

VI. COMPARISON OF NON

COMPARISON BASED SORTING

ALGORITHM

Table 3 describes sorting algorithm which are not based

on comparison sort. Complexit ies below are in terms of n,

the number o f item to be sorted, k the size of each key and

s is the chunk size use by implementation. Some of them

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 5, Sep-Oct 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 142

are based on the assumption that the key size is large

enough that all entries have unique key values, and hence

that n << 2
k
.

TABLE 3

Comparison of non comparison based sorting algorithms

Name

Average

Case

Worst Case

n<<2
K

Bucket Sort O(n.k) O(n
2
.k) No

Counting Sort O(n+2
k
) O(n+2

k
) Yes

Radix Sort O(n. k/s) O(n. k/s) No

MSD Radix Sort

O(n. k/s)

O(n. k/s)

No

LSD Radix Sort

O(n. k/s)

O(n. k/s)

No

VII. ADVANTAGES AND

DISADVANTAGES

Every sorting algorithm has some advantages and

disadvantages. In the following table we are tried to show

the strengths and weakness of some sorting algorithms

according to their order, memory used, stability, data type

and complexity. To determine the good sorting

algorithm ,speed is the top consideration but other

factor include handling various data type, consistency of

performance, length and complexity of code, and the

prosperity of stability.

Table 4

Advantages and memory consumption in various Algorithms

sort order worst

case

memory

 quick

sort

n log n
n

2

NK+NP+STACK

merge n log n n log n NK+2NP+STACK

heap n log n n log n NK+NP

Shell n (log

n)2

n NK+NP

insertion
n

2
 n

2

NK+NP

selecti
on

n2 n2 NK+NP

VIII. CONCLUSION

We have compared various algorithms popular for

sorting data of varied type. We found that selection of

algorithm should depend on specific type of data available.

We need to analyse data then implement sorting according

to the data. We have discussed strengths and shortcomings

of all major algorithms.

 REFERENCES

[1] Y. Han “Determinist ic sorting in O (n log log n) time

and linear space”, Proceedings o f the thirty-fourth

annual ACM symposium on Theory o f co mputing,

Montreal, Quebec, Canada, 2002, p.602-608.Akhawe,

D., Barth, A., Lam, P. E., Mitchell, J.C. and

Song, D. “Towards a formal foundation of web

security”, CSF, pp. 290-304, 2010.

[2] M. Thorup “Randomized Sorting in O (n log log n)

Time and Linear Space Using Addit ion, Shift, and

Bit -wise Boolean Operat ions”, Journal of Algorithms,

Volume 42, Number 2, February 2002, p. 205-230 .

[3] Y. Han, M. Thorup, “Integer Sorting in O(n √(log log

n) Time and Linear Space”, Proceedings of the 43rd

Symposium on Foundations o f Computer Science,

2002, p. 135-144.

[4] P. M. McIlroy, K. Bostic and M. D. McIlroy,

“Engineering radix sort”, Computing Systems, 2004,

p.224-230.

[5] M. D. McIlroy, “A killer adversary fo r quick sort”,

Software--Practice and Experience, 1999, p.123-145.

[6] http://209.85.141.104/search?q=cache:iBhfoE92zZoJ

:www.softpanorama.org/A lgorith

ms/sorting.shtml+introduction+of+sorting+algorithm

&hl=en&ct=clnk&cd=9&gl=in, accessed on 20

March, 2007.

http://www.ijcstjournal.org/
http://209.85.141.104/search
http://www.softpanorama.org/Algorith

