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ABSTRACT 

We live in on-demand, on-command Digital universe with data prolife ring by Institutions, Individuals and Machines at a 

very high rate. This data is categories as "Big Data" due to its sheer Volume, Variety, Velocity and Veracity. Most of 

this data is unstructured, quasi structured or semi structured and it is heterogeneous in nature. The volume and the 

heterogeneity of data with the speed it is generated, makes it   difficult for the   present   computing infrastructure to 

manage Big Data. Traditional data management, warehousing and analysis systems fall short of tools t o analyze this 

data. Due to its specific nature of Big Data, it is stored in distributed file system architectures. Hadoop and HDFS by 

Apache is widely used for storing and managing Big Data. Analyzing Big Data is a challenging task as it involves large 

distributed file systems which should be fault tolerant, flexible and scalable. Map Reduce is widely been used for 

the efficient analysis of Big Data. Traditional DBMS techniques like Joins and Indexing and other techniques like graph 

search is used for classification and clustering of Big Data.  These techniques are being adopted to be used in Map 

Reduce. In this research paper the authors suggest various methods for catering to the problems in hand through Map 

Reduce framework over Hadoop Distributed File System (HDFS). Map Reduce is a Minimization technique which 

makes use of file indexing with mapping, sorting, shuffling and finally reducing. Map Reduce techniques  have  been  

studied  at  in  this  paper  which  is implemented for Big Data analysis using  HDFS.    
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I. INTRODUCTION 

Big Data encompasses everything from click 

stream data from the web to genomic and proteomic data   

from biological research and medicines. Big Data is a 

heterogeneous mix of data both structured (traditional 

datasets –in rows and columns like DBMS tables, CSV's 

and XLS's) and unstructured data like e-mail 

attachments, manuals, images, PDF documents, medical 

records such  as x-rays, ECG and  MRI images, 

forms, rich media like  graphics,  video  and  audio, 

contacts, forms and documents. Businesses are primarily 

concerned with managing unstructured data, because 

over 80  percent of enterprise data is unstructured  [26]  

and  require  significant  storagespace and effort  

to manage.“Big   Data” beyond   the   ability   of t   

ypical database software tools to capture, store, manage, 

and analyze [3].  Big data analytics is the area where 

advanced analytic techniques operate on big data sets. It 

is really about two things, Big data and Analytics and 

how the two have teamed up to create one of the most 

profound trends in business intelligence (BI) [4].  

 

 

MapReduce by itself is capable for analyzing large 

distributed data sets; but due to the heterogeneity, 

velocity and volume of Big Data, it is a challenge for 

traditional data analysis and management tools [1] [2]. A 

problem with Big Data is that they use NoSQL and has 

no Data Description Language (DDL) and it supports 

transaction processing. Also, web-scale data is not 

universal and it is heterogeneous. For analysis of Big 

Data, database integration and cleaning is much harder 

than the traditional mining approaches [4]. Parallel 

processing and distributed computing is becoming a 

standard procedure which are nearly non-existent in 

RDBMS. Map Reduce has following characteristics 

[12]; it supports Parallel and distributed processing, it is 

simple and its architecture is shared-nothing which has 

commodity diverse hardware (big cluster).Its functions 

are programmed in a high- level programming language  

(e.g.  Java, Python)  and  it  is flexible. Query processing 

is done through NoSQL integrated in HDFS as Hive tool 

[20].  Analytics helps to discover what has  changed and 

the possible solutions. Second, advanced analytics is the 
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best way to discover more business opportunities, new 

customer  segments,  identify the  best suppliers, 

associate  products  of affinity, understand sales 

seasonality[25] etc. Traditional experience in data 

warehousing, reporting, and online analytic processing 

(OLAP) is different for advanced forms of analytics [6]. 

Organizations are implementing specific forms of 

analytics, particularly called advanced analytics. These 

are an collection of related techniques and tool types, 

usually including predictive analytics, data mining, 

statistical analysis, complex SQL, data visualization, 

artificial intelligence, natural language  processing. 

