
International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 283

A Literature Survey for Test Case Generation Using UML Model

Md Khalid Hussain [1], Dr. Krishna Nandan Prasad [2]

Research Scholar [1]

 Inst. of Information Sciences & IT M. U. Bodh-Gaya, Gaya

Associate Professor [2]

 A.N. College, Patna

Bihar - India

ABSTRACT

Software testing is an investigation conducted to provide stakeholders with in formation about the quality of the product or

service under test. Software testing can also provide an objective, independent view of the software to allow the business to

appreciate and understand the risks of software implementation. The success of s oftware can be improved by modeling

.Modeling is one way to visualize the design and check it against the requirement before the developer begins the coding phase.

One such modeling language widely used is unified modeling language (UML). UML d iagrams produce a graphical

representation of the system under design.

Keywords :- Introduction UML diagram, Activity diagram, sequence diagram, different test case generation.

I. INTRODUCTION

Software engineering is also about communication on a team

and with internal and external stakeholders. Teams do not

consist only of developers, but also of quality assurance

testers, systems architects, system/platform engineers,

customers, project managers, and other stakeholders.

Implementation is no longer just writ ing code, but it is also

following guidelines, writing documentation, and also writ ing

unit tests. But unit tests alone are not enough. The different

pieces have to fit together. In addition, we have to be able to

spot problemat ic areas using metrics and improve the quality

in those areas. The code should fo llow certain standards to

make it easier fo r a team to work together. Once we are

fin ished coding, that does not mean that we are fin ished with

the project: for large pro jects, maintaining software and other

maintenance can keep many people busy for a long time.

Software engineers speak a funny language called Unified

Modeling Language, or UML for short. As if a musician has

to learn musical notation before being able to play piano, we

need to learn UML before we are able to engineer software.

UML is useful in many parts of the software engineering

process, for instance: planning, architecture, documentation,

or reverse engineering. Therefore, it is worth our efforts to

know it. Designing software, is a little like writing a

screenplay for a Hollywood movie? The characteristics,

actions, and interactions of the characters are carefu lly

planned, as is the relevant components of their environment.

As an introductory example, consider our friend Bill, a

customer, who is at a restaurant for dinner. His waiter is

Linux, who takes the orders and brings the food. In the

kitchen is Larry, the cook. Steve is the cashier. In this way, we

have provided useful and easily accessed information about

the operation of a restaurant in the screenplay.

1.1 Case Diagram

The use case model [1] is representation of the systems

intended functions and its environment. The first thing a

software engineer does is to draw a Use Case diagram all

the actions are represented by ovals and are called use cases.

Lines connect the actors and use cases. Very often, there is

also one or more system boundaries. Actors, which usually are

not part of the system, are drawn outside the system area. Use

Case diagrams are very simple, so even managers can

understand them. However, they are very helpful in

understanding the system to be designed. They should list all

parties involved in the system and all major actions that the

system should be able to perform. The important thing about

them is that you do not forget anything, it is less important

that they are super-detailed, fo r this, we have other diagram

types.

1.2 Activity Diagram

The Activity diagram gives more detail to a given use case

and it often depicts the flow of information, hence it is also

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/
https://en.wikipedia.org/wiki/Software

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 284

called a Flowchart. Where the Use Case diagrams have no

timely order, the Activity d iagram has a beginning and an end,

and it depicts decisions and repetitions.

If the Use Case diagram names the actors and gives us the

headings for each scene (use case) of our play, the Activity

diagram tells the detailed story behind each scene. Some

managers may be able to understand Activity diagrams, but do

not count on it.

1.3 Sequence Diagram

Once we are done drawing our Activ ity diagrams, the next

step of refinement is the Sequence diagram. In this diagra m

we list the actors or objects horizontally and then we depict

the messages going back and forth between the objects by

horizontal lines. Time is always progressing downwards in

this diagram.

