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Automation of Secure Cloud Transactions 

Process Life Cycle 
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ABSTRACT 
In Today’s World, Automation is playing a vital role in terms of Human Effort Reduction, Zero-Touch & Absolute 
Zero Human Error Transactions. Even though the prime goal of Automation is to provide faster & agile based 
human effort reduction and fully automatic solutions, Automation provides much more than just human effort 
reduction. Since the Time Cloud market hit the internet, there is a continuous exponential change in Small, Medium 
& Enterprise Business’s Infrastructure Management Migration / Deployment into the Cloud. Since most of the 
Organizations are now subscribing for Cloud Based Infrastructure / Platform Services, there is a significant need for 
faster way of Provision, Configuration & Deployment through Cloud based Automation. While Faster Delivery & 
Deployment are significant goals to achieve, “Privacy, Performance, Accuracy & Precision of Transactions” are 
utmost important. In this paper, we will discuss about the Cloud based Automation Solutions to achieve “Privacy, 
Performance, Accuracy & Precision of Transactions” in Cloud Transactions by Means of Automation. 

Keywords:—Automation, Cloud Automation, Cloud databases, authorization policies, consistency, distributed 
transactions, atomic commit protocol 

 

I. INTRODUCTION 

 

LOUD computing is a general term for the 

delivery of hosted services over the internet. 

 

Cloud computing enables companies to consume a 

compute resource, such as a virtual machine 

(VMs), storage or an application, as a utility just like 

electricity rather than having to build and maintain 

computing infrastructures in house. Cloud Computing 

provides Pay-As-You-Use Model of Service Offerings 

which significantly helps Organizations to provision 

the Infrastructure / Platform On Demand with no 

Initial Capital Investment and thus get high Return On 

Investment [ROI]. 

 

Cloud Computing recently emerged as a computing 

paradigm in which storage and computation can be 

outsourced from organizations to next generation data 

centers hosted by companies such as Microsoft, 

Amazon, Google, IBM, and Yahoo. Such companies 

help free organizations from requiring expensive 

infrastructure and expertise in-house, and instead 

make use of the cloud providers to maintain, support, 

and broker access to high-end resources. From an 

economic perspective, cloud consumers can save huge 

IT capital investments and be charged on the basis of a 

pay-only-for-what-you-use pricing model. 

 

One of the most appealing aspects of cloud computing 

is its elasticity, which provides an illusion of infinite, 

on-demand resources making it an attractive 

environment for highly scalable, multitier applications. 

However, this can create additional challenges for 

back-end, transactional database systems, which were 

designed without elasticity in mind. Despite the efforts 

of key-value stores like Microsoft’s NO SQL 

Database, Amazon’s SimpleDB, Dynamo, and 

Google’s Bigtable to provide scalable access to huge 

amounts of data, transactional guarantees remain a 

bottleneck. 

 

To provide scalability and elasticity, cloud services 

often make heavy use of replication to ensure 

consistent performance and availability. As a result, 

many cloud services rely on the notion of eventual 

consistency when propagating data throughout the 

system. This consistency model is a variant of weak 

consistency that allows data to be inconsistent among 

some replicas during the update process, but ensures 

that updates will eventually be propagated to all 

replicas. This makes it difficult to strictly maintain the 

ACID guarantees, as the “C” (consistency) part of 

ACID is sacrificed to provide reasonable availability. 

 

In systems that host sensitive resources like Financial / 

Healthcare Data, accesses are protected via authorization 

policies that describe the conditions under which users 

should be permitted access to resources. These policies 

describe relationships between the system principles, as 

well as the certified credentials that users must provide to 

attest to their attributes. In a transactional database 

system that is deployed in a highly distributed and elastic 

system such as the cloud, policies would typically be 

replicated—very much like data— among multiple sites, 

often following the same weak or eventual consistency 

model. It therefore becomes possible for a policy-based 

authorization system to make unsafe decisions using 

stale policies. 

In distributed transactional database systems deployed 

over cloud servers, entities cooperate to form proofs of 
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authorizations that are justified by collections of 

certified credentials. These proofs and credentials may 

be evaluated and collected over extended time periods 

under the risk of having the underlying authorization 

policies or the user credentials being in inconsistent 

states.  Interesting consistency problems can arise as 

transactional database systems are deployed in cloud 

environments and use policy-based authorization 

systems to protect sensitive resources. In addition to 

handling consistency issues among database replicas, 

we must also handle two types of security 

inconsistency conditions. First, the system may suffer 

from policy inconsistencies during policy updates due 

to the relaxed consistency model underlying most 

cloud services. For example, it is possible for several 

versions of the policy to be observed at multiple sites 

within a single transaction, leading to inconsistent (and 

likely unsafe) access decisions during the transaction. 

Second, it is possible for external factors to cause user 

credential inconsistencies over the lifetime of a 

transaction. It therefore becomes possible for policy-

based authorization systems to make unsafe decisions 

that might threaten sensitive resources. In this paper, 

we highlight the criticality of the problem. We then 

define the notion of trusted transactions when dealing 

with proofs of authorization. Accordingly, we propose 

several increasingly stringent levels of policy 

consistency constraints, and present different 

enforcement approaches to guarantee the 

trustworthiness of transactions executing on cloud 

servers. We are considering Automation of a Two-

Phase Validation Commit protocol as a solution, 

which is a modified version of the basic Two-Phase 

Validation Commit protocols. We finally analyze the 

different approaches presented using both Automation 

& Manual evaluation of the overheads and simulations 

to guide the decision makers to which approach to use. 