Database analytics platforms such as Map Reduce, in-

database analytics, in-memory databases, and columnar 

data stores [6] [9] are used for standardizing them. With 

big data analytics, the user is trying to discover new 

business facts that no one in the enterprise knew before, 

a better term would be “discovery   needs large 

volumes of data with plenty of detail. This is often data 

that the enterprise has not yet tapped for analytics 

example, the log data. The analyst might mix that data 

with historic data refers to datasets whose data from a 

data warehouse and would discover for example, new 

change behavior in a subset of the customer base. 

The discovery would lead to a metric, report, analytic 

model, or some other product of BI, through which the 

company could track and predict the new form of 

customer behavioral change.  

     Discovery analytics against big data can be enabled 

by different types of analytic tools, including those based 

on SQL queries, data   mining,   statistical   analysis,   

fact   clustering,   data visualization,  natural  language  

processing,  text  analytics, artificial intelligence etc [4-

6]. A unique challenge for researchers system and 

academicians is that the large datasets needs special 

processing systems [5]. Map  Reduce  over  HDFS  gives  

Data  Scientists  [1-2]  the techniques through which 

analysis of Big Data can be done. HDFS   is   a   

distributed   file   system   architecture   which 

encompasses the original Google File System [13].Map 

Reduce jobs  use  efficient  data  processing techniques  

which  can  be applied in each of the phases of 

MapReduce; namely Mapping, Combining,  Shuffling, 

Indexing,  Grouping and  Reducing  [7]. All  these  

techniques  have  been  studied  in  this  paper  for 

implementation in Map Reduce tasks.  

  

 

II. BIG DATA OPPORTUNITIES AND    

CHALLENGES 

In    the   distributed   systems world, “Big Data”    

started become   a   major   issue   in   the   late   

1990‟s   due   to   the   impact on world-wide Web and a 

resulting need to index and query its rapidly 

mushrooming content. Database technology (including 

parallel databases) was considered for the task, but was 

found to be neither well-suited nor cost-effective [5] for 

those purposes. The turn of the millennium then brought 

further challenges as companies began to use 

information such as the topology of the Weband   users‟   

search   histories processing.  Itinruns  on order 

commodity to hardware, provide it uses HDFS useful  

search  results,  as  well  as  more  effectively-targeted 

advertising to display alongside and fund those results. 

Google‟schnical responses to the challenges of Web-

scale data  management  and  analysis  was  simple,  by  

database standards,   but   kicked   off   what Figure1 

Illustrates has   the become layers found the in the 

modern software Data”    revolution in the systems 

world[3].  To handle the challenge of Web-scale storage, 

the Google File System (GFS) was created [13]. GFS 

provides clients with the familiar OS-level byte-stream 

abstraction, but it does so for extremely large files whose 

content can span hundreds of machines in shared- 

nothing clusters created using inexpensive commodity 

hardware [5]. To handle the challenge of processing the 

data in such large files, Google pioneered its Map 

Reduce programming model and platform [1][13]. This 

model, characterized by some  as “parallel programming 

for map dummies”, phase of the job. For applications 

enabled just needing Google developers to process large 

collections of data by writing two based record 

management operations, the HBase store (layered  user-

defined functions, map and reduce, that the Map 

Reduceon top of HDFS) is available as a key-value layer 

in the Hadoop framework applies to the instances (map) 

and sorted groups of stack. As indicated in the 

figure, the contents of HBase can instances that share a 

common key (reduce) –similar to the sort either  be  

directly  accessed  and  manipulated  by  a  client of  

partitioned  parallelism  utilized  in  shared-nothing  

parallel query processing.   

