
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 203

A Survey on Multiple Attribute Graph Indexing Methods
Abilasha S [1], Remya G [2], Anuraj Mohan [3]

 PG Scholar [1], Assistant Professor [2] & [3]
Department of Computer Science and Engineering

NSS College of Engineering
Palakkad - India

ABSTRACT
Graphs are efficient data structures used for representing connected entities and are very ubiquitously used in real

world applications. Graphs with multiple attributes are able to capture the properties of real world data efficiently.

Such graphs are called as multiple attribute graphs. Nodes of such graphs have multiple attributes and for each

attribute there will be associated non negative weights. Searching for matches on these graphs is complex than

traditional graph search. For example users may be interested in searching for social networks to find users who are

most active in online activities (ie, at least any of their liking, posting, commenting activities have greater than 50

percent values) and are connected as friends in social network. Manipulation of such query needs efficient way to

handle the large set of nodes and their attribute values. Index creation on no des of multiple attributed graph helps in

efficient ordering of this large node data along with attribute values which facilitates for fast and efficient searching

and further query processing. Indexing of these nodes can be done using spatial indexing st ructures where these

multiple attributed nodes are mapped as multidimensional points. In this paper multiple attribute graphs are studied

and various methods for indexing multidimensional points (multiple attributed node indexing) are addressed and

compared.

Keywords: - Multiple Attribute Graph, R tree, Graph Indexing.

I. INTRODUCTION

Multiple attribute graphs are those graphs in which

for each node there will be multiple attributes associated

with it (eg: social network where users have different

properties linked to them describing social activities)

and having non negative weights assigned to these

attributes [1]. Such graphs have various applications in

real world which can be used for representing co-

authorship graph, social networks, communication

networks etc. The most important purpose of multiple

attributed graph is that to provide support for fast and

efficient querying by considering both structural

(finding friends in social network) and attribute

constraints (users who are more active in online

activities). Searching these graphs are done for

identifying sub graphs matching to the query constraints

given which can be used for detection of some

interesting patterns such as relation between co-authors,

presence of some chemicals in chemical compounds,

finding closely related friends etc.

Multiple attributed graph search include search on

multiple attributes that are weighted, associated with

each node (ie, by giving attribute constraints) and also

traversal through the edge connectivity. For this type of

search, nodes are to be efficiently indexed.

Multidimensional data include points, line segments,

polygons, rectangles, regions, and volumes in 2D, 3D or

higher. Since each node has multiple values associated

with them, these are represented as multidimensional

points and spatial indexing methods are used for

indexing these points. In this paper various indexing

trees which deal with spatial objects and

multidimensional points are studied and compared.

The rest of the paper is organized as follows. Section 2

includes properties of multiple attribute graph and

justifies the requirement of using multidimensional

indexing. Also various querying methods are discussed.

Section 3 includes overview of various

multidimensional indexing methods and specifies the

most accurate indexing method. Section 4 compares

these methods and section 5 analyses the performance.

Section 6 concludes the paper.

II. MULTIPLE ATTRIBUTE GRAPHS

Graphs in general are represented as set of nodes and

edges which connect these nodes. Graphs with multiple

attributes associated with each node having non

negative weights assigned to each attribute are called

multiple attribute graphs. Fig.1 shows an example of

multiple attribute graph produced from social network.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 204

Users are connected with edges when they are friends.

Circles near to users indicate the values of each attribute

associated with the user. Here LK defines the likes done

and PO postings and CO commenting by user. The

query is to find users who are friends and having

attribute values as given in the figure having greater or

lesser value than a given constraint.

A. Properties of Multiple Attribute Graphs

1) Multiple attribute graphs are complex to represent as

the connectivity constraints and attribute values are to

be described.

2) Multiple attribute graphs are usually very dynamic in

their structure since they represent real world data each

time graph grows in size and complexity

3) Unlike normal graphs they are too large, to handle

with naïve search and manipulation algorithms.

Dynamically adaptable algorithms and techniques are to

be used for manipulation.

