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ABSTRACT 

The rationale behind this paper is to identify among the various traditional algorithm design paradigms the optimal approach 

to be applied to the 0/1 Knapsack problem. The Knapsack problem model is a general resource allocation model in which a 

single resource is assigned to a number of alternatives with the aim of maximizing the total return. The Knapsack problem is 

a combinatorial optimization problem. It is a traditional problem with a single limitation, which is an NP-complete problem, 

and as such, it is not possible to attain an accurate solution for large input. 

The main objective of the paper is to present analyses of the several traditional algorithm designs that can be applied to solve 

the knapsack problem i.e. greedy, branch and bound and dynamic programming. The paper explores the complexity of each 

algorithm in terms of memory requests, as well as the programming efforts required. 
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I. INTRODUCTION 

This paper presents a complete utilisation of the 

traditional approach to solving the knapsack problem. 

The traditional approach to solving the knapsack 

problem includes the Greedy method.  Branch and 

Bound and Dynamic Programming. The Knapsack 

problem is a classic problem with a single constraint. 

Different types of Knapsack Problems occur, depending 

on the distribution of the items and knapsacks and also 

partly due to their wide range of applicability. This paper 

focuses mainly on the 0/1 knapsack problem. The 

ultimate aim of this paper is to evaluate the results of 

traditional algorithms and find the best one. 

 

II. THE 0/1 KNAPSACK PROBLEM 

(KP) 

A problem where an optimal solution has to be 

identified from a finite set of solutions is a combinatorial 

optimisation problem of which the knapsack problem is 

an example, thus the knapsack problem, seeks for a best 

solution from among many other solutions. It restricts the 

number   of copies of each kind of item to zero or one 

and the corresponding sum is maximized without having 

the weight sum to exceed the capacity.  

Mathematically the Binary knapsack problem is: 

assuming without loss of generality that all input data are 

positive integers, given a set of a set of  

n items and a knapsack with 

  of item j,   

  of item j,  

 C  the knapsack, 

select a subset of the items so as to  

                              (1) 

                    (2) 

 = 0 or 1, j   

Where   =  

 The 0/1 Knapsack Problem has an extensive array of 

applications which includes internet security, industrial, 

financial, aerospace, computer science, naval, etc.  

III. THE TRADITIONAL 

APPROACHES 

a. Greedy Algorithm 

Greedy is a strategy that works well on optimization 

problems. It is an approach that looks for simple, easy-

to-implement solutions to complex, multi-step problems 

by deciding which next step will provide the most 

obvious benefit. It works by making the decision that 

seems most promising at any moment without worrying 

about the effect these decisions may have in the future.  

Two sets are sustained by the Greedy Algorithm. 

One contains chosen items and the other contains 

rejected items. It is made up of four (4) functions. 

1. A function that verify whether selected set 

of items present a solution. 

2. A function that verify the viability of a set. 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 152 

3. A chosen function that tells which of 

the items shows potential. 

4. An ideal function, which does not overtly, 

provides the value of a solution. 

 The structure of the greedy algorithm is: 

 the set of selected items is unfilled at the first 

stage i.e., solution set. 

 At each step 

o using selection function, an item will 

be added in a solution set. 

o IF the set would no longer be feasible 

 discard items under 

consideration (and is never 

regard again). 

o ELSE IF set is still feasible THEN 

 add the current item. 

