
International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 262

An Enhanced Text Compression System Based on ASCII Values and

Huffman Coding
Mamta Rani [1], Vikram Singh [2]

Department of Computer Science and Applications
 Chaudhary Devi Lal University, Sirsa

 Haryana, India

ABSTRACT

In today’s environment a large amount of data is required to be sent from one place to another place for communication or some other

purpose. A large amount of data communication results into high cost and lower down the performance. Hence researchers have

developed various systems to compress the text data to reduce data transfer cost and to increase the performance of the communication

channel. Basically Data compression is a process by which a file (Text, Audio, and Video) may be transformed to another

(compressed) file, such that the original file may be fully recovered from the original file without any loss of actual information. This

process may be useful if one wants to save the storage space. Also compressed files are much more easily exchanged over the internet

since they can be uploaded and downloaded much faster. In the present paper a data compression algorithm is represent ed using

dynamic text compression algorithm which uses Huffman Coding to compress and decompress the text data. This algorithm improves

the performance of Huffman Algorithm and gives better results .

Keywords:- Text Data Compression, Huffman Coding, Enhanced Dynamic Text Compression System, Lossless Data Compression.

I. INTRODUCTION

Data compression is a process by which a file (Text, Audio,

Video) may be transformed to another (compressed) file, such

that the original file may be fully recovered from the original file

without any loss of actual information. This process may be

useful if one wants to save the storage space. Data compression is

a process that reduces the data size, removing the excessive

information and redundancy. Why shorter data sequence is more

suitable? –the answer is simple it reduces the cost. Data

compression is a common requirement for most of the

computerized application. Data compression has important

application in the area of file storage and distributed system. Data

compression is used in multimedia field, text documents, and

database table.

A. Types of Data Compression

Data compression methods can be classified in several ways. One

of the most important criteria of classification is whether the

compression algorithms remove some part of data which cannot

be recovered during decompression.

1) Lossy Data Compression: The algorithm which removes

some part of data is called lossy data compression. The

lossy data compression algorithm is usually used when a

perfect consistency with the original data is not

necessary after decompression. Example of lossy data

compression is compression of video or picture data.
2) Lossless Data Compression: The algorithm that achieve

the same what we compressed after decompression is

called lossless data compression as in [1]. Lossless data

compression is used in text file, database tables and in

medical image because law of regulations. Various

lossless data compression algorithm have been proposed

and used. Some of main techniques are Huffman

Coding, Run Length Encoding, Arithmetic Encoding

and Dictionary Based Encoding.

B. EXISTING LOSSLESS DATA COMPRESSION

TECHNIQUES

The existing lossless data compression techniques are described

as follow:

1) Bit Reduction algorithm: The main idea behind this

program is to reduce the standard 7-bit encoding to

some application specific 5-bit encoding system and

then pack into a byte array. This method reduces the size

of a string considerably when the string is lengthy and

the compression ratio is not affected by the content of

the string.

2) Huffman Coding: Huffman Encoding Algorithms use

the probability distribution of the alphabet of the source

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 263

to develop the code words for symbols. The frequency

distribution of all the characters of the source is

calculated in order to calculate the probability

distribution. According to the probabilities, the code

words are assigned. Shorter code words for higher

probabilities and longer code words for smaller

probabilities are assigned. For this task a binary tree is

created using the symbols as leaves according to their

probabilities and paths of those are taken as the code

words. Two families of Huffman Encoding have been

proposed: Static Huffman Algorithms and Adaptive

Huffman Algorithms. Static Huffman Algorithms

calculate the frequencies first and then generate a

common tree for both the compression and

decompression processes as in [2]. Details of this tree

should be saved or transferred with the compressed file.

The Adaptive Huffman algorithms develop the tree

while calculating the frequencies and there will be two

trees in both the processes. In this approach, a tree is

generated with the flag symbol in the beginning and is

updated as the next symbol is read.

3) Run length Encoding: Run Length Encoding or simply

RLE is the simplest of the data compression algorithms.

