
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 151

Exploring Traditional Approaches for Solving 0-1 Knapsack

Problem
Stephen Opoku Oppong [1], Evans Baidoo [2]

Department of Information Technology [1], Academic City College, Ghana

 Department of Computer Science [2], KNUST, Ghana

ABSTRACT

The rationale behind this paper is to identify among the various traditional algorithm design paradigms the optimal approach

to be applied to the 0/1 Knapsack problem. The Knapsack problem model is a general resource allocation model in which a

single resource is assigned to a number of alternatives with the aim of maximizing the total return. The Knapsack problem is

a combinatorial optimization problem. It is a traditional problem with a single limitation, which is an NP-complete problem,

and as such, it is not possible to attain an accurate solution for large input.

The main objective of the paper is to present analyses of the several traditional algorithm designs that can be applied to solve

the knapsack problem i.e. greedy, branch and bound and dynamic programming. The paper explores the complexity of each

algorithm in terms of memory requests, as well as the programming efforts required.

Keywords: — knapsack, greedy, branch and bound, dynamic programming

I. INTRODUCTION

This paper presents a complete utilisation of the

traditional approach to solving the knapsack problem.

The traditional approach to solving the knapsack

problem includes the Greedy method. Branch and

Bound and Dynamic Programming. The Knapsack

problem is a classic problem with a single constraint.

Different types of Knapsack Problems occur, depending

on the distribution of the items and knapsacks and also

partly due to their wide range of applicability. This paper

focuses mainly on the 0/1 knapsack problem. The

ultimate aim of this paper is to evaluate the results of

traditional algorithms and find the best one.

II. THE 0/1 KNAPSACK PROBLEM

(KP)

A problem where an optimal solution has to be

identified from a finite set of solutions is a combinatorial

optimisation problem of which the knapsack problem is

an example, thus the knapsack problem, seeks for a best

solution from among many other solutions. It restricts the

number of copies of each kind of item to zero or one

and the corresponding sum is maximized without having

the weight sum to exceed the capacity.

Mathematically the Binary knapsack problem is:

assuming without loss of generality that all input data are

positive integers, given a set of a set of

n items and a knapsack with

 of item j,

 of item j,

 C the knapsack,

select a subset of the items so as to

 (1)

 (2)

 = 0 or 1, j

Where =

 The 0/1 Knapsack Problem has an extensive array of

applications which includes internet security, industrial,

financial, aerospace, computer science, naval, etc.

III. THE TRADITIONAL

APPROACHES

a. Greedy Algorithm

Greedy is a strategy that works well on optimization

problems. It is an approach that looks for simple, easy-

to-implement solutions to complex, multi-step problems

by deciding which next step will provide the most

obvious benefit. It works by making the decision that

seems most promising at any moment without worrying

about the effect these decisions may have in the future.

Two sets are sustained by the Greedy Algorithm.

One contains chosen items and the other contains

rejected items. It is made up of four (4) functions.

1. A function that verify whether selected set

of items present a solution.

2. A function that verify the viability of a set.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 152

3. A chosen function that tells which of

the items shows potential.

4. An ideal function, which does not overtly,

provides the value of a solution.

 The structure of the greedy algorithm is:

 the set of selected items is unfilled at the first

stage i.e., solution set.

 At each step

o using selection function, an item will

be added in a solution set.

o IF the set would no longer be feasible

 discard items under

consideration (and is never

regard again).

o ELSE IF set is still feasible THEN

 add the current item.