For instance, a user’s login credentials could be 

invalidated or revoked after collection by the 

authorization server, but before the completion of the 

transaction. 

 

 

Fig. 1. Interaction among the system components. 

In this paper, we address this confluence of data, policy, 

and         credential inconsistency problems that can 

emerge as transactional database systems are deployed to 

the cloud. In doing so, we make the following 

contributions: 

. We formalize the concept of trusted 

transactions. Trusted transactions are those 

transactions that do not violate credential or 

policy inconsistencies over the lifetime of the 

transaction. We then present a more general term, 

safe transactions, that identifies transactions that 

are both trusted and conform to the ACID 

properties of distributed database systems 

(Section 2). 

. We define several different levels of policy 

consistency constraints and corresponding 

enforcement approaches that guarantee the 

trustworthiness of transactions executing on 

cloud servers (Section 3). 

. We propose a Two-Phase Validation Commit 

(2PVC) protocol that ensures that a transaction is 

safe by checking policy, credential, and data 

consistency during transaction execution (Section 

4). 

. We carry out an experimental evaluation of our 

proposed approaches (Section 5), and present a 

tradeoff discussion to guide decision makers as to 

which approach is most suitable in various 

situations (Section 6). 

Section 7 describes previous related work, Finally, 

Section 8 describes the significance of Automation of 2 

Phase Validation Commit Life Cycle, while Section 9 

presents our conclusions. 

II. SYSTEM ASSUMPTIONS AND 

PROBLEM DEFINITION 

 

2.1 System Model 

 

Fig. 1 illustrates the interaction among the components 

in our system. We assume a cloud infrastructure 

consisting of a set of S servers, where each server is 

responsible for hosting a subset D of all data items D 

belonging to a specific application domain 

.Users interact with the system by submitting 

queries or update requests encapsulated in ACID 

transactions. A transaction is submitted to a Transaction 

Manager (TM) that coordinates its execution. Multiple 

TMs could be invoked as the system workload     
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increases for load balancing, but each transaction is 

handled by only one TM. 

We denote each transaction as T = q1, q2,...,qn, where qi   

Q is a single query/update belonging to the set of all 

queries Q. The start time of each transaction is denoted 

by α (T), and the time at which the transaction finishes 

execution and is ready to commit is denoted by ω(T). We 

assume that queries belonging to a transaction execute 

sequentially, and that a transaction does not fork sub-

transactions. These assumptions simplify our 

presentation, but do not affect the correctness or the 

validity of our consistency definitions.  

Let P denote the set of all authorization policies, and let 

denote the policy that server si uses to protect 

data item D. We represent a policy P as a mapping P : S  

2D   ->  2R  × A × IN that associates a server and a set of 

data items with a set of inference rules from the set R, a 

policy administrator from the set A, and a version 

number. We denote by C the set of all credentials, which 

are issued by the Certificate Authorities (CAs) within the 

system. We assume that each CA offers an online 

method that allows any server to check the current status 

of credentials that it has issued. Given a credential ck  C, 

α (ck) and ω(ck) denote issue and expiration times of ck, 

respectively. Given a function m : Q -> 2D that identifies 

the data items accessed by a particular query, a proof of 

authorization for query qi evaluated at server sj at time tk 

is a tuple (qi,sj,Psj(m(qi),tk,C), where C is the set of 

credentials presented by the querier to satisfy Psj(m(qi) ). 

In this paper, we use the function eval : F × TS -> IB to 

denote whether a proof f  F is valid at time t  TS. 

To enhance the general applicability of the consistency 

models developed in this paper, the above formalism is 

intentionally opaque with respect to the policy and 

credential formats used to implement the system. For 

instance, this formalism could easily be used to model 

the use of XACML policies as the set of inference rules 

R, and traditional (e.g., X.509 [7]) credentials for the set 

C. On the other hand, it can also model the use of more 

advanced trust management policies (e.g., [8], [9]) for 

the inference rules R, and the use of privacy-friendly 

credentials (e.g., [10], [11]) for the set C. 

2.2 Problem Definition 

Since transactions are executed over time, the state 

information of the credentials and the policies enforced 

by different servers are subject to changes at any time 

instance, therefore it becomes important to introduce 

precise definitions for the different consistency levels 

that could be achieved within a transaction’s lifetime. 

These consistency models strengthen the trusted 

transaction definition by defining the environment in 

which policy versions are consistent relative to the rest of 

the system. Before we do that, we define a transaction’s 

view in terms of the different proofs of authorization 

evaluated during the lifetime of a particular transaction. 

Definition 1 (View). A transaction’s view V T is the 

set of proofs of authorizations observed during the 

lifetime of a transaction and defined 

as  

 
 

 

Fig. 2. Different variants of proofs of 
authorizations. 

