
International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016

ISSN: 2347-8578 www.ijcstjournal.org Page 188

Automation of Secure Cloud Transactions

Process Life Cycle

Subhash Konduru

ABSTRACT
In Today’s World, Automation is playing a vital role in terms of Human Effort Reduction, Zero-Touch & Absolute
Zero Human Error Transactions. Even though the prime goal of Automation is to provide faster & agile based
human effort reduction and fully automatic solutions, Automation provides much more than just human effort
reduction. Since the Time Cloud market hit the internet, there is a continuous exponential change in Small, Medium
& Enterprise Business’s Infrastructure Management Migration / Deployment into the Cloud. Since most of the
Organizations are now subscribing for Cloud Based Infrastructure / Platform Services, there is a significant need for
faster way of Provision, Configuration & Deployment through Cloud based Automation. While Faster Delivery &
Deployment are significant goals to achieve, “Privacy, Performance, Accuracy & Precision of Transactions” are
utmost important. In this paper, we will discuss about the Cloud based Automation Solutions to achieve “Privacy,
Performance, Accuracy & Precision of Transactions” in Cloud Transactions by Means of Automation.

Keywords:—Automation, Cloud Automation, Cloud databases, authorization policies, consistency, distributed
transactions, atomic commit protocol

I. INTRODUCTION

LOUD computing is a general term for the

delivery of hosted services over the internet.

Cloud computing enables companies to consume a

compute resource, such as a virtual machine

(VMs), storage or an application, as a utility just like

electricity rather than having to build and maintain

computing infrastructures in house. Cloud Computing

provides Pay-As-You-Use Model of Service Offerings

which significantly helps Organizations to provision

the Infrastructure / Platform On Demand with no

Initial Capital Investment and thus get high Return On

Investment [ROI].

Cloud Computing recently emerged as a computing

paradigm in which storage and computation can be

outsourced from organizations to next generation data

centers hosted by companies such as Microsoft,

Amazon, Google, IBM, and Yahoo. Such companies

help free organizations from requiring expensive

infrastructure and expertise in-house, and instead

make use of the cloud providers to maintain, support,

and broker access to high-end resources. From an

economic perspective, cloud consumers can save huge

IT capital investments and be charged on the basis of a

pay-only-for-what-you-use pricing model.

One of the most appealing aspects of cloud computing

is its elasticity, which provides an illusion of infinite,

on-demand resources making it an attractive

environment for highly scalable, multitier applications.

However, this can create additional challenges for

back-end, transactional database systems, which were

designed without elasticity in mind. Despite the efforts

of key-value stores like Microsoft’s NO SQL

Database, Amazon’s SimpleDB, Dynamo, and

Google’s Bigtable to provide scalable access to huge

amounts of data, transactional guarantees remain a

bottleneck.

To provide scalability and elasticity, cloud services

often make heavy use of replication to ensure

consistent performance and availability. As a result,

many cloud services rely on the notion of eventual

consistency when propagating data throughout the

system. This consistency model is a variant of weak

consistency that allows data to be inconsistent among

some replicas during the update process, but ensures

that updates will eventually be propagated to all

replicas. This makes it difficult to strictly maintain the

ACID guarantees, as the “C” (consistency) part of

ACID is sacrificed to provide reasonable availability.

In systems that host sensitive resources like Financial /

Healthcare Data, accesses are protected via authorization

policies that describe the conditions under which users

should be permitted access to resources. These policies

describe relationships between the system principles, as

well as the certified credentials that users must provide to

attest to their attributes. In a transactional database

system that is deployed in a highly distributed and elastic

system such as the cloud, policies would typically be

replicated—very much like data— among multiple sites,

often following the same weak or eventual consistency

model. It therefore becomes possible for a policy-based

authorization system to make unsafe decisions using

stale policies.