Driven by very similar requirements, software  
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Developers Yahoo!, Facebook, and other large Web 

companies followed  suit.   Taking   Google’s GFS 

technical   specifications, open-source  equivalents were 

the middle layer of the stack is the Hadoop Map Reduce 

system, which applies map operations to the data in 

partitions of an HDFS  file,  sorts  and  redistributes  the 

results  based  on  key values in the output data, and 

then performs reduce operations on the groups of output 

data 

III. HADOOP AND HDFS 

 

Hadoop  is a  scalable,  open  source,  fault-

tolerant  Virtual Grid operating  system architecture 

for data storage which is  fault-tolerant  high-bandwidth   

clustered storage architecture. It runs MapReduce for 

distributed data processing and is works with structured 

and unstructured data. To  handle  the architecture of 

aHadoop stack [17] [19]. At the bottom of the Hadoop 

software stack is HDFS, a distributed file system in 

which each  file  appears  as  a  (very  large)  contiguous  

and randomly addressable sequence of bytes. For batch  

  

  

 

 

 

 

 

     Figure 1.Hadoop Architecture Layers                  

 

 

 

 

 

 

 

 

 

Figure 3. HADOOP Clusters 

 

Analytics, the middle layer of the stack is the Hadoop 

Map Reduce system, which applies map operations to 

the   data    in     partitions   of   an HDFS file,  sorts  and   

       Redistributes the results based  on  keyvalues in the    

output data, and then performs reduce operations  on the    

groups of output data items with matching keys from the 

 anditems with matching keys from the  based record 

management operations, the HBase store (layered on top 

of HDFS) is available as a key-value layer in the Hadoop 

stack. As indicated in the figure, the contents of HBase 

can either  be  directly  accessed  and  manipulated  by  a  

client application or accessed via Hadoop for analytical 

needs. Many users  of  the  Hadoop  stack  prefer  the  

use  of  a  declarative language over the bare MapReduce 

programming model. High- level language compilers 

(Pig and Hive) are thus the topmost  and layer in  the 

Map Hadoop software Reduce stack for such papers 

clients. 

 

 

 

 

 

             

        

            

             

   Figure 2.Hadoop Architecture Tools and usage 
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Figure2 shows the relevancy between the traditional 

experience in data warehousing, reporting, and online 

analytic processing (OLAP) and advanced analytics with 

collection of related techniques like data mining with 

DBMS, artificial intelligence, machine learning, and 

database analytics platforms such as MapReduce and 

Hadoop over HDFS [4] [9].  

Figure 3 shows the architecture of HDFS clusters 

implementation with Hadoop. It can be seen that HDFS 

has distributed the task over two parallel clusters with 

one server and two slave nodes each. Data analysis tasks 

are distributed in these clusters. 

 

IV. BIG DATA ANALYSIS 

Heterogeneity, scale, timeliness, complexity, and privacy 

problems with Big Data hamper the progress at all 

phases of the process that can create value from data. 

Much data today is not natively in structured format; for 

example, tweets and blogs are weakly structured pieces 

of text, while images and video are structured for storage 

and display, but not for semantic content and search: 

transforming such content into a structured format for 

later analysis is a major challenge [15]. The value of data 

enhances when it can be linked with other data, thus data 

integration is a major creator of value.  

 

 

 

 

 

 

 

 

 

 

 

                  Figure 4. Big Data Analysis Tools 

 

Since most data is directly generated in digital format 

today, we have the opportunity and the challenge both to 

influence the creation to facilitate later linkage and to 

automatically link previously created data. Data analysis, 

organization, retrieval, and modelling are other 

foundational challenges [6]. Big Data analysis is a clear 

bottleneck in many applications, both due to lack of 

scalability of the underlying algorithms and due to the 

complexity of the data that needs to be analysed. Finally, 

presentation of the results and its interpretation by non-

technical domain experts is crucial to extracting 

actionable knowledge as most of the BI related jobs are 

handled by statisticians and not software experts.  Figure 

4, below gives a glimpse of the Big Data analysis tools 

which are used for efficient and precise data analysis and 

management jobs. The Big Data Analysis and 

management setup can be understood through the 

layered structured defined in the figure. The data storage 

part is dominated by the HDFS distributed file system 

architecture; other mentioned architectures available are 

Amazon Web Service (AWS) [23], Hbase and 

CloudStore etc. The data processing tasks for all the 

tools is Map Reduce; we can comfortably say that it is 

the de-facto Data processing tool used in the Big Data 

paradigm. 
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For handling the velocity and heterogeneity of data, tools  

like Hive, Pig and Mahout are used which are parts of 

Hadoop and HDFS framework. It is interesting to note 

that for all the tools used, Hadoop over HDFS is the 

underlying architecture. Oozie and EMR with Flume and 

Zookeeper are used for handling the volume and veracity 

of data, which are standard Big Data management tools. 