Following from Definition 1, a transaction’s view is built 

incrementally as more proofs of authorizations are being 

evaluated by servers during the transaction execution. 

http://www.ijcstjournal.org/
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We now present two increasingly more powerful 

definitions of consistencies within transactions. 

Definition 2 (View Consistency). A view 

 

 is view consistent, 

or Ø-consistent, if V T satisfies a predicate consistent 

that places constraints on the versioning of the 

policies such that Ø –consistent 

 for all 

policies belonging to the same administrator A, where 

function  is defined as ver : P -> IN. 

With a view consistency model, the policy versions 

should be internally consistent across all servers 

executing the transaction. The view consistency model is 

weak in that the policy version agreed upon by the subset 

of servers within the transaction may not be the latest 

policy version v. It may be the case that a server outside 

of the S servers has a policy that belongs to the same 

administrative domain and with a version v0 >v. A more 

strict consistency model is the global consistency and is 

defined as follows: 

Definition 3 (Global Consistency). A view  

 

is 

global consistent, or Ø-consistent, if V T satisfies a 

predicate  hat places constraints on the 

versioning of the policies such that 

for all 

policies belonging to the same administrator A, and 

function ver follows the same aforementioned 

definition, while ver(P) refers to the latest policy 

version. 

 

 

 

With a global consistency model, policies used to 

evaluate the  

proofs of authorizations during a transaction execution 

among S servers should match the latest policy version 

among the entire policy set P, for all policies enforced by 

the same administrator A. 

 

Given the above definitions, we now have a precise 

vocabulary for defining the conditions necessary for a 

transaction to be asserted as “trusted.” 

 Definition 4 (Trusted Transaction). Given a transaction 

T = 

 and its corresponding view V T , T is 

trusted iff , at some time instance 

. 

Finally, we say that a transaction is safe if it is a trusted 

transaction that also satisfies all data integrity constraints 

imposed by the database management system. A safe 

transaction is allowed to commit, while an unsafe 

transaction is forced to rollback. 

III. TRUSTED TRANSACTION 

ENFORCEMENT 

 

In this section, we present several increasingly stringent 

approaches for enforcing trusted transactions. We show 

that each approach offers different guarantees during the 

course of a transaction. Fig. 2 is a graphical depiction of 

how these approaches could be applied to a transaction 

running across three server, and will be referenced 

throughout this section. In this figure, dots represent the 

arrival time of a query to some server, stars indicate the 

times at which a server validates a proof of authorization, 

and dashed lines represent view- or globally consistency 

policy synchronization among servers. 

3.1 Deferred Proofs of Authorization 

 

Definition 5 (Deferred Proofs of Authorization). 

Given a transaction T and its corresponding view V T , 

T is trusted under the Deferred proofs of authorization 

approach, iff at commit time 

  

 

Deferred proofs present an optimistic approach with 

relatively weak authorization guarantees. The proofs of 

authorizations are evaluated simultaneously only at 

commit time (using either view or global consistency 

from Definitions 2 and 3) to decide whether the 

transaction is trusted. 

3.2 Punctual Proofs of Authorization 

 

Definition 6 (Punctual Proofs of Authorization). 

Given a transaction T and its corresponding view V T , 

T is trusted under the Punctual proofs of authorization 

http://www.ijcstjournal.org/
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approach, iff at any time instance 

 

      

 

Punctual proofs present a more proactive approach in 

which the proofs of authorizations are evaluated 

instantaneously whenever a query is being handled by a 

server. This facilitates early detections of unsafe 

transactions which can save the system from going into 

expensive undo operations. All the proofs of 

authorizations are then reevaluated at commit time to 

ensure that policies were not updated during the 

transaction in a way that would invalidate a previous 

proof, and that credentials were not invalidated. 

Punctual proofs do not impose any restrictions on the 

freshness of the policies used by the servers during the 

transaction execution. Consequently, servers might 

falsely deny or allow access to data. Thus, we propose 

two more restrictive approaches that enforce some 

degree of consistency among the participating servers 

each time a proof is evaluated. 

3.3 Incremental Punctual Proofs of Authorization  

Before we define the Incremental Punctual proofs of 

authorization approach, we define a view instance, which 

is a view snapshot at a specific time instance. 

Definition 7 (View Instance). A view instance A view 

instance is defined as 

 

 

Informally, a view instance Vt
T

i is the subset of all proofs 

of authorization evaluated by servers involved in 

transaction T up till the time instance ti. 

Definition 8 (Incremental Punctual Proofs of 

Authorization). Given a transaction T and its 

corresponding view V T , T is trusted under the 

Incremental Punctual proofs of authorization 

approach, iff at any time instance   

 . 

Incremental Punctual proofs develop a stronger notion of 

trusted transactions, as a transaction is not allowed to 

proceed unless each server achieves the desired level of 

the policy consistency with all previous servers. This 

implies that all participating servers will be forced to 

have a consistent view with the first executing server 

unless a newer policy version shows up at a later server, 

in which case the transaction aborts. 

For view consistency, no consistency check at commit 

time is required, since all participating servers will be 

view consistent by commit time. On the other hand, the 

global consistency condition necessitates another 

consistency check at commit time to confirm that the 

policies used have not become stale during the window 

of execution between the last proofs of authorization and 

commit time. 

