
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 232

A Survey on a Content Based Dynamic Load Balancing Algorithm

for Heterogeneous Web Server Cluster
S.Tamilarasi [1], Dr. K.Kungumaraj [2]

Research Scholar [1], Mother Teresa Women’s University, Kodaikanal
Head and Assistant Professor [2], Department of Computer Applications

Arulmigu Palaniandavar Arts College for Women, Palani
Tamil Nadu – India

ABSTRACT
In computing, load balancing distributes workloads across multiple computing resources, such as computers, a

computer cluster, network links, central processing units, or disk drives. Load balancing aims to optimize resource

use, maximize throughput, minimize response time, and avoid overload of any single resource. Using multiple

components with load balancing instead of a single component may increase reliability and availability through

redundancy. Load balancing usually involves dedicated software or hardware, such as a multilayer switch or a

Domain Name System server process. Load balancing differs from channel bonding in that load balancing divides

traffic between network interfaces on a network socket (OSI model layer 4) basis, while channel bonding implies a

division of traffic between physical interfaces at a lower level, either per packet (OSI model Layer 3) or on a data

link (OSI model Layer 2) basis with a protocol like shortest path bridging.

Keywords:- Load balancing, Work Load, Domain Name System, OSI Model

I. INTRODUCTION

The load balancing technology is widely

used in current enterprise network to provide high

quality and reliable service. Conventional load

balancing technology is often achieved by specific

hardware that is usually very expensive and lacks

sufficient flexibility. Meanwhile, it is easy to become

a single point of failure and would be restricted in

virtualization environments. Thus, we propose a load

balancing algorithm based on server running state,

which can calculate comprehensive loading

according to the CPU utilization, memory utilization,

and network traffic of the servers. Furthermore, a

load balancing solution based on software defined

networks (SDN) technology is applied in this paper,

and it is designed and implemented in Open Flow

network. We combine network management and

server state monitor in this scheme, in which the

Open Flow switches forward the request to the least

comprehensive loading server by modifying the

packet.

Currently, traffic on the network is very

huge and is growing rapidly. Network congestion and

server overload are becoming severe problems faced

by enterprises. In particular, the technologies and

concepts such as cloud computing, virtualization, and

big data make the issue particularly important.

Typical enterprise networks are very complex, and

with the growth of business, enterprises need to

purchase more equipment, build more sophisticated

networks, and handle more traffic.

[1] Most internet service providers use load balancing

technology to assign the user’s requests to different

computers in data center. In order to minimize

response time of requests and enhance user

experience, requests from different users are

processed by different computing nodes . [2].

Therefore, the amount of computation for each node

is reduced. Load balancing technology is mainly for

web service, FTP service, business-critical

application, and other network applications [3].

Traditional load balancers are expensive, and the load

balancer policy set needs to be formulated in

advance, with its lack of flexibility leading to its

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/
http://www.hindawi.com/journals/ijdsn/2015/531538/#B2
http://www.hindawi.com/journals/ijdsn/2015/531538/#B3

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 233

inability to deal with emergency situations.

Traditional load balancer requires dedicated

administrators to be maintained and does not allow

users to design flexible strategies based on their

actual network conditions. Since all requests are

passed through a single piece of hardware, any

failures on the load balancer will cause the collapse

of the entire service. [4] Various load balancing

schemes have some deficiencies in current situations.

The fundamental reason is that the traditional design

of the Internet has some problems . Under the impact

of the new requirements, the bottleneck of traditional

network architecture has been reflected in many

aspects. People are looking for new options to meet

changing business. Among many projects, SDN is the

most influential and distinguished one, as the

representative of SDN from the beginning, Open

Flow. [5] has received wide attention from

researchers. The goal of Open Flow is to change the

way of controlling traditional network devices. In

traditional networks, network devices forward data in

accordance with distributed data management and, in

the process of forwarding data from source to

destination, individual equipment determines how to

forward its data independently. Open Flow separates

control module from the devices and puts it into an

external server with a control program running on it;

the server can send commands to the Open Flow

switches to control the forwarding policy, and the

control program can also provide an external

application programming interface for network

administrators to control the switch

programmatically. This does not only reduce the need

for manual configurations on switch, it can also

provide greater flexibility in network management.

Using load balancing technology in Open Flow

network can well overcome some of the

shortcomings of traditional load balancing and

provide a simple and effective solution with high

flexibility [6]. Due to the difference between the

traditional Internet and Open Flow network, they

inevitably differ from each other in using load

balancing techniques in traditional network and Open

Flow network. The traditional load balancing

technology is not fully applicable to the Open Flow

network. New problems have emerged, such as load

balancing module design, the server operating status

monitoring, and how to ensure the flexibility of load

balancing.

On the other hand, many businesses in the

enterprise network are migrating to virtual

environments because virtualization technology can

help companies to save money, consolidate servers,

and maximize the utilization of limited resources . [7].