The layer with their specified tools forms the bedrock for 

Big Data management and analysis framework. 

 

V. MAP REDUCE 
 

Map Reduce [1-2] is a programming model for 

processing large-scale datasets in computer clusters. The 

Map Reduce programming model consists of two 

functions, map () and reduce (). Users can implement 

their own processing logic by specifying a customized 

map() and reduce() function. The map () function takes 

an input key/value pair and produces a list of 

intermediate key/value pairs. The Map Reduce runtime 

system groups together all intermediate pairs based on 

the intermediate keys and passes them to reduce() 

function for producing the final results. 

 

Map 

(in_key, in_value) --->list(out_key,intermediate_value) 

 

Reduce 

(out_key,list(intermediate_value)) -- ->list(out_value) 

 

The signatures of map() and reduce() are as follows : 

 

map (k1,v1) ! list(k2,v2)and reduce (k2,list(v2)) ! 

 

list(v2) 

 

A Map Reduce cluster employs a master-slave 

architecture where one master node manages a number 

of slave nodes [19]. In the Hadoop, the master node is 

called Job Tracker and the slave node is called Task 

Tracker as shown in the figure 7. Hadoop launches a 

Map Reduce job by first splitting the input dataset into 

even-sized data blocks. Each data block is then 

scheduled to one Task Tracker node and is processed by 

a map task. The Task Tracker node notifies the Job 

Tracker when it is idle. The scheduler then assigns new 

tasks to it. The scheduler takes data locality into account 

when 

it 

disse

mina

tes 

data 

bloc

ks.   

 

 

 

 

 

 

 

        

    

 

 

 

 

 

 

 

 

 
Figure 5. Map Reduce Architecture and Working 

 

 

It always tries to assign a local data block to a Task 

Tracker. If the attempt fails, the scheduler will assign a 

rack-local or random data block to the Task Tracker 

instead. When map() functions complete, the runtime 

system groups all intermediate pairs and launches a set 

of reduce tasks to produce the final results. 

 

Large scale data processing is a difficult task, managing 

hundreds or thousands of processors and managing 

parallelization and distributed environments makes is 

more difficult. Map Reduce provides solution to the 

mentioned issues, as is supports distributed and parallel 

I/O scheduling, it is fault tolerant and supports 

scalability and i has inbuilt processes for status and 

monitoring of heterogeneous and large datasets as in 

Big Data [14]. 
A.  Map Reduce Components 

1. Name Node –manages   HDFS   metadata,   (since 

with files directly  

2. Data  Node  – stores  blocks  of  HDFS  – default 

replication level for each block: 3 

3. Job Tracker –schedules, allocates and monitors job 

execution on slaves –Task Trackers   

4. Task Tracker –runs Map Reduce operations  

 

 

Data Node –stores Name Node – 
blocks of HDFS – manages HDFS 

default replication metadata,  doesn’t 
level for each deal with files 
block: 3 Directly 

 Job Tracker – 
Task Tracker –runs schedule s, allocates 
M ap Reduce and monitors job 
operations executio n on slaves 
 –Task Trackers 
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         Figure 6.Map Reduce Components  

 

B.  Map Reduce Working 

We implement the Mapper and Reducer interfaces to 

provide the map and reduce methods as shown in figure 

6. These form the core of the job. 

1)  Mapper 

 Mapper maps input key/value pairs to a set of 

intermediate key/value pairs. Maps are the individual 

tasks that transform input records into intermediate 

records. The transformed intermediate records do not 

need to be of the same type as the input records. A given 

input pair may map to zero or many output pairs [19]. 

The number of maps is usually driven by the total size of 

the inputs, that is, the total number of blocks of the input 

files. The right level of parallelism for maps seems to be 

around 10-100 maps per-node, although it has been set 

up to 300 maps for very cpu-light map tasks. Task setup 

takes awhile, so it is best if the maps take at least a 

minute to execute. For Example, if you expect 10TB of 

input data and have a blocksize of 128MB, you'll end up 

with 82,000 maps [17] [19]. 