 

3.4 Continuous Proofs of Authorization 

 

We now present the least permissive approach which we 

call Continuous proofs of authorization. 

Definition 9 (Continuous Proofs of Authorization). 

A transaction T is trusted under the Continuous 

approach, iff 

 

. 

In Continuous proofs, whenever a proof is evaluated, all 

previous proofs have to be reevaluated if a newer version 

of the policy is found at any of the participating servers. 

At commit time, Continuous proofs behave similarly to 

Incremental Punctual proofs. In contrast with the 

Incremental Punctual proofs, if later executing servers 

are using newer policy versions, all previous servers 

must 1) update their policies to be consistent with the 

newest one, and 2) reevaluate their proofs of 

authorization using the newer policies. In the case of 

global consistency, all servers will be forced to use the 

latest policy version at all times. Therefore, we consider 

this variant of our approaches to be the strictest approach 

of all giving the best privacy and consistency guarantees. 

The decision of which approach to adopt is likely to be a 

strategic choice made independently by each application. 

As with any tradeoff, the stronger the security and 

accuracy given by an approach, the more the system has 

to pay in terms of implementation and messages 

exchange overheads. Further discussion of these 

tradeoffs will be presented in Section 6. 

IV. IMPLEMENTING SAFE 

TRANSACTIONS 

 

A safe transaction is a transaction that is both trusted 

(i.e., satisfies the correctness properties of proofs of 

authorization) and database correct (i.e., satisfies the data 

integrity constraints). We first describe an algorithm that 

enforces trusted transactions, and then expand this 
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algorithm to enforce safe transactions. Finally, we show 

how these algorithms can be used to implement the 

approaches discussed in Section 3. 

 

4.1 Two-Phase Validation (2PV) Algorithm 

 

A common characteristic of most of our proposed 

approaches to achieve trusted transactions is the need for 

policy consistency validation at the end of a transaction. 

That is, in order for a trusted transaction to commit, its 

TM has to enforce either view or global consistency 

among the servers participating in the transaction. 

Toward this, we propose a new algorithm called Two-

Phase Validation. 

As the name implies, 2PV operates in two phases: 

collection and validation. During collection, the TM first 

sends a Prepare-to-Validate message to each participant 

server. In response to this message, each participant 1) 

evaluates the proofs for each query of the transaction 

using the latest policies it has available and 2) sends a 

reply back to the TM containing the truth value 

(TRUE/FALSE) of those proofs along with the version 

number and policy identifier for each policy used. 

Further, each participant keeps track of its reply (i.e., the 

state of each query) which includes the id of the TM 

(TMid), the id of the transaction (Tid) to which the query 

belongs, and a set of policy versions used in the query’s 

authorization (vi,pi). 

Once the TM receives the replies from all the 

participants, it moves on to the validation phase. If all 

polices are consistent, then the protocol honors the truth 

value where any FALSE causes an ABORT decision and 

all TRUE cause a CONTINUE decision. In the case of 

inconsistent policies, the TM identifies the latest policy 

and sends an Update message to each out-of-date 

participant with a policy identifier and returns to the 

collection phase. In this case, the participants 1) update 

their policies, 2) reevaluate the proofs and, 3) send a new 

reply to the TM. Algorithm 1 shows the process for the 

TM. 

Algorithm 1. Two-Phase Validation - 2PV(TM). 

 

1 Send “Prepare-to-Validate” to all 

participants 

2 Wait for all replies (a True/False, and a 

set of policy versions for each unique policy) 

3 Identify the largest version for all 

unique policies 

4 If all participants utilize the largest 

version for each unique policy 

5 If any responded False 

6 ABORT 

7 Otherwise 

8 CONTINUE 

9 Otherwise, for all participants with old 

versions of policies 

10 Send “Update” with the largest version 

number of each policy 

11 Goto 2 

In the case of view consistency (Definition 2), there will 

be at most two rounds of the collection phase. A 

participant may only be asked to reevaluate a query using 

a newer policy by an Update message from the TM after 

one collection phase. 

For the global consistency case (Definition 3), the TM 

retrieves the latest policy version from a master policies 

server (Step 2) and uses it to compare against the version 

numbers of each participant (Step 3). This master version 

may be retrieved only once or each time Step 3 is 

invoked. For the former case, collection may only be 

executed twice as in the case of view consistency. In the 

latter case, if the TM retrieves the latest version every 

round, global consistency may execute the collection 

many times. This is the case if the policy is updated 

during the round. While the number of rounds are 

theoretically infinite, in a practical setting, this should 

occur infrequently. 

4.2 Two-Phase Validate Commit Algorithm 

 

The 2PV protocol enforces trusted transactions, but does 

not enforce safe transactions because it does not validate 

any integrity constraints. Since the Two-Phase Commit 

atomic protocol commonly used to enforce integrity 

constraints has similar structure as 2PV, we propose 

integrating these protocols into a Two-Phase Validation 

Commit protocol. 2PVC can be used to ensure the data 

and policy consistency requirements of safe transactions. 

