
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 93

A Review Study of Apache Spark in Big Data Processing

V Srinivas Jonnalagadda [1], P Srikanth [2], Krishnamachari Thumati [3]

Sri Hari Nallamala [4]

Assistant Professors [1], [2], [3]

Department of Computer Science and Engineering
DVR & Dr.HS MIC College of Technology

Kanchikacherla, Krishna Dist

Assistant Professor [4]

Department of Computer Science and Engineering

DVR & Dr. HS MIC College of Technology, Kanchikacherla & Research Scholar,
Dept. of CSE, K L University, Guntur

Andhra Pradesh - India

ABSTRACT
Why Spark becomes a hot topic in Big Data analytics? Is really Apache Spark going to replace Hadoop? If we involved

seriously into Big Data analytics, then, should we really care about Spark? Apache Spark is a lightning-fast cluster

computing designed for fast computation. It was built on top of Hadoop MapReduce and it extends the MapReduce model

to efficiently use more types of computations which includes Interactive Queries and Stream Processing.
Keywords :- Apache Spark, Apache Hadoop, Big Data, MapReduce, RDD, Open Source.

I. INTRODUCTION

Industries are using Hadoop extensively to

analyze their data sets. The reason is that Hadoop[1]

framework is based on a simple programming model

(MapReduce) and it enables a computing solution that

is scalable, flexible, fault-tolerant and cost effective.

Here, the main concern is to maintain speed in

processing large datasets in terms of waiting time

between queries and waiting time to run the program.

Spark is a framework for performing general data

analytics on distributed computing cluster like Hadoop.

It provides in memory computations for increase speed

and data process over mapreduce. It runs on top of

existing hadoop cluster and access hadoop data store

(HDFS), can also process structured data in Hive and

Streaming data from HDFS, Flume, Kafka, Twitter.

In this paper, we will see the brief descriptions of

Spark, its features and working with Spark using

Hadoop.

II. EVOLUTION OF APACHE SPARK

Spark[4] was introduced by Apache Software

Foundation for speeding up the Hadoop computational

computing software process. As against a common

belief, Spark is not a modified version of

Hadoop and is not, really, dependent on Hadoop

because it has its own cluster management. Hadoop is

just one of the ways to implement Spark. Spark uses

Hadoop in two ways – one is storage and second

is processing. Since Spark has its own cluster

management computation, it uses Hadoop for storage

purpose only. The main feature of Spark is its in-

memory cluster computing that increases the

processing speed of an application. Spark is designed to

cover a wide range of workloads such as batch

applications, iterative algorithms, interactive queries

and streaming. Apart from supporting all these

workload in a respective system, it reduces the

management burden of maintaining separate tools.

Spark is one of Hadoop’s sub project developed

in 2009 in UC Berkeley’s AMPLab by Matei Zaharia.

It was Open Sourced in 2010 under a BSD license. It

was donated to Apache software foundation in 2013,

and now Apache Spark has become a top level Apache

project from Feb-2014.

III. IS APACHE SPARK GOING TO

REPLACE HADOOP?

Hadoop is parallel data processing framework

that has traditionally been used to run map/reduce jobs.

These are long running jobs that take minutes or hours

to complete. Spark has designed to run on top of

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 94

Hadoop and it is an alternative to the traditional batch

map/reduce model that can be used for real-time stream

data processing and fast interactive queries that finish

within seconds. So, Hadoop supports both traditional

mapreduce and Spark. We should look at Hadoop as a

general purpose Framework that supports multiple

models and we should look at Spark as an alternative to

Hadoop MapReduce[10] rather than a replacement to

Hadoop.

IV. FEATURES OF APACHE SPARK

Apache Spark[6] has following features.

 Speed − Spark helps to run an application in

Hadoop cluster, up to 100 times faster in

memory, and 10 times faster when running on

disk. This is possible by reducing number of

read/write operations to disk. It stores the

intermediate processing data in memory. It

uses the concept of a Resilient Distributed

Dataset (RDD), which allows it to

transparently store data on memory and persist

it to disc only it’s needed. This helps to reduce

most of the disc read and write – the main time

consuming factors – of data processing.