But now that load balancing technology is not mature

enough in virtual environment, the application of

traditional load balancing products is under

restrictions in data center virtualization

environments, which brought resistance to enterprise

data center virtualization development. We proposed

the design and implementation of Open Flow-based

server clusters dynamic load balancing in a

virtualized environment. The architecture not only is

inexpensive but also provides the flexibility to write

modules in the controller for implementing the

customizable policy set. Internet applications can

achieve real-time monitoring of load and timely

access the appropriate resources by the flexible

configuration capabilities of this architecture. An

Open Flow switch can connect to multiple controllers

in Open Flow we can use several servers as controller

connecting to Open Flow Switch, so as to improve

the robustness of the system.

[8] Tack vectors that subvert the defense with high

probability. This has motivated research on trust

management model

II. SERVER CLUSTER LOAD

BALANCING METHODS

http://www.ijcstjournal.org/
http://www.hindawi.com/journals/ijdsn/2015/531538/#B5
http://www.hindawi.com/journals/ijdsn/2015/531538/#B7
http://www.hindawi.com/journals/ijdsn/2015/531538/#B8
http://www.hindawi.com/journals/ijdsn/2015/531538/#B9

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 234

Figure -1.1

 ALGORITHMS

3.1. Load Balancing Strategies

3.1.1. Random Algorithm

Immediately after each flow is forwarded to the

controller, the controller randomly selects a server

from the server list to process the client request.

[15]

3.1.2. Round Robin

For each flow that is forwarded to the controller just

a moment, the controller selects a server to process

the client’s request according to a certain order [16].

3.1.3. Server-Based Load Balancing Algorithm

(SBLB)

(1)Dynamic feedback of the current server load

mainly collects CPU occupancy rate, memory

occupancy rate , and response time, but this

information does not directly represent the load of a

node, so it needs a function to convert these

indicators and then get the load of the server :Due to

the fact that there are different service types, which

can have different influences on each part of the

node, we introduced the parameter r; it is used to

emphasize different degrees of influence of different

parts.

(2)Processing computation ability of server node:

when we compute load balancing, if the service

nodes are heterogeneous, we not only should

consider the node load but also must consider the

node’s processing capacity. For the A load-balancer

in an infrastructure

The picture below shows how we usually install a

load-balancer in an infrastructure: processing

ability of node , it is mainly considered from the

following several indicators: CPU quantity , CPU

computation ability , CPU type, memory capacity ,

disk I/O rate , network throughput , and maximum

process number (3)Calculating weight: when the

server load balancing system comes into use, the

administrator should set as initial weight to every

server; as the server load changes, the weight will be

adjusted. In order to avoid that the weight becomes a

too large value, we set a range of weights to

http://www.ijcstjournal.org/
http://www.hindawi.com/journals/ijdsn/2015/531538/#B16
http://www.hindawi.com/journals/ijdsn/2015/531538/#B17

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 235

Figure-2.1

This is a logical diagram. When working at layer

7 (aka Application layer), the load-balancer acts

as a reverse proxy.

So, from a physical point of view, it can be

plugged anywhere in the architecture:

 in a DMZ

 in the server LAN

 as front of the servers, acting as the default

gateway

 far away in another separated data center

6.2 Load Balancing Algorithm

The following algorithm will show the load balancing

by making use of review matrix and load matrix. This

algorithm will consist of three functions namely sort (

), load balance () and balance ()

REVIEW MATRIX: R (Server ID, Present Memory,

Processing Speed and Load Status)

LOAD MATRIX: L (Cluster ID, Memory Limit,

Processing Limit and Load Status)

Sort () will sort the web servers in the Review

matrix.

SORT ®

{

for(i=0;i<n; i++)

{

for(j=i+1;j<n; j++)

{

if(R[i][1] > R[j][1])

{ Swap; }

else if(R[i][1] == R[j][1])

{ if(R[i][2]>R[j][2])

{ Swap; }

} } } }

Load Balance () will check for load status of all web

servers. If load status is uneven, it will call balance

(cluster[i], job, j) to balance load within the cluster.

LOAD_BALANCE(R[n])

{

SORT®;

for (i=1 ; i <= n ; i++)

{

for (j=0; j < cluster[i].no servers; j++)

{

if (load status = = uneven)

{

Flag=Call BALANCE (cluster[i] , job ,

j);//BALANCE WITHIN

} } } }

Balance () will be executed for all web servers

within the clusters as well as among the clusters. It

will re-assign the uneven load status job to any of the

web server where the job.memory and job.processing

<= cluster.job and cluster.memory respectively.

If none of the web server load is even, balance () will

check it for rest of the clusters.

BALANCE (cluster[i] , job , j)

{

for (k = j ; k < cluster[i].no_servers ; k++)

{

if (job.memory <= cluster[i].WS[k].memory &&

job.processing <= cluster[i].WS[k].processing)

{

Assign job to this server and update R;

Return(0);

}

else

BALANCE(cluster[i++],job,0); // BALANCE

AMONG CLUSTERS

} }

II. PROBLEM ISSUES

The state-of-art web applications communicate and

coordinate with number of geographically dispersed

information resources providing information to huge

number of users. Homogeneous server clusters are

not capable of satisfying the growing demand of such

applications including real time audio and video,

PHP, JSP, ASP etc. Heterogeneity involves handling

of low level interoperability issues e.g. mismatch of

hardware, operating platforms, programming

languages, database schema, topology etc. Scalable

server cluster allows addition of new servers as the

load increases without disrupting the services.