ALGORITHM GreedyAlgorithm (Weights [1 … N],

Values [1 … N])

// Input: Array Weights holds the weights of all items

Array Values holds the values of all items

// Output: Array Solution which points out the items are

integrated in the knapsack (‘1’) or

not (‘0’)

Integer CumWeight

Calculate the value-to-weight ratios = / , i = 1, …,

N, for the items provided

Sort the items in non-increasing order of the value-to-

weight ratios

for all items do

if the present item on the listing fits into the knapsack

then

put it in the knapsack

else

continue to the next one

Complexity

1. Sorting by any complex algorithm is O (n log n)

2. = N ≈ O(N)

From (1) and (2) above, the complexity of the greedy

algorithm is, O (n log n) + O(N) ≈

O (n log n). with respect to memory,

b. Branch and Bound

Branch and Bound is a class of exact algorithm for

various optimization problems especially integer

programming problems and combinational optimization

problems (COP). It separates the solution space into

smaller sub problems that can be solved independently

(branching). Bounding discards sub problems that cannot

contain the optimal solution, thus decreasing the size of

the solution space. Thus it is proven that this approach is

an enhancement over exhaustive search, partly due to the

fact that branch and bound build up supposed solutions

one component at a time and assesses the partly

constructed solutions. If there prove to be no probable

values of the residual components, which can result to

the solution, the residual components are not produced at

all. Solving very large instances of difficult

combinatorial problems using this approach is much

achievable even though, at the worst case, it still has an

exponential complexity.

The algorithm is constructive in nature. The

operation of a branch and bound algorithm may be

visualized in terms of the construction of a state space

tree whose nodes represent the subclasses of solutions.

State space tree is a rooted tree which at each level

presents options in the solution space that is dependent

on the level above and every promising solution is

represented by some path beginning at the root and

terminates at the leaf. By definition, the root has a zero

level and stands in for the state where no partial solution

has been made. A leaf has no children and represents the

state where every options leading to the solution have

been made.

To explain further, in the state space tree, the

nodes is index by n = 1, 2, … in the order in which they

are generated by the algorithm. B(n) is denoted as the

upper bound associated with node n. A node that has not

been branched from is a terminal node. Branching takes

place at the terminal node which has the highest value of

B(n) and is accomplished by creating two new

descendent nodes. A node is described by listing the

items which are explicitly included in the solutions

contained in the sub-class, and the items which are

explicitly excluded from the solutions which are

contained in the subclass. Thus at a given node n, three

categories of items are conceived. These are

a) the set of items which are explicitly

included in the solutions contained in

node n

b) the set of items which are explicitly

excluded from the solutions contained

in node n

c) the items which belong to neither or

to have not yet been specifically

assigned.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 153

When the set of unassigned items at any node is

empty, the node contains only one solution and further

branching from that node is impossible.

ALGORITHM BranchAndBound (Weights [1 … N],

Values [1 … N])

// Input: Array Weights holds the weights of all items

Array Values holds the values of all items

C, Total capacity

// Output: An array which holds the best solution and its

MaxValue

//Stage 1 (Preliminary)

(a) Test the nontrivial feasibility of the problem by

verifying at least one index i = 1,2,... ,N,

If the problem is nontrivially feasible, proceed to

(b), if not, stop.

(b) If , then all items may be loaded and the

problem is trivial. If not, proceed to (c)

(c) Order the items by decreasing magnitude of .

In all that follows we assume that the items have

been so ordered. Proceed to (d)

(d) For node 1 set B(1) = 0, = , = . Proceed to

Stage 2.

//Stage 2 (Selection of Node for next Branching)

(a) Find the terminal node with the largest value of B(n).

This is the node at which the next branching will take

place.

(b) Test if at the current node k, . If so,

an optimal solution is given by the indices contained in

 . If not, select the new pivot item by,

Proceed to stage 3(a)

//Stage 3 (Computation of Upper Bounds)

(a) Set n = n + 1, , Proceed

to (c)

(b) Set n = n + 1, , . Proceed

to (c)

(c) Test the feasibility of the solutions contained in

node n by verifying if

If the test fails, set B(n) = -999, otherwise

proceed to compute the upper bound B(n) by

first loading all items in the set and then

proceeding in sequence, i = 1, 2,… , N, loading

as much as possible of each item belonging to

until the total weight loaded is

exactly C. The total value so loaded is B(n).