 Ease of Use – Spark[5] lets you quickly write

applications in Java, Scala, or Python. This

helps developers to create and run their

applications on their familiar programming

languages and easy to build parallel apps. It

comes with a built-in set of over 80 high-level

operators. We can use it interactively to query

data within the shell too.

Word count in Spark's Python API

datafile = spark.textFile("hdfs://...")

datafile.flatMap(lambda line: line.split())

 .map(lambda word: (word, 1))

 .reduceByKey(lambda a, b: a+b)

 Combines SQL, streaming, and complex

analytics – In addition to simple “map” and

“reduce” operations, Spark supports SQL

queries, streaming data, and complex

analytics such as machine learning and graph

algorithms out-of-the-box. Not only that,

users can combine all these capabilities

seamlessly in a single workflow.

 Supports multiple languages − Spark

provides built-in APIs in Java, Scala, or

Python. Therefore, you can write applications

in different languages. Spark comes up with

80 high-level operators for interactive

querying.

 Advanced Analytics − Spark not only

supports ‘Map’ and ‘reduce’. It also supports

SQL queries, Streaming data, Machine

learning (ML), and Graph algorithms.

 Runs Everywhere − Spark runs on Hadoop,

Mesos, standalone, or in the cloud. It can

access diverse data sources including HDFS,

Cassandra, HBase etc.

V. SPARK’S MAJOR USE CASES

OVER HADOOP

 Iterative Algorithms in Machine Learning.

 Interactive Data Mining and Data Processing.

 Spark is a fully Apache Hive-compatible data

warehousing system that can run 100x faster

than Hive.

 Stream processing: Log processing and Fraud

detection in live streams for alerts, aggregates

and analysis.

 Sensor data processing: Where data is fetched

and joined from multiple sources, in-memory

dataset really helpful as they are easy and fast

to process.

Note: Spark (beta version) is still working out

bugs as it matures.

VI. SPARK IN BIG DATA PROCESSING

– COMPONENTS, OPERATIONS &

ISSUES

A. Spark Built on Hadoop

The following diagram shows three ways of how Spark

can be built with Hadoop[2] components.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 95

There are three ways of Spark deployment[7] as

explained below.

 Standalone − Spark Standalone deployment

means Spark occupies the place on top of

HDFS[3] (Hadoop Distributed File System)

and space is allocated for HDFS, explicitly.

Here, Spark and MapReduce will run side by

side to cover all spark jobs on cluster.

 Hadoop Yarn − Hadoop Yarn[9] deployment

means, simply, spark runs on Yarn without any

pre-installation or root access required. It helps

to integrate Spark into Hadoop ecosystem or

Hadoop stack. It allows other components to

run on top of stack.

 Spark in MapReduce (SIMR) − Spark in

MapReduce is used to launch spark job in

addition to standalone deployment. With

SIMR, user can start Spark and uses its shell

without any administrative access.

B. Components of Spark

The following illustration depicts the different

components of Spark.

 Apache Spark Core

Spark Core is the underlying general execution

engine for spark platform that all other

functionality is built upon. It provides In-Memory

computing and referencing datasets in external

storage systems.

 Spark SQL

Spark SQL is a component on top of Spark Core

that introduces a new data abstraction called

SchemaRDD, which provides support for

structured and semi-structured data.

 Spark Streaming

Spark Streaming leverages Spark Core's fast

scheduling capability to perform streaming

analytics. It ingests data in mini-batches and

performs RDD (Resilient Distributed Datasets)

transformations on those mini-batches of data.

 MLlib (Machine Learning Library)

MLlib is a distributed machine learning

framework above Spark because of the distributed

memory-based Spark architecture. It is, according

to benchmarks, done by the MLlib developers

against the Alternating Least Squares (ALS)

implementations. Spark MLlib is nine times as fast

as the Hadoop disk-based version of Apache

Mahout (before Mahout gained a Spark interface).

 GraphX

GraphX is a distributed graph-processing

framework on top of Spark. It provides an API for

expressing graph computation that can model the

user-defined graphs by using Pregel abstraction

API. It also provides an optimized runtime for this

abstraction.