In distributed transactional database systems deployed

over cloud servers, entities cooperate to form proofs of

C

RESEARCH ARTICLE

OPEN ACCESS

http://www.ijcstjournal.org/
http://searchservervirtualization.techtarget.com/definition/virtual-machine
http://searchstorage.techtarget.com/definition/storage

ISSN: 2347-8578 www.ijcstjournal.org Page 189

authorizations that are justified by collections of

certified credentials. These proofs and credentials may

be evaluated and collected over extended time periods

under the risk of having the underlying authorization

policies or the user credentials being in inconsistent

states. Interesting consistency problems can arise as

transactional database systems are deployed in cloud

environments and use policy-based authorization

systems to protect sensitive resources. In addition to

handling consistency issues among database replicas,

we must also handle two types of security

inconsistency conditions. First, the system may suffer

from policy inconsistencies during policy updates due

to the relaxed consistency model underlying most

cloud services. For example, it is possible for several

versions of the policy to be observed at multiple sites

within a single transaction, leading to inconsistent (and

likely unsafe) access decisions during the transaction.

Second, it is possible for external factors to cause user

credential inconsistencies over the lifetime of a

transaction. It therefore becomes possible for policy-

based authorization systems to make unsafe decisions

that might threaten sensitive resources. In this paper,

we highlight the criticality of the problem. We then

define the notion of trusted transactions when dealing

with proofs of authorization. Accordingly, we propose

several increasingly stringent levels of policy

consistency constraints, and present different

enforcement approaches to guarantee the

trustworthiness of transactions executing on cloud

servers. We are considering Automation of a Two-

Phase Validation Commit protocol as a solution,

which is a modified version of the basic Two-Phase

Validation Commit protocols. We finally analyze the

different approaches presented using both Automation

& Manual evaluation of the overheads and simulations

to guide the decision makers to which approach to use.

For instance, a user’s login credentials could be

invalidated or revoked after collection by the

authorization server, but before the completion of the

transaction.

Fig. 1. Interaction among the system components.

In this paper, we address this confluence of data, policy,

and credential inconsistency problems that can

emerge as transactional database systems are deployed to

the cloud. In doing so, we make the following

contributions:

. We formalize the concept of trusted

transactions. Trusted transactions are those

transactions that do not violate credential or

policy inconsistencies over the lifetime of the

transaction. We then present a more general term,

safe transactions, that identifies transactions that

are both trusted and conform to the ACID

properties of distributed database systems

(Section 2).

. We define several different levels of policy

consistency constraints and corresponding

enforcement approaches that guarantee the

trustworthiness of transactions executing on

cloud servers (Section 3).

. We propose a Two-Phase Validation Commit

(2PVC) protocol that ensures that a transaction is

safe by checking policy, credential, and data

consistency during transaction execution (Section

4).

. We carry out an experimental evaluation of our

proposed approaches (Section 5), and present a

tradeoff discussion to guide decision makers as to

which approach is most suitable in various

situations (Section 6).

Section 7 describes previous related work, Finally,

Section 8 describes the significance of Automation of 2

Phase Validation Commit Life Cycle, while Section 9

presents our conclusions.

II. SYSTEM ASSUMPTIONS AND

PROBLEM DEFINITION

2.1 System Model

Fig. 1 illustrates the interaction among the components

in our system. We assume a cloud infrastructure

consisting of a set of S servers, where each server is

responsible for hosting a subset D of all data items D

belonging to a specific application domain

.Users interact with the system by submitting

queries or update requests encapsulated in ACID

transactions. A transaction is submitted to a Transaction

Manager (TM) that coordinates its execution. Multiple

TMs could be invoked as the system workload

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 190

increases for load balancing, but each transaction is

handled by only one TM.

We denote each transaction as T = q1, q2,...,qn, where qi

Q is a single query/update belonging to the set of all

queries Q. The start time of each transaction is denoted

by α (T), and the time at which the transaction finishes

execution and is ready to commit is denoted by ω(T). We

assume that queries belonging to a transaction execute

sequentially, and that a transaction does not fork sub-

transactions. These assumptions simplify our

presentation, but do not affect the correctness or the

validity of our consistency definitions.