ALGORITHM GreedyAlgorithm (Weights [1 … N], 

Values [1 … N]) 

// Input: Array Weights holds the weights of all items 

Array Values holds the values of all items 

// Output: Array Solution which points out the items are 

integrated in the knapsack (‘1’) or 

not (‘0’) 

Integer CumWeight 

Calculate the value-to-weight ratios =  / , i = 1, …, 

N, for the items provided 

Sort the items in non-increasing order of the value-to-

weight ratios 

for all items do 

if the present item on the listing fits into the knapsack 

then 

put it in the knapsack 

else 

continue to the next one 

Complexity 

1. Sorting by any complex algorithm is O (n log n) 

2.  = N ≈ O(N) 

From (1) and (2) above, the complexity of the greedy 

algorithm is, O (n log n) + O(N) ≈ 

O (n log n). with respect to memory,  

 

b. Branch and Bound 

Branch and Bound is a class of exact algorithm for 

various optimization problems especially integer 

programming problems and combinational optimization 

problems (COP). It separates the solution space into 

smaller sub problems that can be solved independently 

(branching). Bounding discards sub problems that cannot 

contain the optimal solution, thus decreasing the size of 

the solution space. Thus it is proven that this approach is 

an enhancement over exhaustive search, partly due to the 

fact that branch and bound build up supposed solutions 

one component at a time and assesses the partly 

constructed solutions. If there prove to be no probable 

values of the residual components, which can result to 

the solution, the residual components are not produced at 

all. Solving very large instances of difficult 

combinatorial problems using this approach is much 

achievable even though, at the worst case, it still has an 

exponential complexity.  

The algorithm is constructive in nature. The 

operation of a branch and bound algorithm may be 

visualized in terms of the construction of a state space 

tree whose nodes represent the subclasses of solutions.  

State space tree is a rooted tree which at each level 

presents options in the solution space that is dependent 

on the level above and every promising solution is 

represented by some path beginning at the root and 

terminates at the leaf. By definition, the root has a zero 

level and stands in for the state where no partial solution 

has been made. A leaf has no children and represents the 

state where every options leading to the solution have 

been made. 

To explain further, in the state space tree, the 

nodes is index by n = 1, 2, … in the order in which they 

are generated by the algorithm. B(n) is denoted as the 

upper bound associated with node n. A node that has not 

been branched from is a terminal node. Branching takes 

place at the terminal node which has the highest value of 

B(n) and is accomplished by creating two new 

descendent nodes. A node is described by listing the 

items which are explicitly included in the solutions 

contained in the sub-class, and the items which are 

explicitly excluded from the solutions which are 

contained in the subclass. Thus at a given node n, three 

categories of items are conceived. These are  

a) the set of items which are explicitly 

included in the solutions contained in 

node n  

b)  the set of items which are explicitly 

excluded from the solutions contained 

in node n  

c) the items which belong to neither  or 

to  have not yet been specifically 

assigned.  
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When the set of unassigned items at any node is 

empty, the node contains only one solution and further 

branching from that node is impossible.  

 

ALGORITHM BranchAndBound (Weights [1 … N], 

Values [1 … N]) 

// Input: Array Weights holds the weights of all items 

Array Values holds the values of all items 

C, Total capacity 

// Output: An array which holds the best solution and its 

MaxValue 

 

//Stage 1 (Preliminary) 

(a) Test the nontrivial feasibility of the problem by 

verifying at least one index i = 1,2,... ,N, 

  

If the problem is nontrivially feasible, proceed to 

(b), if not, stop. 

(b) If , then all items may be loaded and the 

problem is trivial. If not, proceed to (c) 

(c) Order the items by decreasing magnitude of . 

In all that follows we assume that the items have 

been so ordered. Proceed to (d) 

(d) For node 1 set B(1) = 0,  = ,  = . Proceed to 

Stage 2. 

 

//Stage 2 (Selection of Node for next Branching) 

(a ) Find the terminal node with the largest value of B(n). 

This is the node at which the next branching will take 

place. 

(b) Test if at the current node k, . If so, 

an optimal solution is given by the indices contained in 

 . If not, select the new pivot item  by, 

 

 
Proceed to stage 3(a) 

 

//Stage 3 (Computation of Upper Bounds) 

(a) Set n = n + 1, ,  Proceed 

to (c) 

(b) Set n = n + 1,  , . Proceed 

to (c) 

(c) Test the feasibility of the solutions contained in 

node n by verifying if  

If the test fails, set B(n) = -999, otherwise 

proceed to compute the upper bound B(n) by 

first loading all items in the set  and then 

proceeding in sequence, i = 1, 2,… , N, loading 

as much as possible of each item belonging to 

until the total weight loaded is 

exactly C. The total value so loaded is B(n). 