The consecutive sequences of symbols are identified as

runs and the others are identified as non runs in this

algorithm. This algorithm deals with some sort of

redundancy as in [2]. It checks whether there are any

repeating symbols or not, and is based on those

redundancies and their lengths. Consecutive recurrent

symbols are identified as runs and all the other

sequences are considered as non-runs. For an example,

the text “ABABBBBC” is considered as a source to

compress, then the first 3 letters are considered as a non-

run with length 3, and the next 4 letters are considered

as a run with length 4 since there is a repetition of

symbol B. The major task of this algorithm is to identify

the runs of the source file, and to record the symbol and

the length of each run.

4) Shannon-Fano coding: This is one of an earliest

technique for data compression that was invented by

Claude Shannon and Robert Fano as in [3] in 1949.In

this technique, a binary tree is generated that represent

the probabilities of each symbol occurring. The symbols

are ordered in a way such that the most frequent

symbols appear at the top of the tree and the least likely

symbols appear at the bottom . Generally, Shannon-

Fano coding does not guarantee the generation of an

optimal code. Shannon – Fano algorithm is more

efficient when the probabilities are closer to inverses of

powers of 2 .

5) Arithmetic Coding: Arithmetic coding is an optimal

entropy coding technique as it provides best

compression ratio and usually achieves better results

than Huffman Coding. It is quite complicated as

compared to the other coding techniques. When a string

is converted in to arithmetic encoding, the characters

having maximum probability of occurrence will be

stored with fewer bits and the characters that do not

occur so frequently will be stored with more bits,

resulting in fewer bits used overall. Arithmetic coding

converts the stream of input symbols into a single

floating point number as output as in [3]. Unlike

Huffman coding, arithmetic coding does not code each

symbol separately. Each symbol is instead coded by

considering all prior data. Thus a data stream encoded in

this fashion must always be read from the beginning.

6) Lempel-Ziv-Welch (LZW) Algorithm: Dictionary based

compression algorithms are based on a dictionary

instead of a statistical model. A dictionary is a set of

possible words of a language, and is stored in a table

like structure and used the indexes of entries to represent

larger and repeating dictionary words. The Lempel-Ziv

Welch algorithm or simply LZW algorithm is one of

such algorithms. In this method, a dictionary is used to

store and index the previously seen string patterns. In

the compression process, those index values are used

instead of repeating string patterns. The dictionary is

created dynamically in the compression process and no

need to transfer it with the encoded message for

decompressing. In the decompression process, the same

dictionary is created dynamically. Therefore, this

algorithm is an adaptive compression algorithm.

II. LITERATURE REVIEW

In (A. Jain, R. Patel,2009) as in [4] authors presented an

intelligent, reversible transformation technique that can be

applied to source text that improve algorithm ability to compress

and also offer a sufficient level of security to the transmitted data.

In this paper, the authors present an encoding technique (ECA)

which offers highest compression ratios. The authors sugges t that

in an ideal channel, the reduction of transmission time is directly

proportional to the amount of compression. But in a typical

Internet scenario with fluctuating bandwidth, congestion and

protocols of packet switching, this does not hold true. The

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 264

authors conclude that their results have shown excellent

improvement in text data compression and added levels of

security over the existing methods. These improvements come

with additional processing required on the server/node.

In (K. Rastogi and K. Sengar, 2014) as in [5] the author discussed

about the lossless text data compression algorithms such as Run

Length Encoding, Huffman Coding and Shanon Fano coding.

The authors have concluded the article by doing a comparison of

these techniques. The authors have also concluded that Huffman

technique is most optimal for lossless data compression.

M. Sharma(2010) as in [6] has analyzed Huffman algorithm and

compare it with other common compression techniques like

Arithmetic, Lempel Ziv Welch(LZW) and Run Length

Encoding(RLE). The author has concluded that arithmetic coding

is very efficient for bits and reduces the file size

dramatically.RLE is simple to implement and fast o execute.

LZW algorithm is better to use for TIFF, GIF and Textual Files.

 In (P. Kumar A.K. Varshney,2012) as in [7] the authors

presented a novel technique that work on Huffman Coding and

after getting codeword for the Symbol the authors compress it on

the Basis of its Binary no. 0 and 1. The authors have analyzed the

results by comparing Double Huffman coding with Huffman

coding and concluded that the Double Huffman coding despite

being costly provides better results in terms of performance and

space saving.