The Sequence diagram is a very important step in what is

called the process of object-oriented analysis and design. This

diagram is so important, because on the one hand, it identifies

our objects/classes and on the other hand, it gives us the

methods for each of those classes, because each message turns

into a method. Sequence diagrams can become very large,

since they describe the whole program. Make sure, you cover

every path in your Sequence diagrams, but try to avoid

unnecessary repetition. Managers will most likely not

understand Sequence diagrams.

1.4 Collaboration Diagram

The Collaboration diagram is an intermediate step to get us

from the Sequence diagram to the Class diagram. It is similar

to the Sequence diagram, but it has a different layout. Instead

of worry ing about the timeline, we worry about the

interactions between the objects. Each object is represented by

a box, and arrows show interactions between the objects.This

diagram shows the responsibility of objects. If an object has

too much responsibility, meaning there are too many lines

going in and out of a box, p robably something is wrong in

your design. Usually you would want to split the box into two

or more s maller boxes. At this stage in your design, this can

still be done easily. Try to do that once you started coding, or

even later, it will become a nightmare.

1.5 Class Diagram

The Class diagram is the most important one. A Class diagram

consists of classes and lines between them. The classes

themselves are drawn as boxes, having two compartments,

one for methods, and one for attributes.

You start with the Collaboration diagram, and the first thing

you do is take all the boxes and call them classes now. Next,

instead of having many lines going between the objects, you

replace them by one line. However, for every line you

remove, you must add a method entry to the class's method

compartment. Therefore, at this stage the Class diagram looks

quite similar to the Collaboration diagram.

II. TEST CASE GENERATION

APPROACH

This is the main part of the testing process. The Approaches

involved in generating test cases can be categorized in these

three parts : Scenario Based Test Case Generation, Model

based test case Generat ion and Genetic Based test Case

Generation .Even though variety of approaches have been

proposed yet for a decade there has been constant res earch on

generating test cases based on specification and design

models.

 2.1 Scenario based Test Case Generation: In

Scenario based test case generation test scenarios are used for

generating test cases .Baikunt Narayan Biswal has presented a

paper. A Novel Approach for Scenario based test case

Generation [2]. This paper deals with Test adequacy Criteria

for complex transactions or Events, Scenario based testing

gives best results. Test case generation UML Activ ity

diagrams presented by Kim are also based on concurrency in

Activity Diagram where multiple systems interact with each

other.

 2.2 Model based Test Case Generation: In

model based testing, the testing begins at design phase. So,

early detection of fau lts can be achieved by using this

approach further reducing time, cost and efforts of the

developer to a large extent. Automatic Test case generation

using Unified Modeling Language (UML) state diagram by

P.samuel and A.K.Bothra and Rajib Mall published on the

basis of Model Based Test Case generation.Test Case

Generation by UML Sequence Diagram and labeled

Transition System. The procedure is based on the model based

testing techniques with test cases generated from UML

Sequence diagram converted into Labeled Transition

System(LTS).Test Case Generation Based on Use Case and

Sequence Diagram by Santosh Kumar Swain, Durga Prasad

Mohapatra and Rajib Mall . Test cases are derived from a

model based on system Graph integrating UDG and SDG.

 2.3 Genetic based Test Case Generation: In

Genetic based test case generation technique, the test cases are

generated using Genetic Algorithm. Improving GA based

Automated Test Data Generation Technique For Object

Oriented Software [3] by Nirmal Kumar Gupta, Mukesh

Kumar Rohil,. The proposed strategy shows that genetic

algorithms are useful in reducing the number of unfeasible test

cases by generating test cases for object-oriented software. A

Hybrid Genetic Algorithm Based Test Case Generation Using

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 285

Sequence Diagrams [4] by Mahesh Shirole, Rajeev Kumar.

Test cases generated using genetic algorithm improves the

method coverage as well as exception coverage. Object

Oriented Test Case Generation Technique using Genetic

Algorithms [5] by V.Mary Sumanlatha, G.S.V.P.Raju,. Test

cases are generated using sequence Diagram and optimized

using Genetic Algorithm.