Test if the node index n is even. If yes, proceed 

to 3(b); if no, proceed to Stage 2. 

The branch and bound algorithm, in the worst case 

scenario will produce all intermediate stages and all 

leaves. Thus, completed tree will have  – 1 nodes, 

i.e. will have an exponential complexity. However, 

comparism to other algorithm specifically the brute force 

and backtracking algorithms proves that it is better 

because averagely it will not produce all possible 

solutions. The required memory depends on the length of 

the items or tree. 

 

c. Dynamic Programming 

This is an approach for responding to an 

unpredictable problem by reducing it into a set of simpler 

sub-problems. It is appropriate to problems displaying 

the properties of overlying sub-problems and optimal 

substructure. Dynamic Programming (DP) is an effective 

procedure that permits one to take care of a wide range of 

sorts of problems in time O(𝑛2) or O(𝑛3) for which an 

innocent methodology would take exponential time. 

Dynamic Programming is a general way to deal with a 

sequence of interrelated choices in an optimum way. 

This is a general approach to taking care of problems, 

much like “divide-and-conquer” aside from that unlike 

divide-and-conquer, the sub-problems will normally 

overlap. Most in a general sense, the approach is 

recursive. Once ceased, the solution is solved by 

expelling data from the stack in the best possible 

sequence. With a specific end goal to take care of a given 

problem, dynamic programming method tackle different 

parts of the problem (sub-problems), and after that 

consolidate the results of the sub problems to achieve a 

general solution. Regularly when utilizing a more 

guileless approach, a considerable lot of the sub-

problems are created and solved many times. The 

dynamic programming methodology tries to take care of 

every sub-problem just once, therefore diminishing the 

quantity of calculations: once the answer for a given sub-

problem has been registered, it is kept or "memoized": 

whenever the same solution is required, it is basically 

looked up. This methodology is particularly valuable 

when the quantity of rehashing sub-problems develops 

exponentially as a size's function of the input. Dynamic 

programming algorithms are used for optimization (for 

instance, discovering the most limited way between two 
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ways, or the speediest approach to multiply numerous 

matrices). A dynamic programming algorithm will look 

at the earlier tackled sub-problems and will consolidate 

their answers for give the best answer for the given 

problem. 

 

// Input:  

// Values (stored in array v) 

// Knapsack capacity (C)  

// z = space left or storage limit,  

// n= # items still to choose from,  

// i= # items,  

// w_n = size or data weight of item  

{  

if (n == 0) return 0;  

if (w_n > z) result = Value(n-1,z); // can’t use 

nth item  

else result = max{ Value(n-1, z), v_n + Value(n-

1, z-w_n), };  

return result;  

} 

From the equation, this takes exponential time. 

However, there are simply O(nC) dissimilar couples of 

values the arguments can probably take on, hence ideal 

for “memoizing”. 

 

Value(n,C)  

{  

if (n == 0) return 0;  

if (arr[n][z] != unknown) return arr[n][z]; // <- 

added this  

if (w_n > z) result = Value(n-1,z);  

else result = max{ Value(n-1, w) , v_n + 

Value(n-1, z-w_n) };  

arr[n][z] = result; // <- and this  

return result;  

} 

Given that any known couple of arguments to 

Value can go through the array test just once, and in 

doing so generates at most two recursive calls, we have 

at most 2n(C +1) recursive calls summation, and the sum 

time is O(nC). 

 

IV. DISCUSSION 

A simple program (Knapsack Optimizer) in java was 

written to run the analysis. This is shown in Fig 1. The 

methods included are the greedy method, dynamic 

programming and branch and bound. The weights and 

profits are randomly generated using the number of items. 