Specifically, 2PVC will evaluate the policies and 

authorizations within the first, voting phase. That is, 

when the TM sends out a Prepare-to-Commit message 

for a transaction, the participant server has three values 

to report 1) the YES or NO reply for the satisfaction of 

integrity constraints as in 2PC, 2) the TRUE or FALSE 

reply for the satisfaction of the proofs of authorizations 

as in 2PV, and 3) the version number of the policies used 

to build the proofs (vi,pi) as in 2PV. 

The process given in Algorithm 2 is for the TM under 

view consistency. It is similar to that of 2PV with the 

exception of handling the YES or NO reply for integrity 

constraint validation and having a decision of COMMIT 

rather than CONTINUE. The TM enforces the same 

behavior as 2PV in identifying policies inconsistencies 

and sending the Update messages. The same changes to 

http://www.ijcstjournal.org/
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2PV can be made here to provide global consistency by 

consulting the master policies server for the latest policy 

version (Step 5). 

Algorithm 2. Two-Phase Validation Commit - 2PVC 

(TM).  

   

   1           Send “Prepare-to-Commit” to all 

participants 

2 Wait for all replies (Yes/No, 

True/False, and a set of policy versions 

for each unique policy) 

3 If any participant replied No for 

integrity check 

4 ABORT 

5 Identify the largest version for all 

unique policies 

6 If all participants utilize the largest 

version for each unique policy 

7 If any responded False 

8 ABORT 

9 Otherwise 

10 COMMIT 

11 Otherwise, for participants with old 

policies 

12 Send “Update” with the largest version 

number of each policy 

13 Wait for all replies 

14 Goto 5 

 

The resilience of 2PVC to system and communication 

failures can be achieved in the same manner as 2PC by 

recording the progress of the protocol in the logs of the 

TM and participants. In the case of 2PVC, a participant 

must forcibly log the set of ðvi;piÞ tuples along with its 

vote and truth value. Similarly to 2PC, the cost of 2PVC 

can be measured in terms of log complexity (i.e., the 

number of times the protocol forcibly logs for recovery) 

and message complexity (i.e., the number of messages 

sent). The log complexity of 2PVC is no different than 

basic 2PC and can be improved by using any of log-

based optimizations of 2PC such as Presumed-Abort 

(PrA) and Presumed-Commit (PrC) 

[12]. The message complexity of 2PVC was analyzed in 

[13]. 

4.3 Using 2PV and 2PVC in Safe Transactions 

 

2PV and 2PVC can be used to enforce each of the 

consistency levels defined in Section 3. Deferred and 

Punctual (Definitions 5 and 6) proofs are roughly the 

same. The only difference is that Punctual will return 

proof evaluations upon executing each query. Yet, this is 

done on a single server, and therefore, does not need 

2PVC or 2PV to distribute the decision. To provide for 

trusted transactions, both require at commit time 

evaluation at all participants using 2PVC. 

Incremental Punctual (Definition 8) proofs are slightly 

different. As queries are executed, the TM must also 

check for consistency within the participating servers. 

Hence, 

 

TABLE 1 

Simulation Parameters 

  

 

 

  

  

  

  

 

 

 

a variant of the basic 2PV protocol is used during the 

transaction execution. For view consistency, the TM 

needs to check the version number it receives from each 

server with that of the very first participating server. If 

they are different, the transaction aborts due to a 

consistency violation. At commit time, all the proofs will 

have been generated with consistent policies and only 

2PC is invoked. In the global consistency case, the TM 

needs to validate the policy versions used against the 

latest policy version known by the master policies server 

to decide whether to abort or not. At commit time, 2PVC 

is invoked by the TM to check the data integrity 

constraints and verify that the master policies server has 

not received any newer policy versions. 

Finally, Continuous proofs (Definition 9) are the most 

involved. Unlike the case of Incremental Punctual in a 

view consistency, Continuous proofs invoke 2PV at the 

execution of each query, which will update the older 

policies with the new policy and reevaluate. When a 

query is requested, its TM will 1) execute 2PV to 

validate authorizations of all queries up to this point, and 

2) upon CONTINUE being the decision of 2PV, submit 

the next query to be executed at the appropriate server, 

otherwise the transaction aborts. The same actions occur 

under global consistency with the exception that the 

latest policy version is used as identified by the master 

policy server. 
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V. EVALUATIONS 

 

5.1 Environment and Setup 

 

We used Java to implement each proof approach 

described in Section 3 with support for both view and 

global consistency. Although the approaches were 

implemented in their entirety, the underlying database 

and policy enforcement systems were simulated with 

parameters chosen according to Table 1. To understand 

the performance implications of the different approaches, 

we varied the 

1. protocol used, 

2. level of consistency desired, 

3. frequency of master policy updates, 

4. transaction length, and  

5. number of servers available. 

 

Our experimentation framework consists of three main 

components: a randomized transaction generator, a 

master policy server that controls the propagation of 

policy updates, and an array of transaction processing 

servers. 

 

Our experiments were run within a research lab 

consisting of 38 Apple Mac Mini computers. These 

machines were running OS X 10.6.8 and had 1.83-GHz 

Intel Core Duo processors coupled with 2 GB of RAM. 