Moreover, it also provides better reliability by

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 236

gracefully transferring the load from server which is

unavailable due to failure or for preventive

maintenance. Heterogeneity with scalability makes

the system more complex. The existing dynamic load

balancing (DLB) algorithms are not directly

applicable for distributed scheduling in such

environments. In this paper, we propose a DLB

algorithm for scalable heterogeneous server cluster

using content awareness. The algorithm considers

server’s processing capability, queue length,

utilization ratio etc. as load indices. As the cluster

supports multiple services, at the primary level, we

have used content awareness forwarding algorithm

and at the secondary level, waited round robin

algorithm has been used.

III. PROBLEM FORMULATION

The web servers of popular websites often need to be

based on distributed or parallel architecture while

preserving a virtual single interface. This will result

into small latency time and less burden on each

server. Different websites use different strategies to

distribute load among web servers but most of the

schemes concentrate on only one factor that is

number of requests, but none of the schemes consider

the point that:

• Different type of requests will require

different level of processing efforts to answer.

HTTP is not a connected protocol: it means that the

session is totally independent from the TCP

connections.

Even worst, an HTTP session can be spread over a

few TCP connections… When there is no load-

balancer involved, there won’t be any issues at all,

since the single application server will be aware the

session information of all users, and whatever the

number of client connections, they are all redirected

to the unique server. When using several application

servers, then the problem occurs: what happens when

a user is sending requests to a server which is not

aware of its session? The user will get back to the

login page since the application server can’t access

his session: he is considered as a new user.

To avoid this kind of problem, there are several

ways:

 Use a clustered web application server where

the session are available for all the servers

 Sharing user’s session information in a

database or a file system on application servers

 Use IP level information to

maintain affinity between a user and a server

 Use application layer information to

maintain persistence between a user and a server

NOTE: you can mix different technique listed

above.

Building a web application cluster

Only a few products on the market allow

administrators to create a cluster (like Web logic,

tomcat, jboss, etc…). I’ve never configured any

of them, but from Administrators I talk too, it

does not seem to be an easy task.

By the way, for Web applications, clustering

does not mean scaling. Later, I’ll write an article

explaining while even if you’re clustering, you

still may need a load-balancer in front of your

cluster to build a robust and scalable application.

Sharing user’s session in a database or a file

system. This Technique applies to application

servers which has no clustering features, or if

you don’t want to enable cluster feature from.

It is pretty simple, you choose a way to share

your session, usually a file system like NFS or

CIFS, or a Database like MySql or SQL Server

or a memory cached then you configure each

application server with proper parameters to

share the sessions and to access them if required.

I’m not going to give any details on how to do it here,

just Google with proper keywords and you’ll get

answers very quickly.

IP source affinity to server:

An easy way to maintain affinity between a user and

a server is to use user’s IP address: this is called

Source IP affinity.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 237

There are a lot of issues doing that and I’m not going

to detail them right now (TODO++: an other article

to write).

The only thing you have to know is that source IP

affinity is the latest method to use when you want to

“stick” a user to a server. Well, it’s true that it will

solve our issue as long as the user use a single IP

address or he never change his IP address during the

session.

Application layer persistence:

Since a web application server has to identify each

users individually, to avoid serving content from a

user to an other one, we may use this information, or

at least try to reproduce the same behavior in the

load-balancer to maintain persistence between a user

and a server.

The information we’ll use is the Session Cookie,

either set by the load-balancer itself or using one set

up by the application server.

What is the difference between Persistence and

Affinity:

Affinity: this is when we use information from a

layer below the application layer to maintain a client

request to a single server.

Persistence: this is when we use Application layer

persistence IE: “balance round robin” or “balance

least connection” persistence IE: “balance round

robin” or “balance least connection”

• Status record of all the web servers that are

associated with one domain name must be

considered.

• Mechanism to handle a situation when one

of the servers is not working.

IV. RELATED WORKS

[1].A Dynamic Load-Balancing Algorithm for

Heterogeneous Web Server Cluster

As increasing the embedded objects and the

database searching tasks in Web Pages, there is larger

difference among the loads of different server in a

cluster system, which becomes more difficult for a

heterogeneous Web server cluster to achieve high

performance. In this paper, the authors present a

dynamic load balancing algorithm

MDC(Multiplicative Decrease in Critical area). For

each of the servers in the cluster, the algorithm can

more accurately evaluate the current load state by

using the Equivalent Load Alternant and can more

efficiently restrain the occurring of the reject service

phenomenon by using a special MDC operator.

Besides, the authors apply a method of random

distributing base probability to assign each request to

an appropriate server in terms of their weight. All the

parameters that will be used in the algorithm can be

acquired by simulated test. The authors also provide

improved approximation results of above algorithm

for the case where documents consist of relatively

many embedded objects or database searches and lots

of requests arrived the dispatcher synchronously.

[2].Workload-aware load balancing for clustered

Web servers

We focus on load balancing policies for

homogeneous clustered Web servers that tune their

parameters on-the-fly to adapt to changes in the

arrival rates and service times of incoming requests.