III. PROPOSED SYSTEM

To improve the compression ratio and memory saving percentage

for text data, a lossless compression algorithm named as

"Enhanced Dynamic Text Compression Algorithm" is designed

which is specialized for text data. The basic idea of the devised

compression algorithm is the introduction of a new encoding

scheme which also uses Huffman coding technique for all

redundant words in text files to improve the performance of the

proposed system. The algorithm has been implemented on C#

platform with Visual Studio 2008 as an IDE (Integrated

Development Environment).

A. Proposed System Methodology

Enhanced Dynamic Text Compression algorithm works in two

phases to compress the text data. In the first phase data is

compressed with the help of dynamic bit reduction technique and

in second phase Huffman coding is used to compress the data

further to produce the final output. In the First phase, when user

enters an input text data, the system will find out the occurrence

of number of unique symbols in the input text string and then

numeric code will be assigned to these unique symbols. For each

numeric code, corresponding binary codes will be generated

dynamically to obtain the (compressed) binary output. Then

ASCII code will be generated from the binary output obtained

which will serve as the input to the second phase of the system.

In the second phase Huffman Coding will be applied to the

output of first phase to further compress the data and improve the

performance of dynamic bit reduction algorithm. Huffman coding

follows top down approach means the binary tree is built from

the top to down to generate an optimal result. In Huffman Coding

the characters in a data file are converted to binary code and the

most common characters in the file have the shortest binary

codes, and the characters which are least common will have the

longest binary code. In the similar way method of decompression

works in reverse order. Compressed data is first decompressed by

Huffman Decoder and then by dynamic text compression decoder

to get back the original data. Following are the steps to compress

the data with the help of our proposed system.

B. Compression Algorithm

1. Input the text data to be compressed.

2. Find the number of unique symbols in the input text

data.

3. Assign the numeric code to the unique symbols found in

the step 2.

4. Starting from first symbol in the input find the binary

code corresponding to that symbols from assigned

numerical codes and concatenate them to obtain binary

output.

5. Add number of 0’s in MSB of Binary output until it is

divisible by 8.

6. Generate the ASCII code for every 8 bits for the binary

output obtained in step 5 and concatenate them to create

input for second phase. [Step 6 is the result of dynamic

text compression Method in ASCII format]

7. Give the output generated by Step 6 to Huffman tree to

further compress the data and obtain the result in

compressed binary output form.

8. Display the final result obtained in step 7.

 [Output from step 8 is final compressed output]

The algorithm to generate Huffman Tree is:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 265

1. Parse the input and count the occurrence of each

symbol.

2. Determine the probability of occurrence of each symbol

using the symbol count.

3. Sort the symbols according to their probability of

occurrence, keeping the most probable first.

4. Then generate leaf nodes for each symbol and add them

to a queue.

5. Take two least frequent characters and then logically

group them together to obtain their combined frequency

that leads to the construction of a binary tree structure.

6. Repeat step 5 until all elements are reached and there

remains only one parent for all nodes which is known as

root.

7. Then label the edges from each parent to its left child

with the digit 0 and the edge to right child with 1.

Tracing down the tree yields to “Huffman codes” in

which shortest codes are assigned to the character with

greater frequency.

C. Decompression Algorithm

1. Input the Final output from compressed phase.

2. Assign this input to the Huffman decoder to decompress

the data compressed by Huffman tree in ASCII format.

3. Calculate the binary code corresponding to the ASCII

values obtained in Step II.

4. Remove the extra bits from the binary output added in

the compression phase.

5. Calculate the numeric code for every 8 bits obtained in

the Step IV.

6. For every numeric value obtained in the step V, find the

corresponding symbol to get the final decompressed

data.

7. Concatenate the data symbols obtained in the step VI

and obtain the final output.

8. Display the final result to the user.

D. Performance Evaluation Parameters

Performance evaluation of the proposed algorithm is done using

two parameters-Compression Ratio and Saving Percentage.

1) Compression ratio: Compression ratio is defined as

the ratio of size of the compressed file to the size of

the source file.

)1/2(CCnRatioCompressio

where C1= Size before compression

 C2= Size after compression

2) Saving Percentage: Saving Percentage calculates

the shrinkage of the source file as a percentage.