All machines were connected to a gigabit ethernet LAN 

with average round trip times of 0.35 ms. All WAN 

experiments were also conducted within this testbed by 

artificially delaying packet transmission by an additional 

75 ms. 

For each simulation and each possible combination of 

parameters, 1,000 transactions were run to gather 

average statistics on transaction processing delays 

induced by the particular protocol and system parameter 

choices. The randomized transactions were randomly 

composed of database read sand writes with equal 

probability. To simulate policy updates at different 

servers, the master policy server picks a random 

participating server to receive the updates. 

Given that our interest in this paper lies in exploring the 

average performance of each of the different approaches, 

we made few assumptions to simplify the 

experimentations and help limit the influence of other 

factors on transaction execution time. Specifically, we 

assumed the existence of a single master policy server 

that has to be consulted for the latest policy version 

belonging to a specific policy administrator. This 

simplifies the 2PV protocol and reduces the number of 

exchanged messages to realize the latest version among 

all policy servers. We further assumed that all proofs of 

authorizations evaluate to true (i.e., only authorized 

individuals attempted to run transactions in the system) 

and that no data integrity violations were encountered 

during any transactions execution. Therefore, 

transactions would only abort due to policy 

inconsistency. This means that Deferred, Punctual, and 

Continuous proofs will always produce successful 

commits, whether or not a policy change is detected. 

We measure the average execution time of the shortest 

successfully committed transactions (denoted ts), which 

occurs when there are no policy changes, and the average 

execution time of the longest successfully committed 

transactions (denoted tf), which occurs when policy 

changes force reevaluations of the proofs of 

authorizations or multiple rounds of 2PV are invoked 

(e.g., in Continuous proofs). Essentially, tf captures the 

cost of recovering from a conflict. In the case of 

Continuous proofs, the worst case is when a policy 

change is detected each time a new server joins the 

execution of a transaction. The average transaction 

execution time to terminate (abort or commit) for 

Deferred, Punctual, and Continuous proofs can be 

computed using the following equation, where Pu 

represents the probability of a policy update: 
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Fig. 3. Results for LAN 
experiments. 

As opposed to the other proofs of authorization, in 

Incremental Punctual proofs, if a policy change is 

detected during the execution of a transaction, the 

transaction will abort regardless it is using view or global 

consistency. Therefore, to compute the average execution 

time, we assume that each aborted transaction is re-

executed once to successful commit, with all servers 

using consistent policies. This assumption approximates 

the cost for rolling back the aborted transactions. We use 

the following equation to compute the average 

transaction execution time: 

  

where tf denotes the measured average time of the 
quickest aborted transactions among the simulation runs, 
and ts denote the average time of the successfully 
committed transactions. 

5.2 Simulation Results 

 

Using (1) and (2), we plot Figs. 3 and 4 to show our 

simulation results for both the LAN arrangement and the 

simulated WAN, respectively. Each figure shows the 

execution time of the committed transaction (y-axis) as 

the probability of the policy update changes (x-axis). The 

figures contrast between the four different approaches for 

proofs of authorizations each with the two validation 

modes, namely, view and global consistency. The figures 

show different transactions length: 1) short transactions 

involve 8-15 operations running on up to five servers, 2) 

medium transactions involve 16-30 operations running 

on up to 15 servers, and 3) long transactions involve 

3150 operations running on up to 25 servers. For each 

case, and as a baseline, we measured the transaction 

execution time when transactions execute without any 

proof of authorization and are terminated using the basic 

2PC (shown in figures as a solid line referring to 

Deferred 2PC only). In all cases, the average transaction 

execution time of Deferred proofs with 2PVC was 

effectively the same as the baseline indicating that 2PVC 

has negligible overhead over the basic 2PC. 

The relative performance of the different proofs of 

authorizations is consistent throughout the different 

experiments. From the figures, we can conclude that the 

Deferred proofs have the best performance of all, as the 

transaction operations are allowed to proceed without 

interruption until commit time.  

 

Of course, proofs of authorizations failing at commit 

time will force the transaction to go into a potentially 

expensive rollback. That will not be the case with the 

other schemes, as the proofs are evaluated earlier during 

the execution of the transactions and the rollback process 

of aborted transactions involves fewer operations. 

Punctual proofs come next in terms of performance. The 

minor difference between Punctual and Deferred proofs 

is because Punctual proofs incur the cost for the local 

authorization checks each of which is in the range of 3-5 

ms. Both Deferred and Punctual proofs are on average 

insensitive to the probability of policy updates (as 

realized from the graph slope). This is due to the fact that 

both schemes only enforce consistency at commit time. 

Incremental Punctual proofs show the worst performance 

of all schemes and are the most sensitive to the 

probability of policy updates. This is due to the fact that 

Incremental Punctual proofs using either view or global
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     Fig. 4. Results for WAN experiments. 

 

TABLE 2 

 
 

consistency have the risk of aborting and re-executing 

each time a policy update is encountered. As the policy 

update probability increases, the performance of 

Incremental Punctual is severely penalized. 

Continuous proofs show better performance than the 

Incremental Punctual approach, but are worse than the 

Deferred and Punctual approaches. Just as with 

Incremental Punctual, the performance of Continuous 

proofs suffers as the probability of policy update 

increases, as with each policy update all previously 

evaluated proofs will go through a reevaluation phase 

using the 2PV protocol. 

