

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 6, Nov-Dec 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 9

Survey on Log Analysis and Management
Sandesh Thosar [1], Abhishek Mane [2], Swapnil Raykar [3], Rahul Jain [4]

Pallavi Khude [5], Shanthi Guru [6]

Research Scholar [1], [2], [3] & [4], Assistant Professor [5] & [6]
Dr. D.Y. Patil College of Engineering, Pune

Maharashtra – India

ABSTRACT
Security is one of the biggest concerns of any organization that has an IT infrastructure. It is very important for an administrator

to always know the security posture of the network and servers that they manage. One way to always know the state of an

environment is through system logs. While there are hundreds or thousands of nodes that create logs on a network, most logs are

hardly ever read due to the complexity and volume of the log data. This creates a problem for the administrator as logs must be

reviewed, but if the whole day is spent reviewing logs, there is never any time left over to react to the problems found in the
system logs. The growing size and complexity of log files has made the manual analysis of system logs by administrators

prohibitive. This fact makes it important for tools and techniques that will allow some form of automation in management and

analysis of system logs to be developed. This paper discusses the methods of detecting security threats in network by collect ing

system logs and analyzing them with MapReduce jobs.

Keywords:- Hadoop, Logs, MapReduce, Hive, Vulnerability .

I. INTRODUCTION

Modern computing systems generate huge log data. System

administrators or domain experts utilize the log data to

understand and optimize system behaviors. While several

techniques exist to interpret logs, describing and assessing log

quality remains relatively unexplored. This paper studies

various modules such as Log Collection, Log Analysis and

Report Generation required for the assessment of network of

an organization. Large organizations use the MapReduce

programming model for processing log data. MapReduce is

designed to work on data stored in a distributed file system

(HDFS), so number of log collection systems has been built to

copy data into HDFS. These systems often unable to handle

failures, with errors being handled separately by each piece of

the collection, transport and processing pipeline. This paper

describes different data collection system. Some of them are

built on top of Hadoop, an open-source framework for storing

data and running applications on distributed system, which

provides scalability and robustness. It also includes flexible

tools for monitoring MapReduce jobs and analyzing results.

Nowadays every enterprise, be it small or large, depends on

information technology for some or most of its operations, and

along with it, issues of security arises. Most of the small and

medium scale enterprises (SMEs) and sometimes large

enterprises are often unaware of the information security

issues and hence they ignore it. The budget (if) allocated for

the security purposes is generally less to get all security

compliance done like penetration testing. Ignorance to the

above often leads to a security issue which finally costs more

in the form of data loss and recovery costs. It is always better

to adopt a proactive strategy rather than a reactive one in the

field of information security. This paper discusses the

vulnerability assessment utilizing some free and easy to use

tools for smaller modules. These tools are easy to use so that

anyone with basic technical knowledge can use them, so that

even a small enterprise can utilize them to generate results and

take appropriate action.

Vulnerability: Vulnerability is a weakness or flaw in the

application which allows an attacker to cause undesirable

operations or gain unauthorized access. Presence of

vulnerability poses a threat to the user of the application as it

might lead to data compromise. Example: Buffer Overflow

Threat: An event or action that might prejudice security. A

threat can also be described as a potential violation of security.

Example: A Virus

Attack: Any action that attempts to violate the security of a

system. Example: Brute Force

Exploit: A command sequence or data chunk whose aim is to

take advantage of a flaw or vulnerability in an application.

Example: MS 12-020 RDP exploit.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 6, Nov-Dec 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 10

Vulnerability assessment in field of cyber security could be

defined as the process of Identifying, Enumerating and

Ranking the vulnerabilities present in a system or network in

order to patch them. It is concerned with the security of the

resource and its environment and is a proactive approach.

A single event line in a system log will generally consist of

several fields of information, see Fig. 1.The most of important

of which is the natural language message (free form message),

which describes the event. Free form messages generated by

lines in source code are a feature of almost any event log. The

use of natural language in these free form messages is

responsible for their lack of structure. The ability to impose

structure on free form messages in system logs will therefore

greatly enhance the ability to automatically analyze and

manage them. Modern computing systems generate large

amounts of log data. The log data describes the status of each

component and records system internal operations, such as the

starting and stopping of services, detection of network

connections, software configuration modifications, and

execution errors System administrators or domain experts

utilize the log data to understand and optimize system

behaviors.