III. LITERATURE SURVEY

Software developers cannot test everything, but they can use

combinatorial test design to identify the min imum number of

tests needed to get the coverage they want. Combinatorial test

design enables users to get greater test coverage with fewer

tests. Whether they are looking for speed or test depth, they

can use combinatorial test design methods to build structured

variation into their test cases. In survey it has been found that

these test cases can be generated with different techniques like

test case generation using UML models like Activ ity

Diagrams, Sequence Diagrams etc. The process of generating

test cases from design will help to discover problems early in

the development process and thus it save time and resources

during development of the system. However, it is very

difficult to select test cases from UML models. In UML, the

behavior of a use case can be represented by using interaction,

activity and state machine diagrams. Sequence diagrams

capture the exchange of messages between objects during

execution of a use case. It focuses on the order in which the

messages are sent. Activity diagrams, on the other hand, focus

upon control flow as well as the activity-based relationships

among objects. These are very useful for visualizing the way

several objects collaborate to get a job done. Ranjita Kumari

Swain, Vikas Panthi and Praful Kumar Behera, “Generation of

test cases using Activity Diagram” have generated the test

cases using activity diagrams [6]. In that approach, first an

activity flow graph is derived from act ivity d iagram. Then, all

the required information is extracted from the activity flow

graph (AFG). The act ivity flow graph (AFG) for the activ ity

diagram is created by traversing the activity diagram from

beginning to end, showing choices, conditions, concurrent

executions, loop statements. From the graph different control

flow sequence are identified by traversing the AFG by depth

first traversal technique. Next, an algorithm is proposed to

generate all activity paths. Finally, test cases are generated

using activity path coverage criteria. Then Case study is being

presented on Soft drink Vending Machine (SVM). Abinash

Tripathy and Anirban Mitra “Test Case Generat ion Using

Activity Diagram and Sequence Diagram” , presented an

approach to generate test cases by using together UML

Activity diagram and Sequence Diagram [7]. In this approach

first the activity diagram is being converted into activity graph

(AG) and the sequence diagram is being converted into

sequence graph (SG) and then the two graphs SG & AG are

integrated to form system Graph (SYG). Then the System

Graph (SYG) is being traversed to form the test cases by using

an Graph optimization technique known as Depth First Search

Method (DFS).This approach is also applied on an example of

ATM card validation. It has been shown that the test cases

obtained in this method are not only exhaustive but also

optimal but how it is not clear. Also whenever two UML

methods are combined it will cover all the possibilit ies.

Activity diagram also solves the problem of concurrent

execution problem which leads to state explosion problem.

Supaporn Kansomkeat, Phachayanee Thiket and Jeff Offutt

“Generating Test Cases from UML Activ ity Diagrams using

the Condition-Classification Tree Method” have focused on a

UML diagram called an activity diagram [8]. They have used

Condition Classification Tree method to generate test cases

from activ ity diagram. In their paper, they provided a method

to automatically gather control flow information from

decision points and guard conditions in activity diagrams.

This information is used to construct condition-classification

trees. These trees are then used to generate a test case table

and test cases. Experimental data show that tests generated by

the CCTM Method have strong ability to detect faults at

reasonable cost and also early in development. The case study

is being done on SALES example. Xiajiong Shen and Qian

Wang PeipeiWang and Bo Zhoupropose, “A Novel Technique

Proposed for Testing of Object Oriented Software Systems”,

have proposed a novel technique [9] for testing of object

oriented software systems that use the profile and UML state

diagrams that all methods in a system are divided into

different grades according to integrated values (frequency and

significance) and then the methods that obtain the highest

integrated value generate test cases from UML state diagrams.