Let P denote the set of all authorization policies, and let

denote the policy that server si uses to protect

data item D. We represent a policy P as a mapping P : S

2D -> 2R × A × IN that associates a server and a set of

data items with a set of inference rules from the set R, a

policy administrator from the set A, and a version

number. We denote by C the set of all credentials, which

are issued by the Certificate Authorities (CAs) within the

system. We assume that each CA offers an online

method that allows any server to check the current status

of credentials that it has issued. Given a credential ck C,

α (ck) and ω(ck) denote issue and expiration times of ck,

respectively. Given a function m : Q -> 2D that identifies

the data items accessed by a particular query, a proof of

authorization for query qi evaluated at server sj at time tk

is a tuple (qi,sj,Psj(m(qi),tk,C), where C is the set of

credentials presented by the querier to satisfy Psj(m(qi)).

In this paper, we use the function eval : F × TS -> IB to

denote whether a proof f F is valid at time t TS.

To enhance the general applicability of the consistency

models developed in this paper, the above formalism is

intentionally opaque with respect to the policy and

credential formats used to implement the system. For

instance, this formalism could easily be used to model

the use of XACML policies as the set of inference rules

R, and traditional (e.g., X.509 [7]) credentials for the set

C. On the other hand, it can also model the use of more

advanced trust management policies (e.g., [8], [9]) for

the inference rules R, and the use of privacy-friendly

credentials (e.g., [10], [11]) for the set C.

2.2 Problem Definition

Since transactions are executed over time, the state

information of the credentials and the policies enforced

by different servers are subject to changes at any time

instance, therefore it becomes important to introduce

precise definitions for the different consistency levels

that could be achieved within a transaction’s lifetime.

These consistency models strengthen the trusted

transaction definition by defining the environment in

which policy versions are consistent relative to the rest of

the system. Before we do that, we define a transaction’s

view in terms of the different proofs of authorization

evaluated during the lifetime of a particular transaction.

Definition 1 (View). A transaction’s view V T is the

set of proofs of authorizations observed during the

lifetime of a transaction and defined

as

Fig. 2. Different variants of proofs of
authorizations.

Following from Definition 1, a transaction’s view is built

incrementally as more proofs of authorizations are being

evaluated by servers during the transaction execution.

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 191

We now present two increasingly more powerful

definitions of consistencies within transactions.

Definition 2 (View Consistency). A view

 is view consistent,

or Ø-consistent, if V T satisfies a predicate consistent

that places constraints on the versioning of the

policies such that Ø –consistent

 for all

policies belonging to the same administrator A, where

function is defined as ver : P -> IN.

With a view consistency model, the policy versions

should be internally consistent across all servers

executing the transaction. The view consistency model is

weak in that the policy version agreed upon by the subset

of servers within the transaction may not be the latest

policy version v. It may be the case that a server outside

of the S servers has a policy that belongs to the same

administrative domain and with a version v0 >v. A more

strict consistency model is the global consistency and is

defined as follows:

Definition 3 (Global Consistency). A view

is

global consistent, or Ø-consistent, if V T satisfies a

predicate hat places constraints on the

versioning of the policies such that

for all

policies belonging to the same administrator A, and

function ver follows the same aforementioned

definition, while ver(P) refers to the latest policy

version.

With a global consistency model, policies used to

evaluate the

proofs of authorizations during a transaction execution

among S servers should match the latest policy version

among the entire policy set P, for all policies enforced by

the same administrator A.

Given the above definitions, we now have a precise

vocabulary for defining the conditions necessary for a

transaction to be asserted as “trusted.”

 Definition 4 (Trusted Transaction). Given a transaction

T =

 and its corresponding view V T , T is

trusted iff , at some time instance

.

Finally, we say that a transaction is safe if it is a trusted

transaction that also satisfies all data integrity constraints

imposed by the database management system. A safe

transaction is allowed to commit, while an unsafe

transaction is forced to rollback.

III. TRUSTED TRANSACTION

ENFORCEMENT

In this section, we present several increasingly stringent

approaches for enforcing trusted transactions. We show

that each approach offers different guarantees during the

course of a transaction. Fig. 2 is a graphical depiction of

how these approaches could be applied to a transaction

running across three server, and will be referenced

throughout this section. In this figure, dots represent the

arrival time of a query to some server, stars indicate the

times at which a server validates a proof of authorization,

and dashed lines represent view- or globally consistency

policy synchronization among servers.