The proposed scheduling policy, ADAPTLOAD,

monitors the incoming workload and self-adjusts its

balancing parameters according to changes in the

operational environment such as rapid fluctuations in

the arrival rates or document popularity. Using actual

traces from the 1998 World Cup Web site, we

conduct a detailed characterization of the workload

demands and demonstrate how online workload

monitoring can play a significant part in meeting the

performance challenges of robust policy design. We

show that the proposed load, balancing policy based

on statistical information derived from recent

workload history provides similar performance

benefits as locality-aware allocation schemes,

without requiring locality data. Extensive

experimentation indicates that ADAPTLOAD results

in an effective scheme, even when servers must

support both static and dynamic Web pages.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 238

[3] A content-based load balancing algorithm with

admission control for cluster web servers

With the growing demands for web-based

applications, cluster web servers emerged as a

reliable and leading resource in internet

infrastructure. Managing performance of the cluster

web servers under heavy load conditions is a critical

task specifically when it comes to the advent of

dynamic contents and database-driven applications.

In this paper we propose a new load balancing

algorithm namely IQRD (Intelligent Queue-based

Request Dispatcher) for web-switches of the cluster

web servers which operates at layer-7. The IQRD

aims to achieve better load balancing with the help of

request classification, performance isolation and

dynamic remaining capacity estimation mechanisms.

For this, a queuing model was employed for each

class of requests in each node of the cluster to

provide an estimation regarding the node remaining

capacity. This value is used as a load descriptor

(index) in the load balancing algorithm and also used

by the admission control mechanism. The

implementation results with synthetic and realistic

workloads confirm that IQRD effectively balances

loads among servers in the cluster and achieves better

response time and throughput compared to other load

balancing algorithms. However, the IQRD algorithm

offered more processing overheads both in the web-

switch and the web servers, but presented a better

load balancing among web servers, even when the

request rates were beyond the cluster capacity.

[4] EquiLoad: a load balancing policy for clustered

web servers

We present a new strategy for the allocation of

requests in clustered web servers, based on the size

distribution of the requested documents. This

strategy, EquiLoad, manages to achieve a balanced

load to each of the back-end servers, and its

parameters are obtained from the analysis of a trace’s

past data. To study its performance, we use phase-

type distribution fittings and solve the resulting

models using a new solution method for M/PH/1

queues that only requires solution of linear systems.

The results show that EquiLoad greatly outperforms

random allocation, performs comparably or better

than the Shortest Remaining Processing Time and

Join Shortest Queue policies and maximizes cache

hits at the back-end servers, therefore behaving

similarly to a “locality-aware” allocation policy, but

at a very low implementation cost.

[5] Energy conservation in heterogeneous server

clusters

The previous research on cluster-based servers has

focused on homogeneous systems. However, real-

life clusters are almost invariably heterogeneous in

terms of the performance, capacity, and power

consumption of their hardware components. In this

paper, we argue that designing efficient servers for

heterogeneous clusters requires defining an

efficiency metric, modeling the different types of

nodes with respect to the metric, and searching for

request distributions that optimize the metric. To

concretely illustrate this process, we design a

cooperative Web server for a heterogeneous cluster

that uses modeling and optimization to minimize the

energy consumed per request. Our experimental

results for a cluster comprised of traditional and

blade nodes show that our server can consume 42%

less energy than an energy-oblivious server, with

only a negligible loss in throughput. The results also

show that our server conserves 45% more energy

than an energy-conscious server that was previously

proposed for homogeneous clusters.

[6] A content-based dynamic load-balancing

algorithm for heterogeneous web server cluster

According to the different requests of Web and the

heterogeneity of Web server, the paper presents a

content-based load balancing algorithm. The

mechanism of this algorithm is that a corresponding

request is allocated to the server with the lowest

load according to the degree of effects on the server

and a combination of load state of server. Besides ,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 239

apply a method of random distributing base-

probability to assign each request to an appropriate

server in terms of their weight. All the parameters

that will be used in the algorithm can be acquired by

simulated test. Experimental results suggest that this

algorithm can balance the load of web server

clusters effectively, make full use of the existing

source of software and hardware, highly improve

the server’s performance, and even make the best

use of the web server.

[7] Power optimization for dynamic configuration in

heterogeneous web server clusters

To reduce the environmental impact, it is essential to

make data centers green, by turning off servers and

tuning their speeds for the instantaneous load offered,

that is, determining the dynamic configuration in web

server clusters. We model the problem of selecting

the servers that will be on and finding their speeds

through mixed integer programming; we also show

how to combine such solutions with control theory.

For proof of concept, we implemented this dynamic

configuration scheme in a web server cluster running

Linux, with soft real-time requirements and QoS

control, in order to guarantee both energy-efficiency

and good user experience. In this paper, we show the

performance of our scheme compared to other

schemes, a comparison of a centralized and a

distributed approach for QoS control, and a

comparison of schemes for choosing speeds of

servers.

Building a scalable web server with a global object

space support on heterogeneous clusters.