C. Apache Spark Operations – RDD & MapReduce

 Resilient Distributed Datasets

Resilient Distributed Datasets (RDD) is a

fundamental data structure of Spark. It is an

immutable distributed collection of objects. Each

dataset in RDD is divided into logical partitions,

which may be computed on different nodes of the

cluster. RDDs can contain any type of Python,

Java, or Scala objects, including user-defined

classes.

Formally, an RDD is a read-only, partitioned

collection of records. RDDs can be created

through deterministic operations on either data on

stable storage or other RDDs. RDD is a fault-

tolerant collection of elements that can be operated

on in parallel.

There are two ways to create RDDs

− parallelizing an existing collection in your

driver program, or referencing a dataset in an

external storage system, such as a shared file

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 96

system, HDFS, HBase, or any data source offering

a Hadoop Input Format.

Spark makes use of the concept of RDD to achieve

faster and efficient MapReduce operations. Let us

first discuss how MapReduce operations take

place and why they are not so efficient.

 Data Sharing is Slow in MapReduce

MapReduce is widely adopted for processing and

generating large datasets with a parallel,

distributed algorithm on a cluster. It allows users

to write parallel computations, using a set of high-

level operators, without having to worry about

work distribution and fault tolerance.

Unfortunately, in most current frameworks, the

only way to reuse data between computations (Ex

− between two MapReduce jobs) is to write it to

an external stable storage system (Ex − HDFS).

Although this framework provides numerous

abstractions for accessing a cluster’s

computational resources, users still want more.

Both Iterative and Interactive applications

require faster data sharing across parallel jobs.

Data sharing is slow in MapReduce due

to replication, serialization, and disk IO.

Regarding storage system, most of the Hadoop

applications, they spend more than 90% of the

time doing HDFS read-write operations.

 Iterative Operations on MapReduce

Reuse intermediate results across multiple

computations in multi-stage applications. The

following illustration explains how the current

framework works, while doing the iterative

operations on MapReduce. This incurs substantial

overheads due to data replication, disk I/O, and

serialization, which makes the system slow.

 Interactive Operations on MapReduce

User runs ad-hoc queries on the same subset of

data. Each query will do the disk I/O on the stable

storage, which can dominates application

execution time.

The following illustration explains how the current

framework works while doing the interactive

queries on MapReduce.

 Data Sharing using Spark RDD

Data sharing is slow in MapReduce due

to replication, serialization, and disk IO. Most of

the Hadoop applications, they spend more than

90% of the time doing HDFS read-write

operations.

Recognizing this problem, researchers developed a

specialized framework called Apache Spark. The

key idea of spark is Resilient Distributed Datasets

(RDD); it supports in-memory processing

computation. This means, it stores the state of

memory as an object across the jobs and the object

is sharable between those jobs. Data sharing in

memory is 10 to 100 times faster than network and

Disk.

Let us now try to find out how iterative and

interactive operations take place in Spark RDD.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 97

 Iterative Operations on Spark RDD

The illustration given below shows the iterative

operations on Spark RDD. It will store

intermediate results in a distributed memory

instead of Stable storage (Disk) and make the

system faster.

Note − If the Distributed memory (RAM) is

sufficient to store intermediate results (State of the

JOB), then it will store those results on the disk.

 Interactive Operations on Spark RDD

This illustration shows interactive operations on

Spark RDD. If different queries are run on the

same set of data repeatedly, this particular data can

be kept in memory for better execution times.

By default, each transformed RDD may be

recomputed each time you run an action on it.

However, you may also persist an RDD in

memory, in which case Spark will keep the

elements around on the cluster for much faster

access, the next time you query it. There is also

support for persisting RDDs on disk, or replicated

across multiple nodes.