%100*)1/)21((CCCentageSavingPerc
where C1= Size before compression

 C2= Size after compression

IV. RESULTS AND DISCUSSION

A. Comparison Table and Graph on Compression

Ratio for Random Dataset: The following

tables and graphs represent the comparison of

Compression ratios of the existing techniques and

the proposed system.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 266

TABLE I COMPRESSION RATIO COMPARISON FOR RANDOM DATA SET

From Table I, it is clear that the compression ratio achieved

by the proposed system is lesser as compared to the existing

techniques which means it results in more savings of the

storage space.

Fig.1 Compression ratio comparison graph for random dataset

The above graph is made on the basis of Table I which shows

the comparison of compression ratios of the existing systems

and the proposed system. In the graph, the horizontal axis

represents the length of input string in bytes and vertical axis

represents the Compression Ratio in percentage.

B) Comparison Table and Graph on Saving

Percentage for Random Dataset:

The following tables and graphs represent the

comparison of saving percentage of the existing

techniques and the proposed system.

TABLE II SAVING PERCENTAGE COMPARISON FOR RANDOM

DATASET

From Table II, it is clear that the saving percentage of

proposed system is higher as compared to the existing

techniques.

Fig. 2 Saving percentage comparison graph for random dataset

The above graph is made on the basis of Table II which shows

the comparison of saving percentage of existing sys tems and

Input text size (in

bytes)

Huffman

Output Text Size

Huffman

Compression ratio

Proposed System

Output Text Size

Proposed System

Compression ratio

36 13 36.11 6 16.67

55 26 47.27 15 27.27

76 33 43.42 17 22.37

140 79 56.42 67 47.85

227 123 54.19 79 34.80

Input text

size (in

bytes)

Huffman

saving

percentage

Proposed

System saving

percentage

36 63.88 83.33

55 52.72 72.73

76 56.58 77.63

140 43.57 52.14

227 45.81 65.20

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 3, May - Jun 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 267

the proposed system. In the graph, the horizontal axis

represents the length of input text string in bytes and vertical

axis represents the saving percentage.

V. CONCLUSION

In this paper, an enhanced dynamic text compression

algorithm is represented to compress and decompress the text

data based on lossless data compression approach. Various

experiments have been conducted on different datasets such as

Random, Alphanumeric, Numeral and Special Characters

dataset.

From the results analysis, it is concluded that the proposed

system shows very good compression results in terms of

Compression Ratio and Saving Percentage as compared to the

existing techniques for all the datasets that have been

considered.

Enhanced Dynamic Text Compression Algorithm works only

with text data written in single language which can also be

tested to compress the multi lingual data i.e. text data written

in multiple languages in a single file.

REFERENCES

[1] Shrusti Porwal, Yashi Chaudhary, Jitendra Joshi,

Manish Jain,”Data Compression Methodologies for

Lossless Data and Comparison between Algorithms”,

International Journal of Engineering Science and

Innovative Technology (IJESIT) Volume 2, Issue 2,

March 2013.

[2] Blelloch, E., 2002. Introduction to Data

Compression, Computer Science Department,

Carnegie Mellon University.

[3] S. Shanmugasundaram and R. Lourdusamy, “A

Comparative Study of Text Compression

Algorithms” International Journal of Wisdom

Based Computing, Vol. 1 (3), December 2011.

[4] A. Jain, R. Patel, " An Efficient Compression

Algorithm (ECA) for Text Data "International

Conference on Signal Processing Systems, 2009

IEEE.

[5] [5] K. Rastogi, K. Sengar, “Analysis and

Performance Comparison of Lossless Compression

Techniques for Text Data” International Journal of

Engineering Technology and Computer Research

(IJETCR) 2 (1) 2014, 16-19.

[6] M. Sharma, “Compression using Huffman Coding

” IJCSNS International Journal of Computer

Science and Network Security, VOL.10 No.5, May

2010.

[7] P. Kumar and A.K Varshney, “ Double Huffman

Coding ” International Journal of Advanced

Research in Computer Science and Software

Engineering (IJARCSSE) Volume 2, Issue 8,

August 2012.

http://www.ijcstjournal.org/

