
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 5

RESEARCH ARTICLE OPEN ACCESS

Big Data Analytics: Challenges and Solutions Using Hadoop, Map Reduce

and Big Table

M. Dhavapriya, N. Yasodha
Department of Computer Science

NGM College, Pollachi

Tamil Nadu - India

ABSTRACT

We live in on-demand, on-command Digital universe with data prolife ring by Institutions, Individuals and Machines at a

very high rate. This data is categories as "Big Data" due to its sheer Volume, Variety, Velocity and Veracity. Most of

this data is unstructured, quasi structured or semi structured and it is heterogeneous in nature. The volume and the

heterogeneity of data with the speed it is generated, makes it difficult for the present computing infrastructure to

manage Big Data. Traditional data management, warehousing and analysis systems fall short of tools t o analyze this

data. Due to its specific nature of Big Data, it is stored in distributed file system architectures. Hadoop and HDFS by

Apache is widely used for storing and managing Big Data. Analyzing Big Data is a challenging task as it involves large

distributed file systems which should be fault tolerant, flexible and scalable. Map Reduce is widely been used for

the efficient analysis of Big Data. Traditional DBMS techniques like Joins and Indexing and other techniques like graph

search is used for classification and clustering of Big Data. These techniques are being adopted to be used in Map

Reduce. In this research paper the authors suggest various methods for catering to the problems in hand through Map

Reduce framework over Hadoop Distributed File System (HDFS). Map Reduce is a Minimization technique which

makes use of file indexing with mapping, sorting, shuffling and finally reducing. Map Reduce techniques have been

studied at in this paper which is implemented for Big Data analysis using HDFS.

Keyword:- Big Data Analysis, Big Data Management, Map Reduce, HDFS

I. INTRODUCTION

Big Data encompasses everything from click

stream data from the web to genomic and proteomic data

from biological research and medicines. Big Data is a

heterogeneous mix of data both structured (traditional

datasets –in rows and columns like DBMS tables, CSV's

and XLS's) and unstructured data like e-mail

attachments, manuals, images, PDF documents, medical

records such as x-rays, ECG and MRI images,

forms, rich media like graphics, video and audio,

contacts, forms and documents. Businesses are primarily

concerned with managing unstructured data, because

over 80 percent of enterprise data is unstructured [26]

and require significant storagespace and effort

to manage.“Big Data” beyond the ability of t

ypical database software tools to capture, store, manage,

and analyze [3]. Big data analytics is the area where

advanced analytic techniques operate on big data sets. It

is really about two things, Big data and Analytics and

how the two have teamed up to create one of the most

profound trends in business intelligence (BI) [4].

MapReduce by itself is capable for analyzing large

distributed data sets; but due to the heterogeneity,

velocity and volume of Big Data, it is a challenge for

traditional data analysis and management tools [1] [2]. A

problem with Big Data is that they use NoSQL and has

no Data Description Language (DDL) and it supports

transaction processing. Also, web-scale data is not

universal and it is heterogeneous. For analysis of Big

Data, database integration and cleaning is much harder

than the traditional mining approaches [4]. Parallel

processing and distributed computing is becoming a

standard procedure which are nearly non-existent in

RDBMS. Map Reduce has following characteristics

[12]; it supports Parallel and distributed processing, it is

simple and its architecture is shared-nothing which has

commodity diverse hardware (big cluster).Its functions

are programmed in a high- level programming language

(e.g. Java, Python) and it is flexible. Query processing

is done through NoSQL integrated in HDFS as Hive tool

[20]. Analytics helps to discover what has changed and

the possible solutions. Second, advanced analytics is the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 6

best way to discover more business opportunities, new

customer segments, identify the best suppliers,

associate products of affinity, understand sales

seasonality[25] etc. Traditional experience in data

warehousing, reporting, and online analytic processing

(OLAP) is different for advanced forms of analytics [6].

Organizations are implementing specific forms of

analytics, particularly called advanced analytics. These

are an collection of related techniques and tool types,

usually including predictive analytics, data mining,

statistical analysis, complex SQL, data visualization,

artificial intelligence, natural language processing.