VII. CONCLUSION

Apache Spark[7] is a powerful open source

processing engine built around speed, ease of use, and

sophisticated analytics . Since its release, Apache

Spark has seen rapid adoption by enterprises across a

wide range of industries. Internet powerhouses such as

Yahoo, Baidu, Airbnb, eBay and Tencent, have eagerly

deployed Spark at massive scale, collectively

processing multiple petabytes of data on clusters of

over 8,000 nodes. It has quickly become the largest

open source community in big data[8], with over 1000

contributors from 250+ organizations . Spark provides a

simple way to parallelize these applications across

clusters, and hides the complexity of distributed

systems programming, network communication, and

fault tolerance. The system gives them enough control

to monitor, inspect, and tune applications while

allowing them to implement common tasks quickly.

The modular nature of the API (based on passing

distributed collections of objects) makes it easy to

factor work into reusable libraries and test it locally.

REFERENCES

[1] Hadoop http://hadoop.apache.org &

http://sortbenchmark.org/YahooHadoop.pdf

[2] Hadoop. http://hadoop.apache.org, 2009.

[3] HDFS (hadoop distributed file system) architecture.

http://hadoop.apache.org/common/docs/current/hdfs

design.html, 2009.

[4] http://spark.apache.org/

[5] http://spark.apache.org/examples.html

[6] www.safaribooksonline.com/library/view/ learning-

spark/9781449359034/ch01.html

[7] https://www.infoq.com/articles/apache-spark-

introduction

[8] Jonathan Stuart Ward and Adam Barker “Undefined

By Data: A Survey of Big Data Definitions”

Stamford, CT: Gartner, 2012.

[9] Sri Hari Nallamala et all. - A Review on How

YARN Overcomes MapReduce Limitations in

Hadoop 2.0, International Journal of Advance

Research in Engineering, Science & Technology

(IJAREST), Vol.3, Issue.4, April 2016.

[10] Ahmed Eldawy, Mohamed F. Mokbel “A

Demonstration of Spatial Hadoop: An Efficient

MapReduce Framework for Spatial Data”

Proceedings of the VLDB Endowment, Vol. 6, No.

12 Copyright 2013 VLDB Endowment

21508097/13/10.

http://www.ijcstjournal.org/
http://spark.apache.org/
http://spark.apache.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 98

AUTHOR’S BIOGRAPHY

Mr. V Srinivas Jonnalagadda* is

working as an Assistant Professor at
DVR & Dr. HS MIC College of

Technology, Kanchikacherla. He

received his M.Tech (CS) from

KIET, Korangi, in the year 2012. He

received his B.Tech (IT) from Sri

Sarathi Institute Of Engineering &

Technology, Nuzvid in the year 2010. His area of interest

includes Computer networks and Big data.

Mr. P Srikanth** is working as an

Assistant Professor at DVR & Dr.HS

MIC College of Technology,

Kanchikacherla. He received his

M.Tech (CSE) from MIC

COLLEGE in the year 2015. He

received his B.Tech (IT) From Vikas

College of Engineering & Technology, Nunna in the year

2012. His area of interest includes Computer Networks and

Big Data Analytics.

Mr. Krishnamachari Thumati*** was

Completed His B.Tech (IT) From

Prasad Institute Of Technology and

Sciences, Jaggaiahpet and M.Tech

(Computer Science and Technology)

From V.R. Siddhartha Engineering

College, Vijayawada. Presently He

was doing his services as an Assistant

Professor at DVR & Dr.HS MIC College of Technology,

Kanchikacherla, Krishna Dist., A.P. His interested domains

are Big Data, Cyber Security.

Mr. Sri Hari Nallamala**** was

completed his B.Tech (CSE) from

JNT University Engineering College,

Hyderabad and M.Tech (Computer

Science) from JNT University

Hyderabad. Now, he was pursuing

his research work in Big Data (Data

Mining) at K L University,

Vijayawada. Totally, he has 6 years of teaching experience.

He had published number of papers in reputed journals and

presented papers at international & national conferences.

He became as Reviewer for One International Journal and

many on pipeline. Presently he was doing his services as an

Assistant Professor at DVR & Dr.HS MIC College of

Technology, Kanchikacherla, Krishna Dist., A.P. His

interested domains are Data Mining, Cloud Computing,

Image Processing, Robotics and Internet Technologies .

http://www.ijcstjournal.org/