 

2) Reducer 

 Reducer reduces a set of intermediate values which 

share a key to a smaller set of values. Reducer has 3 

primary phases: shuffle, sort and reduce. 

2.1) Shuffle 

Input to the Reducer is the sorted output of the mappers. 

In this phase the framework fetches the relevant partition 

of the output of all the mappers, via HTTP. 

2.2) Sort 

The frame work doesn ‟tgroupsReducerdealinputs  by  

keys  (since different mappers may have output the same 

key) in this stage. The shuffle and sort phases occur 

simultaneously; while map- outputs are being fetched 

they are merged. 

2.3) Secondary Sort 

If equivalence rules for grouping the intermediate keys 

are required to be different from those for grouping 

keys before reduction, then one may specify a 

Comparator (Secondary Sort). 2.4) Reduce In this phase 

the reduce method is called for each <key, (list of 

values)> pair in the grouped inputs. The output of the 

reduce task is typically written to the File System via  

Output Collector [19]. Applications can use the Reporter 

to report progress, set application-level status messages 

and update Counters, or just indicate that they are alive. 

The output of the Reducer is not sorted. The right 

number of reduces seems to be 0.95 or 1.75 multiplied 

by no. of nodes. With 0.95 all of the reduces can launch 

immediately and start transferring map outputs as the 

maps finish. With 1.75 the faster nodes will finish their 

first round of reduces and launch a second wave of 

reduces doing a much better job of load balancing [MR 

Framework].Increasing the number of reduces increases 

the framework overhead, but increases load balancing 

and lowers the cost of failures. The scaling factors above 

are slightly less than whole numbers to reserve a few 

reduce slots in the framework for speculative-tasks and 

failed tasks. It is legal to set the number of reduce-tasks 

to zero if no reduction is desired. 

a) Partitioner 

 Partitioner partitions the key space. Partitioner controls 

the partitioning of the keys of the intermediate map-

outputs. The key (or a subset of the key) is used to derive 

the partition, typically by a hash function. The total 

number of partitions is the same as the number of reduce 

tasks for the job. Hence this controls which of the m 

reduce tasks the intermediate key (and hence the record) 

is sent to for reduction. 

 Hash Partitioner is the default Partitioner. 

b) Reporter 

 Reporter is a facility for MapReduce applications to 

report progress, set application-level status messages and 

update Counters. Mapper and Reducer implementations 

can use the Reporter to report progress or just indicate 

that they are alive. In scenarios where the application 

takes a significant amount of time to process individual 

key/value pairs, this is crucial since the framework might 
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assume that the task has timed-out and kill that task. 

Applications can also update Counters using the 

Reporter. 

c) Output Collector 

 
 Output Collector is a generalization of the facility 
provided by the MapReduce framework to collect data 
output by the Mapper or the Reducer (either the 
intermediate outputs or the output of the job). Hadoop 
MapReduce comes bundled with a  library of generally 
useful mappers, reducers, and partitioners  

 

 

  

  

 

 

 

 

 

 

 

Figure 7. Map Reduce Working through Master / 

Slave 

    

C.  Map Reduce techniques 

•   Combining 

Combiners provide a general mechanism within 

the MapReduce framework to reduce the amount of 

intermediate data generated by the mappers. They can be 

understood as "mini-reducers" that process the output of 

mappers. The combiner's aggregate term counts across 

the documents processed by each map task. This result in 

a reduction in the number of intermediate key-value 

pairs that need to be shuffled across the network, from 

the order of total number of terms in the collection to the 

order of the number of unique terms in the collection. 

They reduce the result size of map functions and perform 

reduce-like function in each machine which decreases 

the shuffling cost. 

• Inverse Indexing 

Inverse indexing is a technique in which the keywords of 

the documents are mapped according to the document 

keys in which they are residing. 