A final observation is that in most cases, global 

consistency proofs are slightly slower than view 

consistency. This extra latency comes from the 

additional communication round between TM and the 

master policy server to retrieve the latest policy version. 

Global consistency proofs were faster than view 

consistency ones in the few cases when the latest policy 

happens to match the policy used by all participating 

servers and as a result all servers skip the reevaluation 

step of 2PVC. 

VI. TRADEOFF DISCUSSION 

 

In this section, we briefly discuss the strengths and 

weaknesses of each of our protocol variants relative to 

three metrics: performance, accuracy, and precision. 

Since choosing a scheme for data and policy 

consistency enforcement is a strategic decision that has 

to consider many tradeoffs, we also discuss the impact 

of application level requirements on this decision. 

6.1 Absolute Comparison 

 

Table 2 represents a comparison between each of our 

eight approaches for consistency enforcement. In this 

chart, all approaches are assessed relative to one another 

using the metrics described above. Note that the 

rankings used in the chart (high, moderate, low, and 

poor) are not absolute; rather each approach is assessed 

comparatively. 

From the table, we can see that scoring “high” in all the 

metrics is not possible, indicating a tradeoff between 

performance and the other metrics. By design, all our 

approaches are highly precise, as all participants 

internally agree on the policy version to be used during 

the transaction, although the accuracy of this policy can 

vary. In the general case, view consistency is less 

accurate than global consistency, since the view of the 

servers executing the transaction might not account for 

recent updates to the policy in use. Precision and 

accuracy together define the security of the system. 

Deferred proofs are less accurate and, thus, less secure 

than the other approaches—as policies remain 

unchecked until the end of a transaction—but have the 

best performance overall. The Punctual approach has 

similar performance to Deferred, but is slightly more 

accurate than Deferred, since authorizations are at least 
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checked locally throughout the transaction. Incremental 

Punctual has the worst performance—especially when 

frequent policy updates occur—but is more accurate 

and secure than the previous approaches. Finally, 

Continuous has moderate to low performance, which is 

the penalty that must be paid for the high accuracy 

afforded by this approach. 

6.2 Impact of Application Requirements 

 

Choosing a consistency enforcement scheme is not 

something that can be done in isolation, as application 

requirements may limit the schemes available for use 

within a particular application. We now investigate two 

cloud-based applications that are representative of 

larger classes of interesting applications to show how 

requirements can impact the choice of the consistency 

enforcement scheme. In particular, we consider three 

orthogonal axes of requirements: code complexity 

(which is directly related to trusted computing base 

size), transaction mix (i.e., write-only, read/ write with 

internal reads, and read/write with materialized reads), 

and policy/credential update frequency. 

Application: Event Scheduling. Consider an Event 

Monitoring Service (EMS) used by a multi campus 

university to track events within the university and to 

allow staff, faculty members, and student organizations 

to make online event registrations. The university is 

using a cloud infrastructure to host the various EMS 

databases and execute the different transactions. Users 

have varying access privileges that are governed by 

authorization policies and credentials issued by a 

university-wide credentialing system. In this system, 

read requests must be externalized to users during the 

transaction execution so that intermediate decisions can 

be made. Furthermore, the university system in general 

has infrequent policy and credentials updates, and 

requires lower code complexity to minimize code 

verification overheads. 

Recommendation. In this case, the use of Punctual 

proofs makes the most sense. Note that this approach 

has low code complexity, performs fast, and is suitable 

for systems with infrequent updates. Read 

externalization is also permissible, as policies are 

checked prior to each operation in the transaction. 

Application: Sales Database. This example is derived 

from the traveling salesperson example in [13]. 

According to company requirements, a customer’s data 

should only be read by the representatives in the 

operations region of that customer, while any other data 

should not be materialized until commit time. The 

company also experiences very frequent policy and 

credential updates, as representatives are frequently 

assigned to different operational regions. The company 

considers security to be very important as to avoid 

incorrect authorization decisions that might leak 

customer information. Finally, the company has enough 

resources to manage complex code, but still requires 

reasonable execution latency. 

Recommendation. This company should use the 

Continuous global approach for the highest accuracy to 

avoid any information leakage at runtime, or 

Continuous view for slightly lower accuracy. This 

provides a good balance between accuracy and 

performance, at the cost of higher code complexity. 

VII. SIGNIFICATION OF AUTOMATION 

FOR 2PVC LIFE CYCLE 

IMPLEMENTATION 

 

Automation of implementing the 2 Phase Validation 

Commit Protocol can be achieved by the REST APIs, 

Powershell or Cross Platform Scripting languages 

like Node.Js in Microsoft Cloud Computing platform 

i.e. Azure. Similar capabilities are provided by 

Amazon Web Services. By Automating the 2 Phase 

Validation Check, The Delay in Approval Window 

by Cloud Servers & Transaction Managers can be 

significantly reduced. Thus, drastically decreasing 

the Over All Turn-Around Time of the Completeness 

of the Transaction. Automation will also plays 

significant role in Updated policy replication among 

different respective Policy manager servers by live 

monitoring for any latest versions of the policy 

updates. The 2 Phase Validation Life Cycle, thus can 

be implemented in a fully automatic way, which can 

implement faster secure transactions with Proofs Of 

Authorizations. 