Multiple Attribute Graphs’ node consists of weighted

attributes for each nodes and so for making search

efficient we build indices upon these nodes which

collectively address for attribute and connectivity

constraints.

Fig. 1 Multiple attribute graph for social network

B. Applications of Multiple Attribute Graphs

1) Co-authorship graph: Each node represent authors,

relation between them shows the co-authorship and is

represented by using edges and weights on each

attributes show expertise of each author in particular

domain.

2) Social networks: Nodes represent users, friends are

linked (connected) using edges and their online activity

is represented using attributes. Users are defined with

attribute values such as liking, commenting, posting etc.

3) Communication network: Hubs, switches are

represented as nodes and various ports (registered posts,

well known posts, ephemeral posts etc.) associated with

each routing device is taken as attributes. Edges

between these devices show that they communicate with

each other.

4) Chemical compounds: Chemicals present in

compounds are given as nodes and the bonding between

them is given using edges. Attribute values are

properties of each chemical itself such as atomic

number, chemical and molecular properties.

5) Biological networks: For representing DNA structure

etc graphs can be used where nodes represent the

components of these and the edges show the pairing.

 C. Requirement of Multidimensional Indexing

1) Weighted multiple attributes of each node can be

efficiently represented as multidimensional points on

Hilbert space. These capture the properties of Multiple

Attribute Graphs attribute values.

2) For searching on large Multiple Attribute Graphs the

entire nodes are to be collectively considered on a single

structure. Traditional DFS, BFS searches does not work

for Multiple Attribute Graphs since we have to consider

multiple attributes.

3) As nodes are easily represented as multidimensional

points, multidimensional indexing methods can be used

for indexing these points.

4) Multidimensional indexing can efficiently prune the

whole search space to those data that are relevant to our

query.

Spatial indexing methods or multidimensional methods

are applied to index these large set of nodes.

D. Queries on Multiple Attribute Graphs

1) Point query: Query includes a particular set of values

associated with the attribute defined for Multiple

Attribute Graph’s nodes, which is considered as

description of a single node. It searches for an exact

match to the given constraint. Nodes having the same

values in its attributes are retrieved as results. For

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 205

example in the case of social network as defined above

if the query given is to find nodes satisfying the

condition LK=PO=CO=40% then it is a point query.

This tries to find nodes having attribute values exactly

matching to the given constraint.

2) Range query: Query defines a range of value for each

attribute defined for Multiple Attribute Graphs nodes. A

minimum and maximum value limits are defined for

attributes. These may include values for all or some

attributes. Searching for nodes matching with range

query retrieves approximate matches. All nodes having

their attribute value within the limits of given query are

returned as result. For example in the case of social

network if the query given is like LK>50% then it

retrieves all those nodes having LK attribute value

higher than 50 regardless of the values of other

attributes.

III. MULTIDIMENSIONAL INDEXING

METHODS

There are many types of spatial or multidimensional

indexing methods. Traditional indexing methods are not

suitable for these multidimensional or Multiple Attribute

Graphs data. For constructing indices for Multiple

Attribute Graphs each nodal attribute weights are to be

transformed as multidimensional points.

A. Quadtree

Quadtree [2] is a tree data structure which is used to

index data that are represented in a two dimensional

space (2D). Quadtree was named as so by Raphael

Finkel and J.L. Bentley in 1974. In the construction of

quadtree the entire two dimensional search space is

initially split into four quadrants and again for each of

these four partitions the splitting is done repetitively.

The entire objects which are placed in the search space

is contained in any of the division. These four divisions

are also called as quadrants which indicated the splitting

of geometrical 2D plane. The partitioned squares are

indexed as quadtree where each node points to a square

in the search space. Here for each node there will be

exactly four children. The splits are usually squared

which may be in rectangle or any other shape. Fig. 2.

shows an example of quadtree.

The children of root are labelled as NE, NW, SE, SW

for indicating the quadrants of the 2-D space. They are

used to index point datas, areas, curves, surfaces, and

volumes. The decomposition may be into equal parts on

each level or according to the input data. At each index

level each of the outer level quadrants are given. Inner

quadrants appear as children of these outer quadrants.