Database analytics platforms such as Map Reduce, in-

database analytics, in-memory databases, and columnar

data stores [6] [9] are used for standardizing them. With

big data analytics, the user is trying to discover new

business facts that no one in the enterprise knew before,

a better term would be “discovery needs large

volumes of data with plenty of detail. This is often data

that the enterprise has not yet tapped for analytics

example, the log data. The analyst might mix that data

with historic data refers to datasets whose data from a

data warehouse and would discover for example, new

change behavior in a subset of the customer base.

The discovery would lead to a metric, report, analytic

model, or some other product of BI, through which the

company could track and predict the new form of

customer behavioral change.

 Discovery analytics against big data can be enabled

by different types of analytic tools, including those based

on SQL queries, data mining, statistical analysis,

fact clustering, data visualization, natural language

processing, text analytics, artificial intelligence etc [4-

6]. A unique challenge for researchers system and

academicians is that the large datasets needs special

processing systems [5]. Map Reduce over HDFS gives

Data Scientists [1-2] the techniques through which

analysis of Big Data can be done. HDFS is a

distributed file system architecture which

encompasses the original Google File System [13].Map

Reduce jobs use efficient data processing techniques

which can be applied in each of the phases of

MapReduce; namely Mapping, Combining, Shuffling,

Indexing, Grouping and Reducing [7]. All these

techniques have been studied in this paper for

implementation in Map Reduce tasks.

II. BIG DATA OPPORTUNITIES AND

CHALLENGES

In the distributed systems world, “Big Data”

started become a major issue in the late

1990‟s due to the impact on world-wide Web and a

resulting need to index and query its rapidly

mushrooming content. Database technology (including

parallel databases) was considered for the task, but was

found to be neither well-suited nor cost-effective [5] for

those purposes. The turn of the millennium then brought

further challenges as companies began to use

information such as the topology of the Weband users‟

search histories processing. Itinruns on order

commodity to hardware, provide it uses HDFS useful

search results, as well as more effectively-targeted

advertising to display alongside and fund those results.

Google‟schnical responses to the challenges of Web-

scale data management and analysis was simple, by

database standards, but kicked off what Figure1

Illustrates has the become layers found the in the

modern software Data” revolution in the systems

world[3]. To handle the challenge of Web-scale storage,

the Google File System (GFS) was created [13]. GFS

provides clients with the familiar OS-level byte-stream

abstraction, but it does so for extremely large files whose

content can span hundreds of machines in shared-

nothing clusters created using inexpensive commodity

hardware [5]. To handle the challenge of processing the

data in such large files, Google pioneered its Map

Reduce programming model and platform [1][13]. This

model, characterized by some as “parallel programming

for map dummies”, phase of the job. For applications

enabled just needing Google developers to process large

collections of data by writing two based record

management operations, the HBase store (layered user-

defined functions, map and reduce, that the Map

Reduceon top of HDFS) is available as a key-value layer

in the Hadoop framework applies to the instances (map)

and sorted groups of stack. As indicated in the

figure, the contents of HBase can instances that share a

common key (reduce) –similar to the sort either be

directly accessed and manipulated by a client of

partitioned parallelism utilized in shared-nothing

parallel query processing.

Driven by very similar requirements, software

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 7

Developers Yahoo!, Facebook, and other large Web

companies followed suit. Taking Google’s GFS

technical specifications, open-source equivalents were

the middle layer of the stack is the Hadoop Map Reduce

system, which applies map operations to the data in

partitions of an HDFS file, sorts and redistributes the

results based on key values in the output data, and

then performs reduce operations on the groups of output

data

III. HADOOP AND HDFS

Hadoop is a scalable, open source, fault-

tolerant Virtual Grid operating system architecture

for data storage which is fault-tolerant high-bandwidth

clustered storage architecture. It runs MapReduce for

distributed data processing and is works with structured

and unstructured data. To handle the architecture of

aHadoop stack [17] [19]. At the bottom of the Hadoop

software stack is HDFS, a distributed file system in

which each file appears as a (very large) contiguous

and randomly addressable sequence of bytes. For batch

 Figure 1.Hadoop Architecture Layers

Figure 3. HADOOP Clusters

Analytics, the middle layer of the stack is the Hadoop

Map Reduce system, which applies map operations to

the data in partitions of an HDFS file, sorts and

 Redistributes the results based on keyvalues in the

output data, and then performs reduce operations on the

groups of output data items with matching keys from the

 anditems with matching keys from the based record

management operations, the HBase store (layered on top

of HDFS) is available as a key-value layer in the Hadoop

stack. As indicated in the figure, the contents of HBase

can either be directly accessed and manipulated by a

client application or accessed via Hadoop for analytical

needs. Many users of the Hadoop stack prefer the

use of a declarative language over the bare MapReduce

programming model. High- level language compilers

(Pig and Hive) are thus the topmost and layer in the

Map Hadoop software Reduce stack for such papers

clients.