For example 

Doc1: IMF, Financial Economics Crisis Doc2: IMF, 

Financial Crisis 

Doc3: Harry Economics Doc4: Financial Harry Potter 

Film Doc5: Harry Potter Crisis  

The following is the inverted index of the above data 

IMF -> Doc1:1, Doc2:1 

Financial -> Doc1:6, Doc2:6, Doc4:1 

Economics -> Doc1:16, Doc3:7 

Crisis -> Doc1:26, Doc2:16, Doc5:14 

Harry -> Doc3:1, Doc4:11, Doc5:1 

Potter -> Doc4:17, Doc5:7 

Film -> Doc4:24 

 

• Shuffling 

Shuffling is the procedure of mixing the indexes of the 

files and their keys, so that a heterogeneous mix of 

dataset can be obtained. If the dataset is shuffled, then 

there are better chances that the resultant query 

processing will yield near accurate results. We can relate 

the shuffling process with the population generating by 

crossover in the GA algorithms. The processes are 

different in nature, but their purpose is similar.[7] 

 

• Shading 

It is a term used to distribute the Mappers in the HDFS 

architecture. Sharding refers to the groupings or 

documents which are done so that the MapReduce jobs 

are done parallel in a distributed environment. 

 

• Joins  

Join is a RDBMS term; it refers to combining two or 

more discrete datasets to get Cartesian product of data of 

all the possible combinations. Map Reduce does not 

have its own Join techniques, but RDBMS techniques 

are tweaked and used to get the maximum possible 

combinations. The join techniques which are adopted for 

Map Reduce are Equi Join, Self Join, Repartition Join 

and Theta Join [7][10-11]. 

 

•  Clustering & Classification 

They are Data Analysis term, used mainly in Data  

 

Mining. In Map Reduce it is achieved through K means 

clustering [7]. Here, iterative working improves 

partitioning of data into k clusters. After the clustering, 
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the data sorted are grouped together based upon rules to 

be formed into classes. 

The steps for clustering in Map Reduce are; 

Step1: Do 

Step2: Map 

Step3: Input is a data point and k centres are 

broadcasted 

Step4: Finds the closest centre among k centres for the 

input point 

Step5: Reduce  

Step6: Input is one of k centres and all data points 

having this centre as their closest centre  

Step7: Calculates the new centre using data points  

Step 8:  Repeat 1-7, until all of new centres are not 

changed  

VI. CONCLUSION 

The need to process enormous quantities of data has 

never been greater. Not only are terabyte- and petabyte-

scale datasets rapidly becoming commonplace, but there 

is consensus that great value lies buried in them, waiting 

to be unlocked by the right computational tools. In the 

commercial sphere, business intelligence, driven by the 

ability to gather data from a dizzying array of sources. 

Big Data analysis tools like Map Reduce over Hadoop 

and HDFS, promises to help organizations better 

understand their customers and the marketplace, 

hopefully leading to better business decisions and 

competitive advantages [6]. For engineers building 

information processing tools and applications, large and 

heterogeneous datasets which are generating continuous 

flow of data, lead to more effective algorithms for a wide 

range of tasks, from machine translation to spam 

detection. In the natural and physical sciences, the ability 

to analyse massive amounts of data may provide the key 

to unlocking the secrets of the cosmos or the mysteries 

of life. MapReduce can be exploited to solve a variety of 

problems related to text processing at scales that would 

have been unthinkable a few years ago [15]. 

No tool no matter how powerful or flexible can be 

perfectly adapted to every task. There are many 

examples of algorithms that depend crucially on the 

existence of shared global state during processing, 

making them difficult to implement in MapReduce 

(since the single opportunity for global synchronization 

in MapReduce is the barrier between the map and reduce 

phases of processing). Implementing online learning 

algorithms in MapReduce is problematic [14]. The 

model parameters in a learning algorithm can be viewed 

as shared global state, which must be updated as the 

model is evaluated against training data. All processes 

performing the evaluation (presumably the mappers) 

must have access to this state. In a batch learner, where 

updates occur in one or more reducers (or, alternatively, 

in the driver code), synchronization of this resource is 

enforced by the MapReduce framework. However, with 

online learning, these updates must occur after 

processing smaller numbers of instances. This means 

that the framework must be altered to support faster 

processing of smaller datasets, which goes against the 

design choices of most existing MapReduce 

implementations. Since MapReduce was specifically 

optimized for batch operations over large amounts of 

data, such a style of computation would likely result in 

insufficient use of resources [2]. In Hadoop, for 

example, map and reduce tasks have considerable start-

up costs. 