All data points are included in any of the quadrants and

appear at the leaf of tree.

Fig. 2. Quadtree and its divisions

B. k-d Tree

K- Dimensional tree which is abbreviated as k-d tree[3]

is a tree data structure which is used to index objects

represented in a k- dimensional space. These trees are

commonly used in the case where k- dimensional

searches are involved (for eg: if a multi dimensional

keyword say having k values is to be searched in a

search space k-d tree can be used). K-d tree also

supports range queries where we assign various values

to each of the k dimensions. The search space indexed

by k-d tree is a k- dimensional space in which data

points have at most k attribute values. These are indexed

by drawing hyper planes. K-d tree is defined as an

alternative of binary tree. In case of binary tree for each

level the search is split or reduced by a factor of two

where in this case also for each level the search space is

reduced by a factor of two. This is done by drawing a k-

1 dimensional hyper plane through one of the data

points which splits the search space into two. Through

each data point the planes are drawn and these hyper

planes occur as nodes of k-d tree. Fig. 3. shows a 2-d

tree. Here each object is given as a point and a line is

drawn through each of the point. The lines drawn appear

as nodes of the tree. Points to the left of splitting hyper

plane (which is indexed as internal node) are

represented by the left sub tree of that node and points

to the right of the hyper plane are represented by the

right sub tree of that node.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 206

Fig. 3. 2-d Tree

C. Octree

An octree [4] is also a tree data structure which is

considered to be a 3- dimensional variant of quadtree. In

case of quadtree it indexes 2 dimensional search space

where as octree indexes 3 dimensional space. Here each

of the nodes of octree has exactly eight sub trees. In case

of octree indexing the entire space is initially divided as

eight cubes and recursively each of these cubes are

divided to smaller cubes and so on. Entire data are

indexed by either of the cubes. Octrees are often used in

3D graphics and 3D game engines.

Fig.4 . Octree

D. R-Tree

R-Trees [5] are hierarchical data structures used for

indexing multi-dimensional data. Objects usually

indexed by R-Tree are spatial objects. The construction

of R-Tree involves bounding the spatial objects using

minimum bounding boxes (MBBs). R-tree nodes,

instead of indexing actual objects , indices these

minimum bounding boxes. The leaf level nodes contain

pointers to actual objects. Each of the minimum

bounding box is again grouped to higher level boxes

recursively until entire search apace is bounded to a

single large box which appears as the rood node. A

minimum bounding box is the one which is the smallest

box that can contain those objects and no other smaller

box with a lesser dimension can be found to include all

those objects. As B-tree (balanced tree) R-trees are also

height balanced and has efficient storage utilization. The

key idea of this data structure is to group spatial objects

that are close to each other in a n-dimensional space.

Grouping is done by creating MBBs over these objects.

The letter “R” of R-tree stands for rectangle (ie. In case

of two dimensional spaces the points are bounded by

minimum bounding rectangles). The process of

grouping spatial objects into MBBs is known as splitting

and they are of many types such as: linear split,

quadratic split, etc which are classified according to the

way grouping is done. All multi-dimensional objects

represented in the search space is include in either of the

MBB. For a given query with the range values of n-

dimensional attributes query boxes are created and

searched in the R-Tree. The node MBBs are checked for

overlap with the query box. If no MBBs of tree overlap

with query box then there is no possibility that any of

the object overlap with the query box. Leaf level boxes

only index single spatial objects. R-tree efficiently

prunes the entire search space. The R-Tree properties

include:

1) Let M be the maximum number of entries that can come

in an internal node of R-Tree and m , the minimum

number of entries that a node should have. If the node is

an internal node of tree it should be within the condition

of upper and lower limit, but in case of root or leaf node

there can be less than m entries.

2) In case of insertion operation to tree node, if it exceeds

the upper limit M then the nodes are split to form the

next level of indexing thus increasing the height of R-

Tree. If deletion operation makes the number of entries

in a node falls below the minimum bound m the rest of

its entries are distributed among the sibling nodes by

merging.