 Figure 2.Hadoop Architecture Tools and usage

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 8

Figure2 shows the relevancy between the traditional

experience in data warehousing, reporting, and online

analytic processing (OLAP) and advanced analytics with

collection of related techniques like data mining with

DBMS, artificial intelligence, machine learning, and

database analytics platforms such as MapReduce and

Hadoop over HDFS [4] [9].

Figure 3 shows the architecture of HDFS clusters

implementation with Hadoop. It can be seen that HDFS

has distributed the task over two parallel clusters with

one server and two slave nodes each. Data analysis tasks

are distributed in these clusters.

IV. BIG DATA ANALYSIS

Heterogeneity, scale, timeliness, complexity, and privacy

problems with Big Data hamper the progress at all

phases of the process that can create value from data.

Much data today is not natively in structured format; for

example, tweets and blogs are weakly structured pieces

of text, while images and video are structured for storage

and display, but not for semantic content and search:

transforming such content into a structured format for

later analysis is a major challenge [15]. The value of data

enhances when it can be linked with other data, thus data

integration is a major creator of value.

 Figure 4. Big Data Analysis Tools

Since most data is directly generated in digital format

today, we have the opportunity and the challenge both to

influence the creation to facilitate later linkage and to

automatically link previously created data. Data analysis,

organization, retrieval, and modelling are other

foundational challenges [6]. Big Data analysis is a clear

bottleneck in many applications, both due to lack of

scalability of the underlying algorithms and due to the

complexity of the data that needs to be analysed. Finally,

presentation of the results and its interpretation by non-

technical domain experts is crucial to extracting

actionable knowledge as most of the BI related jobs are

handled by statisticians and not software experts. Figure

4, below gives a glimpse of the Big Data analysis tools

which are used for efficient and precise data analysis and

management jobs. The Big Data Analysis and

management setup can be understood through the

layered structured defined in the figure. The data storage

part is dominated by the HDFS distributed file system

architecture; other mentioned architectures available are

Amazon Web Service (AWS) [23], Hbase and

CloudStore etc. The data processing tasks for all the

tools is Map Reduce; we can comfortably say that it is

the de-facto Data processing tool used in the Big Data

paradigm.

 Figure 4.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 9

For handling the velocity and heterogeneity of data, tools

like Hive, Pig and Mahout are used which are parts of

Hadoop and HDFS framework. It is interesting to note

that for all the tools used, Hadoop over HDFS is the

underlying architecture. Oozie and EMR with Flume and

Zookeeper are used for handling the volume and veracity

of data, which are standard Big Data management tools.

The layer with their specified tools forms the bedrock for

Big Data management and analysis framework.

V. MAP REDUCE

Map Reduce [1-2] is a programming model for

processing large-scale datasets in computer clusters. The

Map Reduce programming model consists of two

functions, map () and reduce (). Users can implement

their own processing logic by specifying a customized

map() and reduce() function. The map () function takes

an input key/value pair and produces a list of

intermediate key/value pairs. The Map Reduce runtime

system groups together all intermediate pairs based on

the intermediate keys and passes them to reduce()

function for producing the final results.

Map

(in_key, in_value) --->list(out_key,intermediate_value)

Reduce

(out_key,list(intermediate_value)) -- ->list(out_value)

The signatures of map() and reduce() are as follows :

map (k1,v1) ! list(k2,v2)and reduce (k2,list(v2)) !

list(v2)

A Map Reduce cluster employs a master-slave

architecture where one master node manages a number

of slave nodes [19]. In the Hadoop, the master node is

called Job Tracker and the slave node is called Task

Tracker as shown in the figure 7. Hadoop launches a

Map Reduce job by first splitting the input dataset into

even-sized data blocks. Each data block is then

scheduled to one Task Tracker node and is processed by

a map task. The Task Tracker node notifies the Job

Tracker when it is idle. The scheduler then assigns new

tasks to it. The scheduler takes data locality into account

when

it

disse

mina

tes

data

bloc

ks.