As system logs are to be collected from thousands of

nodes in network, it results in large amount of data. To deal

with such a BIG DATA distributed framework like Apache

Hadoop could be used.

Figure 1: An Example System Log Event[19]

The technologies used are highlighted as follows:

i) Apache Hadoop:

 Apache Hadoop[21] is an open source distributed

framework that facilitates data intensive tasks over big data

while maintaining the properties of volume, velocity and

varieties. It supports the distributed application on large

clusters on commodity hardware. Hadoop has two logical

modules: HDFS (Hadoop Distributed File System) as storage

and Map Reduced for computational workflow. HDFS

provides high availability and fault tolerance by compromising

on the data redundancy. Hadoop environment employs a

master-slave architecture where one master node (called Job

tracker) manages a number of slave nodes (called Task

trackers).While storing data on HDFS, it takes random file of

64/128 Mega- bytes of blocks in size and a block is duplicated

to the default replication factor of 3 in general. There are

various types of ecosystems like Pig Latin, Hive, HBase and

Zookeepers which are supported by Hadoop and provides

added functionality to Hadoop environment. HBase supports

distributed column oriented database which is built on

distributed file system (HDFS).

ii) MapReduce Framework:

 Hadoop MapReduce is a software frameworkfor

easily writing applications which process vast amounts of data

(multi-terabyte data-sets) in parallel on large clusters

(thousands of nodes) of commodity hardware in a reliable,

fault-tolerant manner. A MapReduce job usually splits the

input dataset into independent chunks which are processed by

the map tasks in a completely parallel manner. The framework

sorts the outputs of the maps, which are then input to the

reduce tasks. Typically both the input and output of the job are

stored in a file system. The framework takes care of

scheduling tasks,monitoring them and re-executes the failed

tasks. Typically the compute nodes and the storage nodes are

the same, that is, the MapReduce framework and the Hadoop

Distributed File System are running on the same set of nodes.

This configuration allows the framework to effectively

schedule tasks on the nodes where data is already present,

resulting in every high aggregate bandwidth across the cluster.

 The MapReduce framework consists of a single

master Job Tracker and one slave Task Tracker per cluster-

node. The master is responsible for scheduling the jobs'

component tasks on the slaves, monitoring them and re-

executing the failed tasks. The slaves execute the tasks as

directed by the master. Minimally, applications specify the

input/output locations and supply map and reduce functions

via implementations of appropriate interfaces and/or abstract-

classes. These, and other job parameters, comprise the job

configuration. The Hadoop job client then submits the job and

configuration to the JobTracker which then assumes the

responsibility of distributing the software configuration to the

slaves, scheduling tasks and monitoring them, providing status

and diagnostic information to the job client.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 6, Nov-Dec 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 11

Figure 2: MapReduce Framework[20]

iii) Hive:

 Apache Hive[22] is a data warehouse infrastructure

built on top of Hadoop for providing data summarization,

query, and analysis. While initially developed by Facebook,

Apache Hive is now used and developed by other companies

such as Netflix. Apache Hive supports analysis of large

datasets stored in Hadoop's HDFS and compatible file systems

such as Amazon S3 file system. It provides an SQL like

language called HiveQL with schema on read and

transparently converts queries to map/reduce, Apache Tez and

Spark jobs. All three execution engines can run in Hadoop

YARN. To accelerate queries, it provides indexes, including

bitmap indexes. By default, Hive stores metadata in an

embedded Apache Derby database, and other client/server

databases like MySQL can optionally be used.

While based on SQL, HiveQL does not strictly follow the full

SQL-92 standard. HiveQL offers extensions not in SQL,

including multi table inserts and create table as select, but only

offers basic support for indexes. Also, HiveQL lacks support

for transactions and materialized views, and only limited

subquery support. Internally, a compiler translates HiveQL

statements into a directed acyclic graph of MapReduce or Tez,

or Spark jobs, which are submitted to Hadoop for execution.