Clustering provides a viable approach to building a

scalable Web server system. Many existing cluster-

based Web servers, however, do not fully utilize the

underlying features of the cluster environment, and

most parallel web servers are designed for

homogeneous clusters. In this paper, we present a

pure-Java-implemented parallel Web server that can

run on heterogeneous clusters. The core of the

proposed system is an application-level “global

object space”, which is an integration of the available

physical memory of the cluster nodes for storing

frequently requested objects. The global object space

provides a unified view of cluster-wide memory

resources, and allows transparent accesses to cached

objects. Using a technique known as cooperative

caching, a requested Web object can be fetched from

a node’s local memory cache or a peer node’s

memory cache to avoid hot spots and excessive disk

operations. A preliminary prototype system has been

implemented by modifying the W3C’s Jigsaw Web

server. We obtained good speedups in the benchmark

tests, indicating that clustering with cooperative

caching can greatly improve the performance of a

Web server system.

V. WEB CLUSTERS

5.1 Architecture

A Web cluster refers to a Web site that uses two or

more server machines housed together in a single

location to handle user requests. Although a large

cluster may consist of dozens of Web servers and

back-end servers, it uses one hostname to provide a

single interface for users. To have a mechanism that

controls the totality of the requests reaching the site

and to mask the service distribution among multiple

servers, Web clusters provide a single virtual IP

address that corresponds to the address of the front-

end server(s). Independently of the mechanism that

existing Web clusters use to routing the load, we

refer to this entity as the Web switch. The Domain

Name Server(s) for the Web site translates the site

address (e.g., www.site.edu) into the IP address of the

Web switch. In such a way, the Web switch acts as a

centralized global scheduler that receives the totality

of the requests and routes them among the servers of

the cluster (see Figure .2.2).

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 240

Figure 2.2: Web cluster architecture.

We consider a Web cluster consisting of

homogeneous distributed servers that provide the

same set of documents and services. The details

about the operations of the Web cluster are described

in Section 4.1. Various academic and commercial

products confirm the increasing interest in these

distributed Web architectures. In the IBM TCP

router [17], all HTTP requests reach the Web switch

that distributes them by modifying the destination IP

address of each incoming packet: the Web switch

replaces its IP address with the private address of the

selected Web server. Magic router [2], Distributed

Packet Rewriting [7] and Cisco Local Director [12]

are other Web cluster architectures relying on a Web

switch that receives the totality of client requests. In

particular, Magic router is a mechanism of fast packet

interposing where a user level process acting as a

switchboard intercepts network packets and modifies

them by changing addresses and checksum fields.

Cisco Local Director rewrites the IP header

information of each incoming packet according with

a dynamic table of mapping between each session

and the server to which it has been redirected. Unlike

the TCP router that modifies only the client-to-server

packets and lets the servers modify outgoing IP

packets, Magic router and Local Director Web

switches can be defined as gateways because they

intervene even on server-to-client packets. An

evolution of the TCP router architecture is

represented by the IBM Network Dispatcher that

does not require a modification of the packet

addresses because packet forwarding to cluster nodes

is done at the MAC address level [20]. A different

forwarding approach to configure a Web system with

multiple servers uses the if-configuration-alias

option, which is available in most UNIX platforms

[16]. This architecture publicizes the same secondary

IP address of all Web servers as the IP single virtual

address, namely ONE-IP, of the Web cluster. This is

achieved by letting the servers of the cluster share the

same IP address as their secondary address, which is

used only for the request distribution service.

5.2 Web switches

A key component of any Web cluster is the Web

switch that dispatches client requests among the

servers. They can be broadly classified according to

the OSI protocol stack layer at which they operate, so

we have layer-4 and layer-7 Web switches [25].

Layer-4 Web switches work at TCP/IP level. Since

packets pertaining to the same TCP connection must

be assigned to the same server node, the Web switch

has to maintain a binding table to associate each

client TCP session with the target server. The switch

examines the header of each inbound packet and on

the basis of the flag field determines whether the

packet pertains to a new or an existing connection.

Layer-4 Web switch algorithms are content

information blind, because they choose the target

server when the client establishes the TCP/IP

connection, before sending out the HTTP request.

Global scheduling algorithms executable at the layer-

4 Web switch range from static algorithms (say,

random, round-robin) to dynamic algorithms that take

into account either network client information, (say,

client IP address, TCP port), or server state

information (say, number of active connections, least

loaded server) or even a combination of both

information. Layer-7 Web switches can establish a

complete TCP connection with the client and inspect

http://www.ijcstjournal.org/
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Sec:sysmodel
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Dias
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Ande
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#BestDPR
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#CiscoLD
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Hunt
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Damani
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Schr

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 241

the HTTP request content prior to decide about

dispatching. In such a way, they can deploy content

information aware distribution, by letting the Web

switch examine the HTTP request and then route it to

the target server. The selection mechanism (usually

referred to as delayed binding) can be based on the

Web service/content requested, as URL content, SSL

identifiers, and cookies. In [5] there are many

techniques to realize the dispatching granularity at

the session level or at the single Web object request

level. Scheduling algorithms deployed at layer-7 may

use either client information (as session identifiers,

file type, file size) or a combination of client and

server state information. The potential advantages of

layer-7 Web switches include the possibility to use

specialized Web server nodes and partition the Web

content among clusters of heterogeneous servers [28],

and to achieve higher cache hit rates, for example,

through affinity-based scheduling algorithms such as

the LARD policy [24]. On the other hand, layer-7

routing introduces additional processing overhead at

the Web switch and may cause this entity to become

the system bottleneck. To overcome this drawback,

design alternatives for scalable Web server systems

that combine content blind and content aware request

distribution have been proposed in [6,26]. These

architecture solutions are out of the scope of this

paper which is more focused on the dispatching

algorithms for Web switches.