VII. ADVANCEMENTS 

Streaming algorithms [9] represent an alternative 

programming model for dealing with large volumes of 

data with limited computational and storage resources. 

This model assumes that data are presented to the 

algorithm as one or more streams of inputs that are 

processed in order, and only once. Stream processing is 

very attractive for working with time-series data (news 

feeds, tweets, sensor readings, etc.), which is difficult in 

MapReduce (once again, given its batch-oriented 

design). Another system worth mentioning is Pregel 

[16], which implements a programming model inspired 

by Valiant's Bulk Synchronous Parallel (BSP) model. 

Pregel was specially designed for large-scale graph 

algorithms, but unfortunately there are few published 

details at present.  

Pig [28], which is inspired by Google [13], can be 

described as a data analytics platform that provides a 

lightweight scripting language for manipulating large 

datasets. Although Pig scripts (in a language called Pig 
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Latin) are ultimately converted into Hadoop jobs by 

Pig's execution engine through joins, allow developers to 

specify data transformations (filtering, joining, grouping, 

etc.) at a much higher level. Similarly, Hive [20], 

another open-source project, provides an abstraction on 

top of Hadoop that allows users to issue SQL queries 

against large relational datasets stored in HDFS. Hive 

queries, in HiveQL are compiled down to Hadoop jobs 

by the Hive query engine. Therefore, the system 

provides a data analysis tool for users  who are already 

comfortable with relational databases, while 

simultaneously taking advantage of Hadoop's data 

processing capabilities [11]. 

The power of MapReduce derives from providing an 

abstraction that allows developers to harness the power 

of large clusters but abstractions manage complexity by 

hiding details and presenting well-defined behaviours to 

users of those abstractions. This process makes certain 

tasks easier, but others more difficult, if not impossible. 

MapReduce is certainly no exception to this 

generalization, even within the Hadoop/HDFS/ Map 

Reduce ecosystem; it is already observed the 

development of alternative approaches for expressing 

distributed computations. For example, there can be a 

third merge phase after map and reduce to better support 

relational operations. Join processing mentioned n the 

paper can also tackle the Map Reduce tasks effectively. 

The future directions in Big Data analysis gives a very 

encouraging picture as the tools are build on the existing 

paradigm of HDFS and Hadoop, overcoming the existing 

drawback of the present systems and the advantages it 

provides over the traditional data analysis tools. 

REFERENCES 

[1] Jefry Dean and Sanjay Ghemwat, 

MapReduce:A Flexible Data Processing Tool, 

Communications of the ACM, Volume 53, 

Issuse.1,January 2010, pp 72-77. 

[2] Jefry Dean and Sanjay Ghemwat,.MapReduce: 

Simplified data processing on large clusters, 

Communications of the ACM, Volume 51 pp. 

107–113, 2008 

[3] Brad Brown, Michael Chui, and James 

Manyika, Are you ready for   the   era   of   „big   

data‟?,McInstitute, October 2011. 

[4] DunrenChe, MejdlSafran, and ZhiyongPeng, 

From Big Data to Big Data Mining: Challenges, 

Issues, and Opportunities, DASFAA 

Workshops 2013, LNCS 7827, pp. 1–15, 2013. 

[5] MarcinJedyk,   MAKING   BIG   DATA,   

SMALL,   Using  distributed systems for 

processing, analysing and managing large huge 

data sets,Network, SoftwareCheshire Data 

systems Ltd.  

[6] OnurSavas, YalinSagduyu, Julia Deng, and 

Jason Li,Tactical Big Data Analytics: 

Challenges, Use Cases and Solutions, Big Data 

Analytics Workshop in conjunction with ACM 

Sigmetrics 2013,June 21, 2013. 