Figure 5. Map Reduce Architecture and Working

It always tries to assign a local data block to a Task

Tracker. If the attempt fails, the scheduler will assign a

rack-local or random data block to the Task Tracker

instead. When map() functions complete, the runtime

system groups all intermediate pairs and launches a set

of reduce tasks to produce the final results.

Large scale data processing is a difficult task, managing

hundreds or thousands of processors and managing

parallelization and distributed environments makes is

more difficult. Map Reduce provides solution to the

mentioned issues, as is supports distributed and parallel

I/O scheduling, it is fault tolerant and supports

scalability and i has inbuilt processes for status and

monitoring of heterogeneous and large datasets as in

Big Data [14].
A. Map Reduce Components

1. Name Node –manages HDFS metadata, (since

with files directly

2. Data Node – stores blocks of HDFS – default

replication level for each block: 3

3. Job Tracker –schedules, allocates and monitors job

execution on slaves –Task Trackers

4. Task Tracker –runs Map Reduce operations

Data Node –stores Name Node –
blocks of HDFS – manages HDFS

default replication metadata, doesn’t
level for each deal with files
block: 3 Directly

 Job Tracker –
Task Tracker –runs schedule s, allocates
M ap Reduce and monitors job
operations executio n on slaves
 –Task Trackers

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 10

 Figure 6.Map Reduce Components

B. Map Reduce Working

We implement the Mapper and Reducer interfaces to

provide the map and reduce methods as shown in figure

6. These form the core of the job.

1) Mapper

 Mapper maps input key/value pairs to a set of

intermediate key/value pairs. Maps are the individual

tasks that transform input records into intermediate

records. The transformed intermediate records do not

need to be of the same type as the input records. A given

input pair may map to zero or many output pairs [19].

The number of maps is usually driven by the total size of

the inputs, that is, the total number of blocks of the input

files. The right level of parallelism for maps seems to be

around 10-100 maps per-node, although it has been set

up to 300 maps for very cpu-light map tasks. Task setup

takes awhile, so it is best if the maps take at least a

minute to execute. For Example, if you expect 10TB of

input data and have a blocksize of 128MB, you'll end up

with 82,000 maps [17] [19].

2) Reducer

 Reducer reduces a set of intermediate values which

share a key to a smaller set of values. Reducer has 3

primary phases: shuffle, sort and reduce.

2.1) Shuffle

Input to the Reducer is the sorted output of the mappers.

In this phase the framework fetches the relevant partition

of the output of all the mappers, via HTTP.

2.2) Sort

The frame work doesn ‟tgroupsReducerdealinputs by

keys (since different mappers may have output the same

key) in this stage. The shuffle and sort phases occur

simultaneously; while map- outputs are being fetched

they are merged.

2.3) Secondary Sort

If equivalence rules for grouping the intermediate keys

are required to be different from those for grouping

keys before reduction, then one may specify a

Comparator (Secondary Sort). 2.4) Reduce In this phase

the reduce method is called for each <key, (list of

values)> pair in the grouped inputs. The output of the

reduce task is typically written to the File System via

Output Collector [19]. Applications can use the Reporter

to report progress, set application-level status messages

and update Counters, or just indicate that they are alive.

The output of the Reducer is not sorted. The right

number of reduces seems to be 0.95 or 1.75 multiplied

by no. of nodes. With 0.95 all of the reduces can launch

immediately and start transferring map outputs as the

maps finish. With 1.75 the faster nodes will finish their

first round of reduces and launch a second wave of

reduces doing a much better job of load balancing [MR

Framework].Increasing the number of reduces increases

the framework overhead, but increases load balancing

and lowers the cost of failures. The scaling factors above

are slightly less than whole numbers to reserve a few

reduce slots in the framework for speculative-tasks and

failed tasks. It is legal to set the number of reduce-tasks

to zero if no reduction is desired.

a) Partitioner

 Partitioner partitions the key space. Partitioner controls

the partitioning of the keys of the intermediate map-

outputs. The key (or a subset of the key) is used to derive

the partition, typically by a hash function. The total

number of partitions is the same as the number of reduce

tasks for the job. Hence this controls which of the m

reduce tasks the intermediate key (and hence the record)

is sent to for reduction.