Test if the node index n is even. If yes, proceed

to 3(b); if no, proceed to Stage 2.

The branch and bound algorithm, in the worst case

scenario will produce all intermediate stages and all

leaves. Thus, completed tree will have – 1 nodes,

i.e. will have an exponential complexity. However,

comparism to other algorithm specifically the brute force

and backtracking algorithms proves that it is better

because averagely it will not produce all possible

solutions. The required memory depends on the length of

the items or tree.

c. Dynamic Programming

This is an approach for responding to an

unpredictable problem by reducing it into a set of simpler

sub-problems. It is appropriate to problems displaying

the properties of overlying sub-problems and optimal

substructure. Dynamic Programming (DP) is an effective

procedure that permits one to take care of a wide range of

sorts of problems in time O(𝑛2) or O(𝑛3) for which an

innocent methodology would take exponential time.

Dynamic Programming is a general way to deal with a

sequence of interrelated choices in an optimum way.

This is a general approach to taking care of problems,

much like “divide-and-conquer” aside from that unlike

divide-and-conquer, the sub-problems will normally

overlap. Most in a general sense, the approach is

recursive. Once ceased, the solution is solved by

expelling data from the stack in the best possible

sequence. With a specific end goal to take care of a given

problem, dynamic programming method tackle different

parts of the problem (sub-problems), and after that

consolidate the results of the sub problems to achieve a

general solution. Regularly when utilizing a more

guileless approach, a considerable lot of the sub-

problems are created and solved many times. The

dynamic programming methodology tries to take care of

every sub-problem just once, therefore diminishing the

quantity of calculations: once the answer for a given sub-

problem has been registered, it is kept or "memoized":

whenever the same solution is required, it is basically

looked up. This methodology is particularly valuable

when the quantity of rehashing sub-problems develops

exponentially as a size's function of the input. Dynamic

programming algorithms are used for optimization (for

instance, discovering the most limited way between two

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 154

ways, or the speediest approach to multiply numerous

matrices). A dynamic programming algorithm will look

at the earlier tackled sub-problems and will consolidate

their answers for give the best answer for the given

problem.

// Input:

// Values (stored in array v)

// Knapsack capacity (C)

// z = space left or storage limit,

// n= # items still to choose from,

// i= # items,

// w_n = size or data weight of item

{

if (n == 0) return 0;

if (w_n > z) result = Value(n-1,z); // can’t use

nth item

else result = max{ Value(n-1, z), v_n + Value(n-

1, z-w_n), };

return result;

}

From the equation, this takes exponential time.

However, there are simply O(nC) dissimilar couples of

values the arguments can probably take on, hence ideal

for “memoizing”.

Value(n,C)

{

if (n == 0) return 0;

if (arr[n][z] != unknown) return arr[n][z]; // <-

added this

if (w_n > z) result = Value(n-1,z);

else result = max{ Value(n-1, w) , v_n +

Value(n-1, z-w_n) };

arr[n][z] = result; // <- and this

return result;

}

Given that any known couple of arguments to

Value can go through the array test just once, and in

doing so generates at most two recursive calls, we have

at most 2n(C +1) recursive calls summation, and the sum

time is O(nC).

IV. DISCUSSION

A simple program (Knapsack Optimizer) in java was

written to run the analysis. This is shown in Fig 1. The

methods included are the greedy method, dynamic

programming and branch and bound. The weights and

profits are randomly generated using the number of items.

The optimal weight and profit are calculated and the

memory taken for the results is also calculated.