To prove the efficiency of the approach, the technique is

compared with testing all methods only using UML state

diagrams. Finally results prove that the approach is efficient

for object-oriented software systems, and find faults that are

difficult to find in other ways and reduce the cost of testing

dramat ically. Fanping Zeng, Zhide Chen, Qing Cao,

Liangliang Mao, "Research on Method of Object-Oriented

Test Cases Generation Based on UML and LTS”[10] have

presented a new technique for object oriented test case

generation based on UML state diagrams and Label Transition

System(LTS). Test cases are generated from UML state

diagrams model that represent state transition. UML state

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 286

diagram can be a model of modeling software system. It

shows all kinds of possible states of a specific object and all

the possible changes between states which cause by all kinds

of events. Labeled Transitions System (LTS) model is an

internal model to precisely represent the state transition. The

procedure is based on model-based testing techniques with

test cases generated from UML state diagrams translated into

LTS. Nirmal Kumar Gupta, Mukesh Kumar Rohil,

“Improving GA based Automated Test Data Generat ion

Technique For Object Oriented Software” [3]. Th is paper put

forward a strategy for evaluating the fitness of both feasible

and unfeasible test cases leading to the improvement of

evolutionary search by achieving higher coverage and

evolving more number of unfeasible test cases into feasible

ones. The proposed strategy shows that genetic algorithms are

useful in reducing the number of unfeasible test cases by

generating test cases for object oriented software.

Furthermore, we build our Genetic Algorithm for structural

testing for generating more suitable test cases. In path testing

weight reevaluation strategy is employed to develop

unfeasible test cases into feasible test cases at the later

generations. Esmaeil Mirzaeian, Samad Ghaderi Mojaveri,

Homayun Motameni, Ahmad farahi, “An optimized approach

to generate object oriented software test case by Colored Petri

Nets”[11]. This paper put forward a technique for generating

object oriented test cases using Colored Petri Nets extended

version of Petri Nets usually used to system modeling and

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 15, November 2014 32 simulation. They

have introduced a new algorithm for to convert UML State

chart into CPNs. This method considers net explosion

problem and also generated net covers all instances of objects

from different classes in the same hierarchy. At last a case

study is also shown by a Banking account Example to show

the benefits of the approach. Rajiv mall, “Automatic Test

Case Generat ion From UML models” [12]. Th is paper

proposed an algorithm, to generate test case from a

combination o f use case diagram and sequence diagram. First,

they convert the use case diagram into use case graph and then

sequence diagram into sequence graph. After that the two

graphs are integrated and a system graph is generated. That

system graph is traversed but not clearly mentioned. Mahesh

Shiro le, Rajeev Kumar, “A Hybrid Genetic Algorithm Based

Test Case Generation Using Sequence Diagrams”[8]. Th is

paper presented a hybrid approach of generating test cases

using sequence diagram with genetic algorithm. Sequence

diagram shows the method call dependencies that exist among

the methods that potentially appear in a method call sequence,

which is good for integration testing. Test cases generated

using genetic algorithm improves the method coverage as well

as exception coverage. Mahesh Shirole, Rajeev Kumar, “UML

behavioral model based test case generation: a survey” [13]

The objective of this paper is to improve the understanding of

UML based testing techniques. It has focused on test case

generation from the behavioral specification diagrams, namely

sequence, state chart and activity diagrams. Also classified the

various research approaches that are based on formal

specifications, graph theoretic, heuristic testing, and direct

UML specification processing and discussed the issues of test

coverage associated with these approaches. Yamina Mohamed

ben Ali, Fatma Benmaiza, “Generat ing Test Cases for Object-

Oriented Software Using Genetic Algorithm and Mutation

Testing Method.”[14] This paper presented an automatic

creation of software test cases based on the use of a genetic

algorithm and a mutation testing technique. Philip Samuel,

Rajib Mall, Pratush kant, “Automatic test case generation

from UML communication d iagrams”[15]. Th is paper

presented a method to generate cluster level test cases based

on UML communication diagrams. In this approach, A tree

representation of communication d iagrams is being

constructed. Then a post-order traversal of the constructed tree

for selecting conditional pred icates from the communicat ion

diagram is being carried out. The generated test cases achieve

message paths coverage as well as boundary coverage. The

technique is being tested on several example problems.

Ranjita Kumari, Vikas Panthi, Prafulla Kumar Behera,

“Generation of test cases using Activity Diagram”[6] In this

paper, test cases are generated using activity path coverage

criteria. Here, a case study on Soft drink Vending Machine

(SVM) has been presented to illustrate our approach. “Test

Cases Generation from UML Activity Diagrams”[16] Th is

paper proposed a method to generate test cases from UML

activity diagrams that minimizes the number of test cases

generated while deriv ing all practically useful test cases.