 Hash Partitioner is the default Partitioner.

b) Reporter

 Reporter is a facility for MapReduce applications to

report progress, set application-level status messages and

update Counters. Mapper and Reducer implementations

can use the Reporter to report progress or just indicate

that they are alive. In scenarios where the application

takes a significant amount of time to process individual

key/value pairs, this is crucial since the framework might

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 11

assume that the task has timed-out and kill that task.

Applications can also update Counters using the

Reporter.

c) Output Collector

 Output Collector is a generalization of the facility
provided by the MapReduce framework to collect data
output by the Mapper or the Reducer (either the
intermediate outputs or the output of the job). Hadoop
MapReduce comes bundled with a library of generally
useful mappers, reducers, and partitioners

Figure 7. Map Reduce Working through Master /

Slave

C. Map Reduce techniques

• Combining

Combiners provide a general mechanism within

the MapReduce framework to reduce the amount of

intermediate data generated by the mappers. They can be

understood as "mini-reducers" that process the output of

mappers. The combiner's aggregate term counts across

the documents processed by each map task. This result in

a reduction in the number of intermediate key-value

pairs that need to be shuffled across the network, from

the order of total number of terms in the collection to the

order of the number of unique terms in the collection.

They reduce the result size of map functions and perform

reduce-like function in each machine which decreases

the shuffling cost.

• Inverse Indexing

Inverse indexing is a technique in which the keywords of

the documents are mapped according to the document

keys in which they are residing.

For example

Doc1: IMF, Financial Economics Crisis Doc2: IMF,

Financial Crisis

Doc3: Harry Economics Doc4: Financial Harry Potter

Film Doc5: Harry Potter Crisis

The following is the inverted index of the above data

IMF -> Doc1:1, Doc2:1

Financial -> Doc1:6, Doc2:6, Doc4:1

Economics -> Doc1:16, Doc3:7

Crisis -> Doc1:26, Doc2:16, Doc5:14

Harry -> Doc3:1, Doc4:11, Doc5:1

Potter -> Doc4:17, Doc5:7

Film -> Doc4:24

• Shuffling

Shuffling is the procedure of mixing the indexes of the

files and their keys, so that a heterogeneous mix of

dataset can be obtained. If the dataset is shuffled, then

there are better chances that the resultant query

processing will yield near accurate results. We can relate

the shuffling process with the population generating by

crossover in the GA algorithms. The processes are

different in nature, but their purpose is similar.[7]

• Shading

It is a term used to distribute the Mappers in the HDFS

architecture. Sharding refers to the groupings or

documents which are done so that the MapReduce jobs

are done parallel in a distributed environment.

• Joins

Join is a RDBMS term; it refers to combining two or

more discrete datasets to get Cartesian product of data of

all the possible combinations. Map Reduce does not

have its own Join techniques, but RDBMS techniques

are tweaked and used to get the maximum possible

combinations. The join techniques which are adopted for

Map Reduce are Equi Join, Self Join, Repartition Join

and Theta Join [7][10-11].

• Clustering & Classification

They are Data Analysis term, used mainly in Data

Mining. In Map Reduce it is achieved through K means

clustering [7]. Here, iterative working improves

partitioning of data into k clusters. After the clustering,

http://www.ijcstjournal.org/
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapred/lib/package-summary.html

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 12

the data sorted are grouped together based upon rules to

be formed into classes.

The steps for clustering in Map Reduce are;

Step1: Do

Step2: Map

Step3: Input is a data point and k centres are

broadcasted

Step4: Finds the closest centre among k centres for the

input point

Step5: Reduce

Step6: Input is one of k centres and all data points

having this centre as their closest centre

Step7: Calculates the new centre using data points

Step 8: Repeat 1-7, until all of new centres are not

changed

VI. CONCLUSION

The need to process enormous quantities of data has

never been greater. Not only are terabyte- and petabyte-

scale datasets rapidly becoming commonplace, but there

is consensus that great value lies buried in them, waiting

to be unlocked by the right computational tools. In the

commercial sphere, business intelligence, driven by the

ability to gather data from a dizzying array of sources.

Big Data analysis tools like Map Reduce over Hadoop

and HDFS, promises to help organizations better

understand their customers and the marketplace,

hopefully leading to better business decisions and

competitive advantages [6]. For engineers building

information processing tools and applications, large and

heterogeneous datasets which are generating continuous

flow of data, lead to more effective algorithms for a wide

range of tasks, from machine translation to spam

detection. In the natural and physical sciences, the ability

to analyse massive amounts of data may provide the key

to unlocking the secrets of the cosmos or the mysteries

of life. MapReduce can be exploited to solve a variety of

problems related to text processing at scales that would

have been unthinkable a few years ago [15].