3)

4) The root contains at least 2 entries, unless it is a leaf.

5) R-tree is a height-balanced tree; every leaf node has the

same distance from the root. The height of the tree is at

most logmNfor N index records (N > 1).

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 207

Fig. 5. R-Tree for 2 dimensional objects

E. R+ Tree

The R+-tree was introduced by Sellis et al.[6] in order to

overcome the problem caused by the overlapping of

child node of same parent. In case of construction of R-

Tree if a spatial object shares two internal nodes of same

parent the search will not be efficient. In order to avoid

this R+-tree indices those spatial objects which share the

internal nodes separately under each of them by creating

separate leaf nodes. R+ -Tree is compromise between k-

d tree and R- tree. By making the nodes indexed to

different nodes the search can progress to a single

branch as in normal way, but it suffers from redundancy

problem.

F. M Tree

M-tree[7] is also a tree data structure which is similar to

R-Tree and B-Tree which are efficient, balanced

indexing structures. M-tree can index multidimensional

spatial objects. It uses a distance metric to construct the

nodes and also considers the triangle inequality. Spatial

objects are grouped into balls having a particular radius.

These balls are indexed as internal nodes of the tree. Let

 denote the radius of the ball and be the internal

node of the tree all entries say coming in the node has

a maximum of only distance from . M-Tree

efficiently works for range queries and k-NN(k nearest

neighbour) queries. Each of the ball of M-tree contains

a portion of the entire search space. M-Tree works well

for many of the conditions but the disadvantage is that

there is a high overlapping between the balls and thus

the nodes of tree. There is no efficient way found to

avoid this problem. M-tree consists of nodes and leaves

and each of the nodes has a data object identifier and a

pointer to the sub tree where its children appear.

G. X-Tree

X-Tree (eXtended node tree) [8] is an indexing tree data

structure which is different from that of R-Tree, R+-

Tree and R*-Tree and was appeared on 1996. Both R-

tree and R+- tree does not address the problem of

overlapping of nodes which becomes a major issue in

case of higher dimensions, where X-Tree addresses this

problem. In case of R-Tree if the node split results in

higher overlapping the split is deferred to a later time

which causes in the occurrence of super nodes. In

extreme cases tree will linearize which avoids the worst

case behaviour seen in other data structure.

H. Hilbert R-Tree

Hilbert R-tree[9], is an R-tree variant, used for indexing

multidimensional objects like lines, regions, 3-D

objects, or high-dimensional parametric objects. It can

be also thought as an extension to B+-tree for indexing

multidimensional objects. Hilbert R-trees make use of

space-filling curves, and specifically the Hilbert curve,

to impose a linear ordering on the data rectangles.

Hilbert curves are drawn through data objects to order

them.

These are some of the various techniques used for

indexing multidimensional points or data. All these

indexing methods can also be applied to index multiple

attribute graph nodes. Nodes of multiple attribute graphs

are represented as k-dimensional points on k-

dimensional space and these are indexed us ing the

suitable methods as mentioned.

IV. COMPARISON OF INDEXING

METHODS

Many indexing methods have been studied and found all

these can be applied for indexing multiple attributed

graph nodes also.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 208

TABLE I
WAG INDEXING METHODS

Index Results and Observations

Run Time

Complexity

Advantage Disadvanta

ge

Quadtree O(log n)

search for

point

quadtree.

2

dimensional

analog of

octrees

Equal

partitions

and efficient

, easy way

of indexing

Used for 2

dimensional

data only.

k-d Tree O(log n) for

search

,insert delete

etc

Can index

upon

multidimens

ional data

Depends on

insertion

order.

Partition is

not balanced

since based

on the points

Octree O(log8 n) Can be used

in 3-D

graphics,

set, state

estimation

etc.

Used for 3

dimensional

data only.

R-Tree O(logmn) for

search and

O(n) for

insertion

Efficiently

prunes

unwanted

search

space.

Dynamically

adapts to

insertion and

deletion of

nodes.