II. RELATED WORK

Many existing techniques, for log collection are designed and

still many are emerging for analyzing logs to detect

vulnerabilities in the network or system. In this section, we list

the most relevant techniques and discuss about them.

i) Syslogd:

The Unix syslogd deamon, developed in the 1980s, supported

cross-network logging[5]. Robustness and fault-tolerance were

not design goals. The original specification for syslogd called

for data to be sent via UDP and made no provision for reliable

transmission. Today, syslogd still lacks support for failure

recovery, for throttling its resource consumption, or for

recording metadata. Messages are limited to one kilobyte,

inconveniently small for structured data.

ii) Splunk:

 Splunk[6] is a commercial system for log collection,

indexing and analysis. It relies on a centralized collection and

storage architecture. It does not attempt high availability, or

reliable delivery of log data. However, it does illustrate the

demand in industry for sophisticated log analysis. To satisfy

this need, many large Internet companies have built

sophisticated tools for large-scale monitoring and analysis.

Log analysis was one of the original motivating uses of

MapReduce, and the associated Sawzall scripting

language[7,8].

iii) Chukwa:

 Chukwa[18] represents a design point in between two

existing classes of systems: log collection frameworks on the

one hand, and network management systems on the other.

Chukwa intends to combine the abundance of data display

tools of existing NMS systems, with the high throughput and

robustness expected of log collection frameworks. Chukwa

has some similarity with network monitoring systems such as

Nagios, Ganglia, or Tivoli Monitoring[2,3,4]. The three

systems differ in emphasis, but have important commonalities.

All are capable of collecting and storing substantial volumes

of metrics data. All include tools for displaying this data.

Nagios and Tivoli monitoring have centralized architectures,

while Ganglia is decentralized. Ganglia, unfortunately, is

heavily adapted towards numeric time-series data, and

provides minimal support for the sort of complex text-

processing necessary for our applications. Chukwa, however,

differs in crucial respects from these current systems.

 Today’s monitoring systems are focused primarily on

collection, with storage being a secondary priority. Chukwa is

designed for far higher data rates; metrics data, which is

essentially all that Ganglia and Nagios are used to collect, is

only a few percent of the data we will capture in operational

settings. With hundreds of gigabytes of data being collected

per day, processing the stored data becomes a key bottleneck.

Chukwa’s design was optimized precisely for storage and

batch processing of collected data. While MapReduce is

routinely used at these scales, no currently available

monitoring system makes provision for large-scale data

intensive processing.

iv) Scribe:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 6, Nov-Dec 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 12

 Scribe[1] is the one that is open source tool. Scribe is

a service for forwarding and storing monitoring data. The

Scribe meta data model is much simpler than that of Chukwa:

messages are key-value pairs, with both key and value being

arbitrary byte fields. This has the advantage of flexibility. It

has the disadvantage of requiring any organization using

Scribe to develop its own metadata standard, making it harder

to share code between organizations. A Scribe deployment

consists of one or more Scribe servers arranged in a directed

acyclic graph with a policy at each node specifying whether to

forward or store incoming messages. In contrast to Chukwa,

Scribe is not designed to interoperate with legacy applications.

The system being monitored must send its messages to Scribe

via the Thrift RPC service. This has the advantage of avoiding

a local disk write in the common case where messages are

delivered without error. It has the disadvantage of requiring

auxiliary processes to collect data from any source that hasn’t

been adapted to use Scribe. Collecting log files from a non-

Scribe-aware service would require using an auxiliary process

to tail them. In contrast, Chukwa handles this case smoothly.

Scribe makes significantly weaker delivery guarantees than

Chukwa. Once data has been handed to a Scribe server, that

server has responsibility for the data. Any durable buffering

for later delivery is the responsibility of the server, meaning

that the failure of a Scribe server can cause data loss. There

can be no end-to-end delivery guarantees, since the original

sender does not retain a copy. Clients can be configured to try

multiple servers before giving up, but if a client cannot find a

working Scribe server, data will be lost.

v) Artemis:

 Another related system is Artemis, developed at

Microsoft Research to help debug large Dryad clusters[8].