3.1 Deferred Proofs of Authorization

Definition 5 (Deferred Proofs of Authorization).

Given a transaction T and its corresponding view V T ,

T is trusted under the Deferred proofs of authorization

approach, iff at commit time

Deferred proofs present an optimistic approach with

relatively weak authorization guarantees. The proofs of

authorizations are evaluated simultaneously only at

commit time (using either view or global consistency

from Definitions 2 and 3) to decide whether the

transaction is trusted.

3.2 Punctual Proofs of Authorization

Definition 6 (Punctual Proofs of Authorization).

Given a transaction T and its corresponding view V T ,

T is trusted under the Punctual proofs of authorization

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 192

approach, iff at any time instance

Punctual proofs present a more proactive approach in

which the proofs of authorizations are evaluated

instantaneously whenever a query is being handled by a

server. This facilitates early detections of unsafe

transactions which can save the system from going into

expensive undo operations. All the proofs of

authorizations are then reevaluated at commit time to

ensure that policies were not updated during the

transaction in a way that would invalidate a previous

proof, and that credentials were not invalidated.

Punctual proofs do not impose any restrictions on the

freshness of the policies used by the servers during the

transaction execution. Consequently, servers might

falsely deny or allow access to data. Thus, we propose

two more restrictive approaches that enforce some

degree of consistency among the participating servers

each time a proof is evaluated.

3.3 Incremental Punctual Proofs of Authorization

Before we define the Incremental Punctual proofs of

authorization approach, we define a view instance, which

is a view snapshot at a specific time instance.

Definition 7 (View Instance). A view instance A view

instance is defined as

Informally, a view instance Vt
T

i is the subset of all proofs

of authorization evaluated by servers involved in

transaction T up till the time instance ti.

Definition 8 (Incremental Punctual Proofs of

Authorization). Given a transaction T and its

corresponding view V T , T is trusted under the

Incremental Punctual proofs of authorization

approach, iff at any time instance

 .

Incremental Punctual proofs develop a stronger notion of

trusted transactions, as a transaction is not allowed to

proceed unless each server achieves the desired level of

the policy consistency with all previous servers. This

implies that all participating servers will be forced to

have a consistent view with the first executing server

unless a newer policy version shows up at a later server,

in which case the transaction aborts.

For view consistency, no consistency check at commit

time is required, since all participating servers will be

view consistent by commit time. On the other hand, the

global consistency condition necessitates another

consistency check at commit time to confirm that the

policies used have not become stale during the window

of execution between the last proofs of authorization and

commit time.

3.4 Continuous Proofs of Authorization

We now present the least permissive approach which we

call Continuous proofs of authorization.

Definition 9 (Continuous Proofs of Authorization).

A transaction T is trusted under the Continuous

approach, iff

.

In Continuous proofs, whenever a proof is evaluated, all

previous proofs have to be reevaluated if a newer version

of the policy is found at any of the participating servers.

At commit time, Continuous proofs behave similarly to

Incremental Punctual proofs. In contrast with the

Incremental Punctual proofs, if later executing servers

are using newer policy versions, all previous servers

must 1) update their policies to be consistent with the

newest one, and 2) reevaluate their proofs of

authorization using the newer policies. In the case of

global consistency, all servers will be forced to use the

latest policy version at all times. Therefore, we consider

this variant of our approaches to be the strictest approach

of all giving the best privacy and consistency guarantees.

The decision of which approach to adopt is likely to be a

strategic choice made independently by each application.

As with any tradeoff, the stronger the security and

accuracy given by an approach, the more the system has

to pay in terms of implementation and messages

exchange overheads. Further discussion of these

tradeoffs will be presented in Section 6.

IV. IMPLEMENTING SAFE

TRANSACTIONS

A safe transaction is a transaction that is both trusted

(i.e., satisfies the correctness properties of proofs of

authorization) and database correct (i.e., satisfies the data

integrity constraints). We first describe an algorithm that

enforces trusted transactions, and then expand this

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 193

algorithm to enforce safe transactions. Finally, we show

how these algorithms can be used to implement the

approaches discussed in Section 3.