Boghdady, P. , Badr, N. L., Hashem, M. A., Tolba, M. F., “An

enhanced technique for generating hybrid coverage test cases

using activity diagrams” [17]. This paper put forward an

enhanced approach for automatically generating test cases

from activ ity diagrams. Category partition method is applied

to generate the final set of reduced test cases. The proposed

model validates the generated test paths during the generation

process to ensure that they meet a hybrid coverage criterion.

The proposed model is automated and applied to around forty

different case studies in d ifferent domains. Experimental

evaluation is demonstrated to prove that the propos ed model

saves time and cost, thus increases the performance of the

testing process. Yvan Labiche “Integration Testing Object -

Oriented Software Systems: An Experiment-Driven Research

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 287

Approach”[18] has discussed about the questions : What

integration testing process, indicating in which order classes

are (Integration) tested, should be selected? Which test design

techniques should be applied to unit and integration test

classes when following an integration test order? G.Suganya

and S.Neduncheliyan has given the idea about trouble markers

of object-oriented software and object-oriented testing

techniques and specialized techniques for OO Environment in

“A Study of Object Oriented Testing Techn iques: Survey and

Challenges”[19]. They also discussed about how Unit Testing,

Integration Testing and System Testing are being carried out

in the Object Oriented environment. Nagendra Pratap Singh,

Mrinal Kanti Debbarma has explained about the Life Cycle of

Object-Oriented Testing in “The Review: Lifecycle of Object-

Oriented Software Testing” [20]. This cycle provide us a big

point of view to test object-oriented software. Although it is

not much, differ from conventional testing but helpful for the

thorough study of various approaches.

 activity diagrams” [17]. Th is paper put forward an enhanced

approach for automatically generating test cases from activ ity

diagrams. Category partition method is applied to generate the

final set of reduced test cases. The proposed model validates

the generated test paths during the generation process to

ensure that they meet a hybrid coverage criterion. The

proposed model is automated and applied to around forty

different case studies in d ifferent domains. Experimental

evaluation is demonstrated to prove that the proposed model

saves time and cost, thus increases the performance of the

testing process. Yvan Labiche “Integration Testing Object-

Oriented Software Systems: An Experiment-Driven Research

Approach”[18] has discussed about the questions : What

integration testing process, indicating in which order classes

are (Integration) tested, should be selected? Which test design

techniques should be applied to unit and integration test

classes when following an integration test order? G.Suganya

and S.Neduncheliyan has given the idea about trouble markers

of object-oriented software and object-oriented testing

techniques and specialized techniques for OO Environment in

“A Study of Object Oriented Testing Techn iques: Survey and

Challenges”[19]. They also discussed about how Unit Testing,

Integration Testing and System Testing are being carried out

in the Object Oriented environment. Nagendra Pratap Singh,

Mrinal Kanti Debbarma has explained about the Life Cycle of

Object-Oriented Testing in “The Review: Lifecycle of Object-

Oriented Software Testing” [20]. This cycle provide us a big

point of view to test object-oriented software. Although it is

not much, differ from conventional testing but helpful for the

thorough study of various approaches.

IV. CONCLUSION

This literature paper Unified Modeling Language has now

become a model in the field of software testing, particularly in

the industry sectors. New technique for the generation of test

case from these UML d iagrams needs to be recognized.

Furthermore, the study shows the different method mostly

concentrates on the behavioural diagrams, and covers different

techniques for software testing. In future, we are p lanning to

develop an automated tool for generating test cases through

class diagram and use different approach.

REFERENCES

[1] .https://en.wikipedia.org/wiki/Use_Case_Diagram

[2] Baikuntha Narayan Biswal, Pragyan Nanda, Durga

Prasad Mohapatra “A Novel Approach for Scenario -

Based Test Case Generation” International Conference

On Information Technology © 2008 IEEE Computer

Society

[3] Nirmal Kumar Gupta, Mukesh Kumar Rohil

“ImprovingGA based Automated Test Data Generation

Technique For Object Oriented Software” 2013 3rd

IEEE International Advance Computing Conference

(IACC) .