[7] Kyuseok Shim, MapReduce Algorithms for Big 

Data Analysis, DNIS 2013, LNCS 7813, pp. 

44–48, 2013. 

[8] Raja.Appuswamy,ChristosGkantsidis,Dushyant

hNarayanan,Ori onHodson,AntonyRowstron, 

Nobody ever got fired for buying a cluster, 

Microsoft Research, Cambridge, UK, Technical 

Report,MSR-TR-2013-2 

[9] Carlos Ordonez, Algorithms and Optimizations 

for Big Data Analytics: Cubes, Tech 

Talks,University of Houston, USA. 

[10] Spyros Blanas, Jignesh M. Patel,VukErcegovac, 

Jun Rao,Eugene J. Shekita, YuanyuanTian, A 

Comparison of Join Algorithms for Log 

Processing in MapRedu June 6–11, 2010, 

Indianapolis, Indiana, USA. 

[11] Tyson Condie, Neil Conway, Peter Alvaro, 

Joseph M. Hellerstein,JohnGerth, Justin 

Talbot,KhaledElmeleegy, Russell Sears, Online 

Aggregation and Continuous Query support in 

MapReduce, SIGMOD‟10,–11,2010,  

Indianapolis,June  6 Indiana, USA. 

[12] J. Dean and S. Ghemawat, “MapReduce: 

Simplified data processing on large clusters,” in 

USENIXSymposium on Operating Systems 

Design and Implementation, San Francisco, 

CA, Dec. 2004, pp. 137–150. 

 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 1,  Jan -  Feb 2016  

 ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 14 

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The 

Google File System.” in ACM Symposium on 

Operating Systems Principles, Lake George, 

NY, Oct 2003, pp. 29 –43. 

[14] HADOOP-3759: Provide ability to run memory 

intensive jobs without affecting other running 

tasks on thenodes.   

https://issues.apache.org/jira/browse/HADOOP-

3759 

[15] VinayakBorkar, Michael J. Carey, Chen Li, 

Inside “Big Data 

Management”:Ogres,Onions,orParfaits?, 

EDBT/ICDT 2012 Joint Conference Berlin, 

Germany,2012 ACM 2012, pp 3-14. 

[16] GrzegorzMalewicz, Matthew H. Austern, Aart 

J. C. Bik, James C.Dehnert, Ilan Horn, 

NatyLeiser, and GrzegorzCzajkowski,Pregel: A 

System for Large-Scale Graph Processing, 

SIGMOD‟10,–11,2010,pp135-145June.  

[17] Hadoop,“PoweredbyHadoop,”http://wiki.apach

e.org/hadoop/Po weredBy. 

[18] PIGTutorial,YahooInc., 

http://developer.yahoo.com/hadoop/tutorial/pigt

utorial.html 

[19] Apache: Apache Hadoop, 

http://hadoop.apache.org 

[20] Apache Hive,  http://hive.apache.org/ 

[21] Apache Giraph Project,  

http://giraph.apache.org/ 

[22] Mahout,  http://lucene.apache.org/mahout/ 

[23] Amazon Simple Storage Service (Amazon S3). 

http://aws.amazon.com/s3/ 

[24] Windows.Azure.Storage.http://www.microsoft.

com/windowsazure/features/storage/ 

[25] The Age of Big Data. Steve Lohr. New York 

Times, Feb11,2012.  

http://www.nytimes.com/2012/02/12/sunday-

review/big- datas-impact-in-the-world.html 

[26] Information System & Management, ISM 

Book, 1st Edition 2010, EMC2, Wiley 

Publishing  

[27] Dryad-MicrosoftResearch,   

http://research.microsoft.com/en-

us/projects/dryad/  

[28] IBM-What.is.Jaql, 

www.ibm.com/software/data/infosphere/hadoop

/jaql/  

http://www.ijcstjournal.org/
http://research.microsoft.com/en-us/projects/dryad/
http://research.microsoft.com/en-us/projects/dryad/
http://www.ibm.com/software/data/infosphere/hadoop/jaql/
http://www.ibm.com/software/data/infosphere/hadoop/jaql/