No tool no matter how powerful or flexible can be

perfectly adapted to every task. There are many

examples of algorithms that depend crucially on the

existence of shared global state during processing,

making them difficult to implement in MapReduce

(since the single opportunity for global synchronization

in MapReduce is the barrier between the map and reduce

phases of processing). Implementing online learning

algorithms in MapReduce is problematic [14]. The

model parameters in a learning algorithm can be viewed

as shared global state, which must be updated as the

model is evaluated against training data. All processes

performing the evaluation (presumably the mappers)

must have access to this state. In a batch learner, where

updates occur in one or more reducers (or, alternatively,

in the driver code), synchronization of this resource is

enforced by the MapReduce framework. However, with

online learning, these updates must occur after

processing smaller numbers of instances. This means

that the framework must be altered to support faster

processing of smaller datasets, which goes against the

design choices of most existing MapReduce

implementations. Since MapReduce was specifically

optimized for batch operations over large amounts of

data, such a style of computation would likely result in

insufficient use of resources [2]. In Hadoop, for

example, map and reduce tasks have considerable start-

up costs.

VII. ADVANCEMENTS

Streaming algorithms [9] represent an alternative

programming model for dealing with large volumes of

data with limited computational and storage resources.

This model assumes that data are presented to the

algorithm as one or more streams of inputs that are

processed in order, and only once. Stream processing is

very attractive for working with time-series data (news

feeds, tweets, sensor readings, etc.), which is difficult in

MapReduce (once again, given its batch-oriented

design). Another system worth mentioning is Pregel

[16], which implements a programming model inspired

by Valiant's Bulk Synchronous Parallel (BSP) model.

Pregel was specially designed for large-scale graph

algorithms, but unfortunately there are few published

details at present.

Pig [28], which is inspired by Google [13], can be

described as a data analytics platform that provides a

lightweight scripting language for manipulating large

datasets. Although Pig scripts (in a language called Pig

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 13

Latin) are ultimately converted into Hadoop jobs by

Pig's execution engine through joins, allow developers to

specify data transformations (filtering, joining, grouping,

etc.) at a much higher level. Similarly, Hive [20],

another open-source project, provides an abstraction on

top of Hadoop that allows users to issue SQL queries

against large relational datasets stored in HDFS. Hive

queries, in HiveQL are compiled down to Hadoop jobs

by the Hive query engine. Therefore, the system

provides a data analysis tool for users who are already

comfortable with relational databases, while

simultaneously taking advantage of Hadoop's data

processing capabilities [11].

The power of MapReduce derives from providing an

abstraction that allows developers to harness the power

of large clusters but abstractions manage complexity by

hiding details and presenting well-defined behaviours to

users of those abstractions. This process makes certain

tasks easier, but others more difficult, if not impossible.

MapReduce is certainly no exception to this

generalization, even within the Hadoop/HDFS/ Map

Reduce ecosystem; it is already observed the

development of alternative approaches for expressing

distributed computations. For example, there can be a

third merge phase after map and reduce to better support

relational operations. Join processing mentioned n the

paper can also tackle the Map Reduce tasks effectively.

The future directions in Big Data analysis gives a very

encouraging picture as the tools are build on the existing

paradigm of HDFS and Hadoop, overcoming the existing

drawback of the present systems and the advantages it

provides over the traditional data analysis tools.

REFERENCES

[1] Jefry Dean and Sanjay Ghemwat,

MapReduce:A Flexible Data Processing Tool,

Communications of the ACM, Volume 53,

Issuse.1,January 2010, pp 72-77.

[2] Jefry Dean and Sanjay Ghemwat,.MapReduce:

Simplified data processing on large clusters,

Communications of the ACM, Volume 51 pp.

107–113, 2008

[3] Brad Brown, Michael Chui, and James

Manyika, Are you ready for the era of „big

data‟?,McInstitute, October 2011.

[4] DunrenChe, MejdlSafran, and ZhiyongPeng,

From Big Data to Big Data Mining: Challenges,

Issues, and Opportunities, DASFAA

Workshops 2013, LNCS 7827, pp. 1–15, 2013.