[4] Supaporn Kansomkeat, Phachayanee Thiket and Jeff

Offutt, “Generating Test Cases from UML Activ ity

Diagrams using the Condition-Classification Tree

Method” 2nd International Conference on Software

Technology and Engineering(ICSTE) @ 2010 IEEE.

[5] V.Mary Sumalatha, G.S.V.P.Raju, Object Oriented Test

Case Generation Technique using Genetic

lgorithms”International Journal of Computer

Applications (0975 – 8887) Volume 61– No.20,

January ,2013

[6] Ran jita Kumari,Vikas Panthi, Prafulla Kumar

Behera,“Generation of test cases using Activity

Diagram” International Journal of Computer Science and

Informatics, ISSN (PRINT): 2231 –5292, Volume- 3,

Issue-2, 2013

[7] Abinash Tripathy and Anirban Mitra, “Test Case

Generation Using Activity Diagram and Sequence

Diagram” Proceedings of ICAdC, AISC 174, pp. 121-

129. springerlink.com © Springer India 2013

[8] Mahesh Shirole, Rajeev Kumar, “A Hybrid Genetic

Algorithm Based Test Case Generation Using Sequence

Diagrams” Contemporary Computing Communicat ions

in Computer and Informat ion Science , Springer

Verlag,Volume 94, 2010, pp 53-63

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 288

[9] Xiajiong Shen and Qian Wang PeipeiWang and Bo

Zhou, “A Novel Technique Proposed for Testing of

Object Oriented Software Systems” @2009 IEEE.

[10] Fanping Zeng, Zhide Chen, Qing Cao, Liangliang

"Research on Method of Object-Oriented Test Cases

Generation Based on UML and LTS” .The 1st

International Conference on Informat ion Science and

Engineering (ICISE2009) ©2009 IEEE computer

Society

[11] Es maeil Mirzaeian, Samad Ghaderi Mojaveri, Homayun

Motameni, Ahmad farah i, “An optimized approach to

generate object oriented software test case by Colored

Petri Nets”, 2010 2nd International Conference on

Software Technology and Engineering (ICSTE) @ IEEE

[12] Monalisa Sharma,Rajib Mall, “ Automatic Test Case

Generation From UML models” The 10th International

Conference on Information Technology@2007IEEE.

[13] Mahesh Shirole, Rajeev Kumar, “UML behavioral

model based test case generation: a survey” ACM(DL),

July 2013

[14] Yamina Mohamed ben Ali, Fatma Benmaiza,

“Generating Test Case for Object-Oriented Software

Using Genetic Algorithm and Mutation Testing

Method ” ACM(DL),2012

[15] Sujata khatri, R.S.Chillar, “Generat ing Test Cases for

Object Oriented Programs Using Specification based

Testing Techniques” Sujata Khatri et al / Indian Journal

of Computer Science and Eng ineering (IJCSE), Feb-Mar

2012

[16] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik,

Inyoung Ko, “Test Cases Generation from UML Activ ity

Diagrams” © 2007 IEEE computer society

[17] Boghdady, P. , Badr, N. L., Hashem, M. A., Tolba, M. F.,

“An enhanced technique for generating hybrid coverage

test cases using activity diagrams” Informat ics and

Systems (INFOS), 8th International Conference, 2012 in

IEEE.

[18] Yvan Labiche “Integration testing object-oriented

software systems: an Experiment-driven Research

Approach”, IEEE 24th Canadian Conference on

Electrical and Computer Engineering,2011.

[19] G.Suganya and S.Neduncheliyan “ A Study of Object

Oriented Testing Techniques: Survey and Challenges”,

IEEE International Conference on Innovative Computing

Technologies(ICICT)2010.

[20] Nagendra Pratap Singh and Mrinal Kanti Debbarma

“ The Review: Lifecycle of Object-Oriented Software

Testing”, IEEE 3rd International Conference on

Electronic Computer Technology (ICECT), 2011

(Volume:3).

http://www.ijcstjournal.org/