The optimal weight and profit are calculated and the 

memory taken for the results is also calculated. 

 

 
 

Fig 1: Knapsack Optimizer 

 

The table below summarizes the outcome of the analysis 

 

Table 1 shows the results obtained when the number of 

items are 50, total weight is 248, total profit is 534 and 

the capacity of the Knapsack is 200 

 

Table 1:  

Analysis of Knapsack Approaches 

 

Optimal 

Profit 

Optimal 

Weight 

Memory 

Taken     

(in 

bytes) 

Greedy 

Method 498 192 2819600 

Dynamic 

Programming 505 200 2485392 

Branch and 

Bound 505 200 2398280 

 

Table 2 shows the results obtained when the number of 

items are 100, total weight is 604, total profit is 1047 and 

the capacity of the Knapsack is 500 
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Table 2:  

Analysis of Knapsack Approaches 

 

Optimal 

Profit 

Optimal 

Weight 

Memory 

Taken     

(in bytes) 

Greedy 

Method 1009 496 2144616 

Dynamic 

Programming 1011 500 2761352 

Branch and 

Bound 1011 500 2345632 

 

Table 3 shows the results obtained when the number of 

items are 200, total weight is 1045, total profit is 2049 

and the capacity of the Knapsack is 800 

 

Table 3:  

Analysis of Knapsack Approaches 

 

Optimal 

Profit 

Optimal 

Weight 

Memory 

Taken     

(in 

bytes) 

Greedy 

Method 1948 793 2354344 

Dynamic 

Programming 1953 800 3435104 

Branch and 

Bound 1953 800 2340776 

 

Table 4 shows the results obtained when the number of 

items are 500, total weight is 2772, total profit is 5295 

and the capacity of the Knapsack is 2000 

 

Table 4:  

Analysis of Knapsack Approaches 

 

Optimal 

Profit 

Optimal 

Weight 

Memory 

Taken     

(in bytes) 

Greedy 

Method 4910 2000 2368592 

Dynamic 

Programming 4910 2000 10203512 

Branch and 

Bound 4910 2000 2338760 

 

Table 5 shows the results obtained when the number of 

items are 1000, total weight is 5504, total profit is 10408 

and the capacity of the Knapsack is 4000 

 

Table 5:  

Analysis of Knapsack Approaches 

 

Optimal 

Profit 

Optimal 

Weight 

Memory 

Taken     

(in bytes) 

Greedy 

Method 9752 4000 2397200 

Dynamic 

Programming 9752 4000 34486928 

Branch and 

Bound 9752 4000 2168008 

 

Fig 2 below shows the relationship between the number 

of items used in the knapsack analysis and the memory 

taken to provide the optimal result 

 

 
 

Fig 2: Summary of Analysis of Traditional Methods of 

Knapsack 

 

From Table 1 to 5, it can be seen that the dynamic 

programming and branch and bound method produced 

the same optimal weight and profit but the greedy 

method provides a slightly lower profit. Since the 

knapsack problem tries to maximize profit, the dynamic 

programming and branch and bound are the best as 

compared to the greedy method. 

Taking memory utilised into consideration from Figure 2, 

it can be seen that the memory utilised by the dynamic 

programming method increased exponentially as the 
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number of items increases. The Greedy method and 

Branch and bound shows an optimum memory utilisation 

but the memory taken for the branch and bound increase 

slightly as the number of items increases. 

 

V. CONCLUSION AND FUTURE 

WORKS 

The comparative study of the greedy, dynamic 

programming, branch and bound shows that while the 

complexities of these algorithms are known, the nature of 

the problem they are applied to makes some of them 

more suitable than others. As we have shown, the choice 

between the approaches depends on the size of the 

population. 

For future work, we would like to implement some 

of the more advanced approximation schemes and 

compare their performance to the traditional methods 

discussed. 
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