Artemis is designed purely for a debugging context: it

processes logs on the machines where they are produced,

using Dryad LINQ[12] as its processing engine. The

advantage of this architecture is that it avoids redundant

copying of data across the network, and enables machine

resources to be reused between the system being analyzed and

the analysis. The disadvantage is that queries can give the

wrong answer if a node crashes or becomes temporarily

unavailable. Artemis was not designed to use long-term

durable storage, which requires replication off-node. Analysis

on-node is also a poor fit for monitoring production services.

Analyzing data where it is produced risks having data analysis

jobs interfere with the system being monitored. Chukwa is

flexible enough to emulate Artemis if desired, in situations

with large data volumes per node. Instead of writing across a

network, agents could write to a local Hadoop file system

process, with replication disabled. Hadoop could still be used

for processing, although having only a single copy of each

data item reduces the efficiency of the task scheduler[13].

vi) Flume:

 Flume[2] is another, more recent system developed

for getting data into HDFS. Flume was developed after

Chukwa, and has many similarities: both have the same

overall structure, and both do agent-side replay on error. There

are some notable differences as well. In Flume, there is a

central list of ongoing data flows, stored redundantly in

Zookeeper. Whereas Chukwa does this end-to-end, Flume

adopts a more hop-by-hop model. In Chukwa, agents on each

machine are responsible for deciding what to send.

vii) Snort:

 The related paper[9] is based on the distributed

processing of snort alert using Hadoop framework, which

handles large amount of network logs. The objective of this

paper is to gather warning messages from multiple snort

processes which run on different servers and analyze the logs

using Hadoop MapReduce. The system uses Hadoop

environment which consists of multiple slave node for better

performance than a single computer system. Experimental

results of system by using 8 slave nodes in a network exhibits

a performance improvement which is about 4.2 times faster

speed then that of single computer system. The system is

scalable in nature but it lacks in real time property. In order to

add real-time data processing, system requires investigating

with different Hadoop ecosystems like Cloudera Impala,

Scoop and Storm.

viii) NIDS:

 In related paper[10] is based on the scalable NIDS

log analysis using cloud computing infrastructure. The

Primary objective is to efficiently handle large volume of

NIDS logs from servers by using Hadoop and cloud

infrastructure. Once enough data is collected then it is

necessary to analyze rapidly and determine whether any

attacks or malicious activity are present in a network.

Performance analysis is carried out on Snort log report with

file size of 4 GBytes. The execution time for log analysis is

found by comparing Hadoop based system with single

computer system without Hadoop. In the result, as number of

nodes increase, the system performance increases as compared

to the single system. When number of nodes in the system is

5, performance of the system is about 2.5 times better than that

of the single system. In future improvement related to data

analytic the system is open to adopt Hadoop ecosystems like

Hbase, Hive with zookeeper for dynamic scheduling. This is

flexible to perform auto versioning to data in HDFS.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 6, Nov-Dec 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 13

 There are also a number of more specialized

monitoring systems worth mentioning. Tools like Astrolabe,

Pier, and Ganglia[14,15,16] are designed to help users query

distributed system monitoring data. In each case, an agent on

each machine being monitored stores a certain amount of data

and participates in answering queries. They are not designed

to collect and store large volumes of semi-structured log data,

nor do they support a general-purpose programming model.

Instead, a particular data aggregation strategy is built into the

system. This helps achieve scalability, at the cost of a certain

amount of generality. In contrast, Chukwa separates the

analysis from the collection, so that each part of a deployment

can be scaled out independently.

ix) Fluentd:

 Fluentd[17] is an open source data collector, which

lets you unify the data collection and consumption for a better

use and understanding of data. Fluentd tries to structure data

as JSON as much as possible: this allows Fluentd to unify all

facets of processing log data: collecting, filtering, buffering,

and outputting logs across multiple sources and destinations

(Unified Logging Layer).

The downstream data processing is much easier with JSON,

since it has enough structure to be accessible while retaining

flexible schemas. Fluentd decouples data sources from

backend systems by providing a unified logging layer in

between. This layer allows developers and data analysts to

utilize many types of logs as they are generated. Just as

importantly, it mitigates the risk of "bad data" slowing down

and misinforming your organization. A unified logging layer

lets you and your organization make better use of data and

iterate more quickly on your software.

III. CONCLUSION

This paper described different techniques to collect and

analyze logs, which are very important source of information

and could be used for various security purposes such as a

NetFlow, IDS detection, firewall log activity, file access,

system error, or login failure.