Fig 1: Knapsack Optimizer

The table below summarizes the outcome of the analysis

Table 1 shows the results obtained when the number of

items are 50, total weight is 248, total profit is 534 and

the capacity of the Knapsack is 200

Table 1:

Analysis of Knapsack Approaches

Optimal

Profit

Optimal

Weight

Memory

Taken

(in

bytes)

Greedy

Method 498 192 2819600

Dynamic

Programming 505 200 2485392

Branch and

Bound 505 200 2398280

Table 2 shows the results obtained when the number of

items are 100, total weight is 604, total profit is 1047 and

the capacity of the Knapsack is 500

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 155

Table 2:

Analysis of Knapsack Approaches

Optimal

Profit

Optimal

Weight

Memory

Taken

(in bytes)

Greedy

Method 1009 496 2144616

Dynamic

Programming 1011 500 2761352

Branch and

Bound 1011 500 2345632

Table 3 shows the results obtained when the number of

items are 200, total weight is 1045, total profit is 2049

and the capacity of the Knapsack is 800

Table 3:

Analysis of Knapsack Approaches

Optimal

Profit

Optimal

Weight

Memory

Taken

(in

bytes)

Greedy

Method 1948 793 2354344

Dynamic

Programming 1953 800 3435104

Branch and

Bound 1953 800 2340776

Table 4 shows the results obtained when the number of

items are 500, total weight is 2772, total profit is 5295

and the capacity of the Knapsack is 2000

Table 4:

Analysis of Knapsack Approaches

Optimal

Profit

Optimal

Weight

Memory

Taken

(in bytes)

Greedy

Method 4910 2000 2368592

Dynamic

Programming 4910 2000 10203512

Branch and

Bound 4910 2000 2338760

Table 5 shows the results obtained when the number of

items are 1000, total weight is 5504, total profit is 10408

and the capacity of the Knapsack is 4000

Table 5:

Analysis of Knapsack Approaches

Optimal

Profit

Optimal

Weight

Memory

Taken

(in bytes)

Greedy

Method 9752 4000 2397200

Dynamic

Programming 9752 4000 34486928

Branch and

Bound 9752 4000 2168008

Fig 2 below shows the relationship between the number

of items used in the knapsack analysis and the memory

taken to provide the optimal result

Fig 2: Summary of Analysis of Traditional Methods of

Knapsack

From Table 1 to 5, it can be seen that the dynamic

programming and branch and bound method produced

the same optimal weight and profit but the greedy

method provides a slightly lower profit. Since the

knapsack problem tries to maximize profit, the dynamic

programming and branch and bound are the best as

compared to the greedy method.

Taking memory utilised into consideration from Figure 2,

it can be seen that the memory utilised by the dynamic

programming method increased exponentially as the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 156

number of items increases. The Greedy method and

Branch and bound shows an optimum memory utilisation

but the memory taken for the branch and bound increase

slightly as the number of items increases.

V. CONCLUSION AND FUTURE

WORKS

The comparative study of the greedy, dynamic

programming, branch and bound shows that while the

complexities of these algorithms are known, the nature of

the problem they are applied to makes some of them

more suitable than others. As we have shown, the choice

between the approaches depends on the size of the

population.

For future work, we would like to implement some

of the more advanced approximation schemes and

compare their performance to the traditional methods

discussed.

REFERENCES

[1] Bellman, R., E. (1957). Dynamic programming.

Princeton University Press, Princeton, NJ.

[2] Hristakeva, Maya and Dipti Shrestha (2005)

“Different Approaches to Solve the 0/1 Knapsack

Problem” The Midwest Instruction and Computing

Symposium, 2005

www.micsymposium.org/mics_2005/papers/paper10

2.pdf

[3] Levitin, Anany. The Design and Analysis of

Algorithms. New Jersey: Pearson Education Inc.,

2003.

[4] Matuszek, David (2002) Backtracking, Available at:

https://www.cis.upenn.edu/~matuszek/cit594-

2012/.../backtracking.html (Accessed: 16th April

2016).

[5] Kolesar, P., J. (1967). A branch and bound algorithm

for the knapsack problem. Management Science, 13,

723-735

http://www.ijcstjournal.org/
http://www.micsymposium.org/mics_2005/papers/paper102.pdf
http://www.micsymposium.org/mics_2005/papers/paper102.pdf