VI. WEB SWITCH ALGORITHMS

The Web switch may use various global scheduling

policies to assign the load to the nodes of a Web

cluster. Global scheduling methods were classified in

several ways, depending on different criteria. The

main alternatives are between load balancing vs. load

sharing problems, centralized vs. distributed

algorithms, static vs. dynamic policies. The Web

cluster architecture with a single Web switch

motivates the choice for centralized scheduling

policies. If we consider that load balancing strives to

equalize the server workload, while load

sharing attempts to smooth out transient peak

overload periods on some nodes, a Web switch

should aim to share more than to balance cluster

workload. Hence, the real alternative for layer-4 and

layer-7 Web switches is the kind of system

information they use to take assignment decisions.

The main classes of policies are static and dynamic,

these latter with several subclasses.

6.1 Static and dynamic global scheduling

Static policies do not consider any system state

information. Typical examples are Random (RAN)

and Round-Robin (RR) algorithms. RAN distributes

the arrivals uniformly through the nodes. RR uses a

circular list and a pointer to the last selected server to

take dispatching decisions. Dynamic policies use

some system state information while taking

scheduling decisions. We consider the three classes

of dynamic algorithms.

Server-aware algorithms route requests on the basis

of some server state information, such as load

condition, latency time, availability or network

utilization. Client-aware algorithms route requests on

the basis of some client information. Layer-4 Web

switches can use only some basic client network

information, such as IP address and TCP port. Layer-

7 Web switches can examine the entire HTTP request

and take decisions on the basis of detailed

information about the content of the client

request. Client- and server-aware algorithms route

requests on the basis of client and server state

information. Actually, most of the existing client-

aware algorithms belong to this class. Indeed,

although the most important information is the client

request, these policies combine it with some

information about the server loads. The main goal is

to avoid assignments to overloaded servers. The Web

switch cannot use highly sophisticated algorithms

because it has to take fast decision for dozens or

hundreds of requests per second. To prevent the Web

switch becoming the primary bottleneck of the Web

cluster, static algorithms are the fastest solution

because they do not rely on the current state of the

system at the time of decision making. For this

reason, these algorithms can potentially make poor

assignment decisions. Dynamic algorithms have the

potential to outperform static algorithms by using

http://www.ijcstjournal.org/
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Aron99
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Yang
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Pai
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Aron00
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Song

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 242

some state information to help dispatching decisions.

On the other hand, dynamic algorithms require

mechanisms that collect and analyze state

information, thereby incurring potentially expensive

overheads.

In this paper, we consider three widely used

dispatching policies that are based on client and/or

server information: Weighted Round

Robin (WRR), Locality Aware Request

Distribution (LARD) and Static Partitioning. WRR

has resulted the layer-4 policy that guarantees best

load sharing in most simulations and experiments

from several research groups. On the other hand, we

do not expect LARD to work well in a site providing

heterogeneous services, but we have chosen it

because we are not aware of other layer-7 dispatching

algorithms proposed by the research

community. Static Partitioning uses dedicated

servers for specific services or multiple Web sites

(co-location). This is the most representative example

of a client-aware algorithm working at layer-7 in

commercial Web switches [1,19].

WRR comes as a variation of the round robin policy.

WRR associates to each server a dynamically

evaluated weight that is proportional to the server

load state [20]. Periodically (every seconds),

the Web switch gathers this information from servers

and computes the weights. WRR is actually a class of

dynamic policies that uses some information about

the system state. The first issue that needs to be

addressed when we consider a server state aware

policy is how to compute the load state information

because it is not immediately available at the Web

switch. The three main factors that affect the latency

time are loads on CPU, disk and network resources.

Typical load measures are the number of active

processes on server, mean disk response time, and hit

latency time, that is, the mean time spent by each

request at the server. In particular, the load indexes

we consider are the number of active processes at

each server (WRR_num policy), and the mean service

time for the requests (WRR_time policy). Additional

information on WRR can be found in [20].

If we consider Web clusters of homogeneous servers,

the main goal of the proposed policies is to augment

disk cache hit rates, for example through the LARD

policy [24] or other affinity-based scheduling

algorithms [26,29]. The LARD policy [24] is a

content based request distribution that aims to

improve the cache hit rate in Web cluster nodes. The

principle of LARD is to direct all requests for a Web

object to the same server node. This increases the

likelihood to find the requested object into the disk

cache of the server node. We use the LARD version

proposed in [24] with the multiple hand-off

mechanism defined in [5] that works for the

HTTP/1.1 protocol. LARD assigns all requests for a

target file to the same node until it reaches a certain

utilization threshold. At this point, the request is

assigned to a lowly loaded node, if it exists, or to the

least loaded node. To this purpose, LARD defines

two threshold parameters: Tlow denoting the upper

bound of a lowly loaded condition, and Thigh denoting

the lower bound of a highly loaded condition.