[5] MarcinJedyk, MAKING BIG DATA,

SMALL, Using distributed systems for

processing, analysing and managing large huge

data sets,Network, SoftwareCheshire Data

systems Ltd.

[6] OnurSavas, YalinSagduyu, Julia Deng, and

Jason Li,Tactical Big Data Analytics:

Challenges, Use Cases and Solutions, Big Data

Analytics Workshop in conjunction with ACM

Sigmetrics 2013,June 21, 2013.

[7] Kyuseok Shim, MapReduce Algorithms for Big

Data Analysis, DNIS 2013, LNCS 7813, pp.

44–48, 2013.

[8] Raja.Appuswamy,ChristosGkantsidis,Dushyant

hNarayanan,Ori onHodson,AntonyRowstron,

Nobody ever got fired for buying a cluster,

Microsoft Research, Cambridge, UK, Technical

Report,MSR-TR-2013-2

[9] Carlos Ordonez, Algorithms and Optimizations

for Big Data Analytics: Cubes, Tech

Talks,University of Houston, USA.

[10] Spyros Blanas, Jignesh M. Patel,VukErcegovac,

Jun Rao,Eugene J. Shekita, YuanyuanTian, A

Comparison of Join Algorithms for Log

Processing in MapRedu June 6–11, 2010,

Indianapolis, Indiana, USA.

[11] Tyson Condie, Neil Conway, Peter Alvaro,

Joseph M. Hellerstein,JohnGerth, Justin

Talbot,KhaledElmeleegy, Russell Sears, Online

Aggregation and Continuous Query support in

MapReduce, SIGMOD‟10,–11,2010,

Indianapolis,June 6 Indiana, USA.

[12] J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large clusters,” in

USENIXSymposium on Operating Systems

Design and Implementation, San Francisco,

CA, Dec. 2004, pp. 137–150.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1, Jan - Feb 2016

 ISSN: 2347-8578 www.ijcstjournal.org Page 14

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The

Google File System.” in ACM Symposium on

Operating Systems Principles, Lake George,

NY, Oct 2003, pp. 29 –43.

[14] HADOOP-3759: Provide ability to run memory

intensive jobs without affecting other running

tasks on thenodes.

https://issues.apache.org/jira/browse/HADOOP-

3759

[15] VinayakBorkar, Michael J. Carey, Chen Li,

Inside “Big Data

Management”:Ogres,Onions,orParfaits?,

EDBT/ICDT 2012 Joint Conference Berlin,

Germany,2012 ACM 2012, pp 3-14.

[16] GrzegorzMalewicz, Matthew H. Austern, Aart

J. C. Bik, James C.Dehnert, Ilan Horn,

NatyLeiser, and GrzegorzCzajkowski,Pregel: A

System for Large-Scale Graph Processing,

SIGMOD‟10,–11,2010,pp135-145June.

[17] Hadoop,“PoweredbyHadoop,”http://wiki.apach

e.org/hadoop/Po weredBy.

[18] PIGTutorial,YahooInc.,

http://developer.yahoo.com/hadoop/tutorial/pigt

utorial.html

[19] Apache: Apache Hadoop,

http://hadoop.apache.org

[20] Apache Hive, http://hive.apache.org/

[21] Apache Giraph Project,

http://giraph.apache.org/

[22] Mahout, http://lucene.apache.org/mahout/

[23] Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3/

[24] Windows.Azure.Storage.http://www.microsoft.

com/windowsazure/features/storage/

[25] The Age of Big Data. Steve Lohr. New York

Times, Feb11,2012.

http://www.nytimes.com/2012/02/12/sunday-

review/big- datas-impact-in-the-world.html

[26] Information System & Management, ISM

Book, 1st Edition 2010, EMC2, Wiley

Publishing

[27] Dryad-MicrosoftResearch,

http://research.microsoft.com/en-

us/projects/dryad/

[28] IBM-What.is.Jaql,

www.ibm.com/software/data/infosphere/hadoop

/jaql/

http://www.ijcstjournal.org/
http://research.microsoft.com/en-us/projects/dryad/
http://research.microsoft.com/en-us/projects/dryad/
http://www.ibm.com/software/data/infosphere/hadoop/jaql/
http://www.ibm.com/software/data/infosphere/hadoop/jaql/