REFERENCES

[1] Scribe. http://sourceforge.net/scribeserver/projects,

2008.

[2] Cloudera’s flume. http://github.com/cloudera/flume,

June 2010.

[3] M. Aharon, G. Barash, I. Cohen, and E.

Mordechai.One graph is worth a thousand logs:

Uncovering hidden structures in massive system

event logs. In European Conference on Machine

Learning and Principles and Practice of Knowledge

Discovery in Databases, Bled, Slovenia, September

2009.

[4] M. Armbrust, A. Fox, R. Griffith, A. Joseph,R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, et al.

Above the Clouds: A Berkeley View of Cloud

Computing. Technical Report 2009-28, UC Berkeley,

2009.

[5] C. Lonvick. RFC 3164: The BSD syslog Protocol.

http://www.ietf.org/rfc/rfc3164.txt, August 2001.

[6] Splunk Inc. IT Search for Log Management,

Operations, Security and Compliance.

http://www.splunk.com/, 2009 .

[7] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D.

J.DeWitt, S. Madden, and M. Stonebraker. A

Comparison of Approaches to Large-Scale Data

Analysis. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data,

Providence, RI, 2009.

[8] G. F. Cret ̧u-Ciocarlie, M. Budiu, and M. Goldszmidt.

Hunting for problems with Artemis. In First USENIX

Workshop on Analysis of System Logs (WASL ’08),

San Diego, CA, December 2008.

[9] JeongJin Cheon,”Distributed Processing of Snort

Alert Log using Hadoop”,Department of Computer

Engineering ,Kumoh National Institute of

Technology ,Gumi, Gyeongbuk, Korea.

[10] Manish Kumar,”Scalable Intrusion Detection

Systems Log Analysis using Cloud Computing

Infrastructure”, M. S. Ramaiah Institute of

Technology, Bangalore and Research Scholar,

Department of Computer Science and Applications,

Bangalore University, Bangalore, INDIA.

[11] Prathibha,”Design of a Hybrid Intrusion Detection

System using Snort and Hadoop”, International

Journal of Computer Applications (0975 –

8887),Volume 73– No.10, July 2013

[12] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U.

Erlingsson, P. Gunda, and J. Currey. DryadLINQ: A

system for general-purpose distributed data-parallel

computing using a high-level language. In 8th

http://www.ijcstjournal.org/
http://sourceforge.net/scribeserver/projects

International Journal of Computer Science Trends and Technology (IJCST) – Volume 3 Issue 6, Nov-Dec 2015

ISSN: 2347-8578 www.ijcstjournal.org Page 14

USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’08), San Diego, CA,

December 2008.

[13] O. O’Malley and A. C. Murthy. Winning a 60 Second

Dash with a Yellow Elephant.

http://sortbenchmark.org/Yahoo2009.pdf, April 2009.

[14] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S.

Shenker, and I. Stoica. Querying the Internet with

PIER. Proceedings of 19th International Conference

on Very Large Databases (VLDB), pages 321–332,

2003.

[15] R. Van Renesse, K. Birman, and W. Vogels. As

trolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and

Data Mining. ACM TOCS, 21(2):164–206, 2003

[16] M. Massie, B. Chun, and D. Culler. The Ganglia

Distributed Monitoring System: Design,

Implementation, and Experience. Parallel

Computing,30(7):817–840, 2004.

[17] Fluentd, www.fluentd.org.

[18] Rabkin Ariel and Randy H. Katz. "Chukwa: A

System for Reliable Large-Scale Log Collection."

LISA. Vol. 10. 2010.

[19] Makanju, Adetokunbo, A. Nur Zincir-Heywood, and

Evangelos E. Milios. "Storage and retrieval of system

log events using a structured schema based on

message type transformation." Proceedings of the

2011 ACM Symposium on Applied Computing . ACM,

2011.

[20] MapReduce Workflow,

http://www.glennklockwood.com /data-

intensive/hadoop/mapreduce-workflow.png

[21] Apache Hadoop https://hadoop.apache.org/

[22] Apache Hive https://hive.apache.org/

http://www.ijcstjournal.org/
http://www.glennklockwood.com/