6.2 Client-aware policy

All previously proposed scheduling policies take

static decisions independently of any state

information (e.g., RAN and RR) or they take

dynamic decisions on the bas is of the state of the

server nodes (e.g., WRR) that can be combined with

client request information (e.g., LARD). We propose

a client-aware policy (CAP) that takes into account

some information associated to client requests as it

can be gotten by a layer-7 Web switch. CAP, in its

basic form, is a pure client-aware policy, however, it

can be easily combined with some server state

information. In this paper, we consider the pure CAP

that does not gather any load information from

servers. Pure client-aware policies have a possible

great advantage over server-aware policies because

server-aware algorithms often require expensive and

hard to tuning mechanisms for monitoring and

evaluating the load on each server, gathering the

http://www.ijcstjournal.org/
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Alteon
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#F5
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Hunt
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Hunt
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Pai
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Song
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Zhang
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Pai
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Pai
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Aron99

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 243

results, and combining them to take scheduling

decisions. In a highly dynamic system such as a Web

cluster this state information becomes obsolete

quickly. The key idea for CAP comes from the

observation that dynamic policies such as WRR and

LARD work fine in Web clusters that host traditional

Web publishing services. In fact, most load balancing

problems occur when the Web site hosts

heterogeneous services that make an intensive use of

different Web server's components. Moreover, almost

all commercial layer-7 Web switches use client

information for a static partitioning of the Web

services among specialized servers [1,19]. The

simulation experiments will confirm the intuition that

a Static Partitioning policy, although useful from the

system management point of view, achieves poor

server utilization because resources that are not

utilized cannot be shared among all clients. To

motivate the CAP policy, let us classify Web services

into four main categories.

Web publishing sites providing static information

(e.g., HTML pages with some embedded objects) and

dynamic services that do not intensively use server

resources (e.g., result or product display requests).

The content of dynamic requests is not known at the

instant of a request, however, it is generated from

database queries whose arguments are known before

hand.

Web transaction sites providing dynamic content

generated from (possibly complex) database queries

built from user data provided by an HTML form.

This is a disk bound service because it makes

intensive use of disk resources.

Web commerce sites providing static, dynamic and

secure information. For security reasons, some

dynamically generated content may need a secure

channel that in most cases is provided by the SSL

protocol. Cryptography makes intensive use of CPU

resources. Hence, Web commerce services are disk

and/or CPU bound.

Web multimedia sites providing streaming audio and

video services. In this paper, we do not consider this

type of application that often is implemented through

specialized servers and network connections.

Although realistic, this classification is done for the

purposes of our paper only and does not want to be a

precise taxonomy for all Web services. The idea

behind the CAP policy is that, although the Web

switch can not estimate precisely the service time of a

client request, from the URL it can distinguish the

class of the request and its impact on main Web

server resources. Any Web content provider can

easily tune the CAP policy at its best. Starting from

the above classification, we distinguish the Web

requests into four classes: static and lightly

dynamic Web publishing services (N); disk

bound services (DB), for example, in Web

transaction and Web commerce sites; CPU

bound (CB) and disk and CPU bound (DCB)

services, for example, in Web commerce sites. In the

basic version of CAP, the Web switch manages a

circular list of assignments for each class of Web

services. The goal is to share multiple load classes

among all servers so that no single component of a

server is overloaded. When a request arrives, the

Web switch parses the URL and selects the

appropriate server. We describe the CAP behavior

through the following example.

We suppose that the server A has already received

one request of type CB and one of type DCB; the

server B has received one request of type N, and one

of type DB. The sequence of successive requests to

the Web cluster is shown in Figure 2. By using the

CAP assignment, server A and B have a similar

number of requests for each class of service, while

this does not happen when using RR or LARD. For

example, in the case of RR the server A receives four

intensive requests that stress the CPU and/or disk,

while server B receive only one CPU bound request.

In the case of LARD, we suppose that the requests of

type DB and CB are assigned to the server A and

those of other types to the server B. This dispatching

results that the server A receives two CPU bound and

two disk bound requests, while the server B receives

only one request of type DCB.

http://www.ijcstjournal.org/
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Alteon
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#F5
http://wwwconference.org/www10/cdrom/papers/434/colajanni_html.html#Fig:Sched

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 244

CAP does not require a hard tuning of parameters

which is typical of most dynamic policies because the

service classes are decided in advance, and the

scheduling choice is determined statically once the

URL has been classified.

Figure 2.3: Example of behavior of CAP, RR and

LARD dispatching policies.

VII. CONCLUSIONS & FUTURE

WORK

A fundamental merit of the proposed algorithm is its

ability to trace dead machines. Further it has

capability to divide and distribute web request on the

basis of processing power involved.

Our future work will focus on java implementation of

this proposed algorithm and prove through simulation

that this framework works well with heterogeneous

web servers where incoming load is high and

response is given within few seconds without any

bottleneck.

One limitation left behind is suppose the main server

controller fails then whole system will halt down.

Because all requests are going through main server

controller and if this server is unable to pass on the

http request, framework will be shut down.