Automation also reduces the Manual effort required 

to Approve the Transaction based on the policy 

definition both by Cloud Server & Transaction 

Manager. 

Automation also helps in Privacy & Performance of 

Transactions by implementing Parallel Processing of 

Transactions. The Accuracy & Security is achievable 

through Automation by Independently executing the 

Transactions with Automation Strategy. 

 

VIII. RELATED WORK 

Relaxed Consistency Models for the Cloud. Many 

database solutions have been written for use within the 

cloud environment. For instance, Microsoft’s No SQL 

Database, Amazon’s Dynamo database [14]; Google’s 

BigTable storage system [15]; Facebook’s Cassandra 

[16]; and Yahoo!’s PNUTS [17]. The common thread 

between each of these custom data models is the relaxed 
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notion of consistency provided to support massively 

parallel environments. 

Such a relaxed consistency model adds a new 

dimension to the complexity of the design of large scale 

applications and introduces a new set of consistency 

problems [18]. The authors of [19] presented a model 

that allows queriers to express consistency and 

concurrency constraints on their queries that can be 

enforced by the DBMS at runtime. On the other hand, 

[20] introduces a dynamic consistency rationing 

mechanism that automatically adapts the level of 

consistency at runtime. Both of these works focus on 

data consistency, while our work focuses on attaining 

both data and policy consistency. 

Reliable Outsourcing. Security is considered one of the 

major obstacles to a wider adoption of cloud computing. 

Particular attention has been given to client security as 

it relates to the proper handling of outsourced data. For 

example, proofs of data possession have been proposed 

as a means for clients to ensure that service providers 

actually maintain copies of the data that they are 

contracted to host [21]. In other works, data replication 

have been combined with proofs of retrievability to 

provide users with integrity and consistency guarantees 

when using cloud storage [22], [23]. 

To protect user access patterns from a cloud data store, 

Williams et al. [24] introduce a mechanism by which 

cloud storage users can issue encrypted reads, writes, 

and inserts. Further, Williams et al. [25] propose a 

mechanism that enables untrusted service providers to 

support transaction serialization, backup, and recovery 

with full data confidentiality and correctness. This work 

is orthogonal to the problem that we focus on in this 

paper, namely consistency problems in policy-based 

database transactions. 

Distributed Transactions. CloudTPS provides full 

ACID properties with a scalable transaction manager 

designed for a NoSQL environment [26]. However, 

CloudTPS is primarily concerned with providing 

consistency and isolation upon data without regard to 

considerations of authorization policies. 

There has also been recent work that focuses on 

providing some level of guarantee to the relationship 

between data and policies [27]. This work proactively 

ensures that data stored at a particular site conforms to 

the policy stored at that site. If the policy is updated, the 

server will scan the data items and throw out any that 

would be denied based on the revised policy. It is 

obvious that this will lead to an eventually consistent 

state where data and policy conform, but this work only 

concerns itself with local consistency of a single node, 

not with transactions that span multiple nodes. 

Distributed Authorization. The consistency of 

distributed proofs of authorization has previously been 

studied, though not in a dynamic cloud environment 

(e.g., [4]). This work highlights the inconsistency issues 

that can arise in the case where authorization policies 

are static, but the credentials used to satisfy these 

policies may be revoked or altered. The authors develop 

protocols that enable various consistency guarantees to 

be enforced during the proof construction process to 

minimize these types of security issues. These 

consistency guarantees are similar to our notions of safe 

transactions. However, our work also addresses the case 

in which policies—in addition to credentials—may be 

altered or modified during a transaction. 

IX. CONCLUSIONS 

Despite the popularity of cloud services and their wide 

adoption by enterprises and governments, cloud 

providers still lack services that guarantee both data and 

access control policy consistency across multiple data 

centers. In this paper, we identified several consistency 

problems that can arise during cloud-hosted transaction 

processing using weak consistency models, particularly 

if policy-based authorization systems are used to 

enforce access controls. To this end, we developed a 

variety of lightweight proof enforcement and 

consistency models—i.e., Deferred, Punctual, 

Incremental, and Continuous proofs, with view or 

global consistency—that can enforce increasingly 

strong protections with minimal runtime overheads. 

We used simulated workloads to experimentally 

evaluate implementations of our proposed consistency 

models relative to three core metrics: transaction 

processing performance, accuracy (i.e., global versus 

view consistency and recency of policies used), and 

precision (level of agreement among transaction 

participants). We found that high performance comes at 

a cost: Deferred and Punctual proofs had minimal 

overheads, but failed to detect certain types of 

consistency problems. On the other hand, high-accuracy 

models (i.e., Incremental and Continuous) required 

higher code complexity to implement correctly, and had 

only moderate performance when compared to the 

lower accuracy schemes. To better explore the 

differences between these approaches, we also carried 

out a tradeoff analysis of our schemes to illustrate how 

application-centric requirements influence the 

applicability of the eight protocol variants explored in 

this paper. 
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