Occurrence

of

overlapping

M-Tree O(log n) for

insertion and

O(n) for

querying

Efficient for

range and K-

NN queries

High

overlap

Only used

for things

that satisfy

triangle

inequality

and having

distance

measures

X-Tree O(n log n)

for build

Avoids

overlapping

Not

efficiently

implemente

d.

R-tree is considered as an efficient data structure for

indexing multidimensional points. It is fast in splitting

the points and grouping them to minimum bounding

boxes efficiently. A good split helps in avoiding the

overlapping of nodes in internal nodes without using

redundant multiple entry method. Splits that form

MBBs are efficient for indexing closely related

multidimensional points together by reducing the

overlapping and providing a high pruning data structure.

In case of search it reduces the search space

significantly. Build and search time complexity of R-

tree is much less than any other indexing methods. The

balancing property of R-Tree makes it dynamically

adaptable to inputs given.

V. EXPERIMENTAL EVALUATION

Datasets used in the experiments for evaluating the

working time of R-Tree are DBLP dataset, online social

network data extracted from You tube, communication

network dataset from LBL (Lawrence Berkley National

Laboratory) which was modified to reduce the number

of vertices and edges to make them smaller to compute.

All these dataset consists of thousands of nodes which

are linked to each other. For each of these dataset nodes

attribute values are calculated. Experiments are done to

evaluate the runtime and build time of R-Tree. Results

are summarized as follows:

Dataset #Vertices #Edges Build

time(s
ec)

Runtime

(sec)

DBLP

dataset

100 563 4 1

You tube

dataset

100 621 5 1

LBL

dataset

150 638 5 2

VI. CONCLUSION AND FUTURE WORK

Analysis of complex structures like graphs with multiple

attributes for nodes, has gained importance with the

growth of real world networks. This work aims to study

the properties and applications of weighted multiple

attribute graphs and its representation in computer

memory. Executing complex queries on such graphs

demands efficient look ups of nodes which satisfies the

query constraints. By indexing multiple attribute

graphs, the search process can be made efficient. In this

work, various indexing methods were analyzed and

observed that R-Tree is an efficient spatial indexing

method that can be used for multiple attribute graph

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 2, Mar - Apr 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 209

indexing. Performing sub graph search and graph search

based on structural and attribute constraints are two

interesting directions of future work.

REFERENCES

[1] Senjuti Basu Roy, Tina Eliassi-Rad, and Spiros

Papadimitriou,”Fast Best-Effort Search on Graphs

with Multiple Attributes” IEEETran Know. Data.

Eng. vol 27. No.3, pp 755 March 2015.

[2] Hee Kap Ahn ,Nikos Mamoulis and Ho Min Won

“A Survey on Multidimensional Access Methods”,

May 2001.

[3] Bentley, J. L."Multidimensional binary search

trees used for associative searching" .

Communications of the ACM , pp,509, 1975.

[4] Meagher, Donald. "Octree Encoding: A New

Technique for the Representation, Manipulation

and Display of Arbitrary 3-D Objects by

Computer", oct 1980

[5] A. Guttman, “R-trees: A dynamic index structure

for spatial searching,” in Proc. ACM SIGMOD Int.

Conf. Manage. Data, 1984,pp. 47–57.

[6] Sellis et al, “The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects”, in Proc. ACM Int.

Conf. on Very Large Data, 1987.

[7] Ciaccia, Paolo; Patella, Marco; Zezula, Pavel "M-

tree An Efficient Access Method for Similarity

Search in Metric Spaces". Proceedings of the 23rd

VLDB Conference 1997.

[8] Berchtold, Stefan; Keim, Daniel A.; Kriegel, Hans-

Peter (1996). "The X-tree: An Index Structure for

High-Dimensional Data". Proceedings of the 22nd

VLDB Conference (Mumbai, India): 28–39.

[9] I. Kamel and C. Faloutsos. Hilbert R-tree: An

improved R-tree using fractals. In Proc. of VLDB

Conf., pages 500–509, Santiago, Chile, September

1994.

[10] https://en.wikipedia.org/wiki/R-tree

[11] https://en.wikipedia.org/wiki/Octree

http://www.ijcstjournal.org/