REFERENCES

[1] GUO Cheng Cheng YAN Pu Liu(School of

Electronic Information, Wuhan University,

Wuchang 430079)

[2] [2.1] Qi Zhang

Dept. of Comput. Sci., Coll. of William &

Mary, Williamsburg, VA, USA

A. Riska ; W. Sun ; E. Smirni ; G. Ciardo

[2.2] Cardellini, Valeria; Colajanni,

Michele; Yu, Philip S. IEEE Internet

Computing 3.3 (May 1999): 28-39.

[3] Saeed Sharifiana, , Seyed A. Motamedi, ,

Mohammad K. Akbari,

[4] Gianfranco Ciardo , , Alma Riska , Evgenia

Smirni

[5] Zhang Lin, Xiao-Ping Li, Yuan Su

[6] Luciano Bertinia ,Julius C.B. Leitea,Daniel

Mossé

[7] Alteon WebSystems, Alteon 780 Series, in

www.alteonwebsystems.com/products/

[8] E. Anderson, D. Patterson, E. Brewer,

``The Magicrouter, an application of fast

http://www.ijcstjournal.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qi%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20Riska.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.W.%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.%20Smirni.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20Ciardo.QT.&newsearch=true
http://www.sciencedirect.com/science/article/pii/S0167739X08000344
http://www.sciencedirect.com/science/article/pii/S0167739X08000344
http://www.sciencedirect.com/science/article/pii/S0167739X08000344
http://www.sciencedirect.com/science/article/pii/S0167739X08000344
http://www.sciencedirect.com/science/article/pii/S0166531601000499
http://www.sciencedirect.com/science/article/pii/S0166531601000499
http://www.sciencedirect.com/science/article/pii/S0166531601000499
http://www.sciencedirect.com/science/article/pii/S0166531601000499
http://www.sciencedirect.com/science/article/pii/S0164121209002805
http://www.sciencedirect.com/science/article/pii/S0164121209002805
http://www.sciencedirect.com/science/article/pii/S0164121209002805
http://www.sciencedirect.com/science/article/pii/S0164121209002805

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 245

packet interposing'', unpublished Tech.

Rep., Computer Science Department,

University of Berkeley, May 1996.

[9] Apache docs., in

www.apache.org/docs/mod/

[10] M.F. Arlitt, C.L. Williamson, ``Internet

Web servers: Workload characterization

and performance implications'', IEEE/ACM

Trans. on Networking, vol. 5, no. 5, Oct.

1997, pp. 631-645.

[11] M. Aron, P. Druschel, W. Zwaenepoel,

``Efficient support for P-HTTP in cluster-

based Web servers'', Proc. USENIX 1999,

Monterey, CA, June 1999.

[12] M. Aron, D. Sanders, P. Druschel, W.

Zwaenepoel, ``Scalable content-aware

request distribution in cluster-based

network servers'', Proc. USENIX 2000, San

Diego, CA, June 2000.

[13] L. Aversa, A. Bestavros, ``Load balancing

a cluster of Web servers using Distributed

Packet Rewriting'', Proc. of IEEE

IPCCC'2000, Phoenix, AZ, February 2000.

[14] P. Barford, A. Bestavros, A. Bradley, M.E.

Crovella, ``Changes in Web client access

patterns: Characteristics and caching

implications'', World Wide Web, Jan. 1999.

[15] I. Foster and C. Kesselman, The Grid:

Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann, 1999.

[16] L. Anand, D. Ghose and V. Mani, "ELISA:

An Estimated Load Information

Scheduling Algorithm for Distributed

Computing Systems," Int',l J. Computers

and Math. with Applications, vol. 37, no. 8,

pp. 57-85, Apr. 1999.

[17] J. Krallmann, U. Schwiegelshohn and R.

Yahyapour, "On the Design and Evaluation

of Job Scheduling Algorithms," Proc. Fifth

Workshop Job Scheduling Strategies for

Parallel Processing,pp. 17-42, 1999.

[18] G. Manimaran and C. Siva Ram Murthy,

"An Efficient Dynamic Scheduling

Algorithm for Multiprocessor Real-Time

Systems," IEEE Trans. Parallel and

Distributed Systems, vol. 9, no. 3, pp. 312-

319, Mar. 1998.

[19] T Sorensen, P Mogensen, F Frederiksen,

Extension of the ITU channel models for

wideband (OFDM) systems, in 2005 IEEE

62nd Vehicular Technology Conference

(VTC), vol. 1 (VTC-2005-Fall, Dallas,

2005), pp. 392–396

[20] P Kyösti, J Meinilä, L Hentilä, X Zhao, T

Jämsä, M Narandzić, M Milojević, C

Schneider, A Hong, J Ylitalo, V-M

Holappa, M Alatossava, R Bultitude, Y de

Jong, T Rautiainen, IST-4-027756

WINNER II D1.1.2. WINNER II channel

models. Part II. Radio channel

measurement and analysis results. v1.0.

Tech. rep. WINNER II IST project 2007

[21] JM Ruiz-Avilés, S Luna-Ramírez, M Toril,

F Ruiz, I de la Bandera, P Muñoz, R Barco,

P Lázaro, V Buenestado, Design of a

computationally efficient dynamic system-

level simulator for enterprise LTE

femtocell scenarios. Journal of Electrical

and Computer Engineering 2012, 14 (2012)

http://www.ijcstjournal.org/