4.1 Two-Phase Validation (2PV) Algorithm

A common characteristic of most of our proposed

approaches to achieve trusted transactions is the need for

policy consistency validation at the end of a transaction.

That is, in order for a trusted transaction to commit, its

TM has to enforce either view or global consistency

among the servers participating in the transaction.

Toward this, we propose a new algorithm called Two-

Phase Validation.

As the name implies, 2PV operates in two phases:

collection and validation. During collection, the TM first

sends a Prepare-to-Validate message to each participant

server. In response to this message, each participant 1)

evaluates the proofs for each query of the transaction

using the latest policies it has available and 2) sends a

reply back to the TM containing the truth value

(TRUE/FALSE) of those proofs along with the version

number and policy identifier for each policy used.

Further, each participant keeps track of its reply (i.e., the

state of each query) which includes the id of the TM

(TMid), the id of the transaction (Tid) to which the query

belongs, and a set of policy versions used in the query’s

authorization (vi,pi).

Once the TM receives the replies from all the

participants, it moves on to the validation phase. If all

polices are consistent, then the protocol honors the truth

value where any FALSE causes an ABORT decision and

all TRUE cause a CONTINUE decision. In the case of

inconsistent policies, the TM identifies the latest policy

and sends an Update message to each out-of-date

participant with a policy identifier and returns to the

collection phase. In this case, the participants 1) update

their policies, 2) reevaluate the proofs and, 3) send a new

reply to the TM. Algorithm 1 shows the process for the

TM.

Algorithm 1. Two-Phase Validation - 2PV(TM).

1 Send “Prepare-to-Validate” to all

participants

2 Wait for all replies (a True/False, and a

set of policy versions for each unique policy)

3 Identify the largest version for all

unique policies

4 If all participants utilize the largest

version for each unique policy

5 If any responded False

6 ABORT

7 Otherwise

8 CONTINUE

9 Otherwise, for all participants with old

versions of policies

10 Send “Update” with the largest version

number of each policy

11 Goto 2

In the case of view consistency (Definition 2), there will

be at most two rounds of the collection phase. A

participant may only be asked to reevaluate a query using

a newer policy by an Update message from the TM after

one collection phase.

For the global consistency case (Definition 3), the TM

retrieves the latest policy version from a master policies

server (Step 2) and uses it to compare against the version

numbers of each participant (Step 3). This master version

may be retrieved only once or each time Step 3 is

invoked. For the former case, collection may only be

executed twice as in the case of view consistency. In the

latter case, if the TM retrieves the latest version every

round, global consistency may execute the collection

many times. This is the case if the policy is updated

during the round. While the number of rounds are

theoretically infinite, in a practical setting, this should

occur infrequently.

4.2 Two-Phase Validate Commit Algorithm

The 2PV protocol enforces trusted transactions, but does

not enforce safe transactions because it does not validate

any integrity constraints. Since the Two-Phase Commit

atomic protocol commonly used to enforce integrity

constraints has similar structure as 2PV, we propose

integrating these protocols into a Two-Phase Validation

Commit protocol. 2PVC can be used to ensure the data

and policy consistency requirements of safe transactions.

Specifically, 2PVC will evaluate the policies and

authorizations within the first, voting phase. That is,

when the TM sends out a Prepare-to-Commit message

for a transaction, the participant server has three values

to report 1) the YES or NO reply for the satisfaction of

integrity constraints as in 2PC, 2) the TRUE or FALSE

reply for the satisfaction of the proofs of authorizations

as in 2PV, and 3) the version number of the policies used

to build the proofs (vi,pi) as in 2PV.

The process given in Algorithm 2 is for the TM under

view consistency. It is similar to that of 2PV with the

exception of handling the YES or NO reply for integrity

constraint validation and having a decision of COMMIT

rather than CONTINUE. The TM enforces the same

behavior as 2PV in identifying policies inconsistencies

and sending the Update messages. The same changes to

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 194

2PV can be made here to provide global consistency by

consulting the master policies server for the latest policy

version (Step 5).

Algorithm 2. Two-Phase Validation Commit - 2PVC

(TM).

 1 Send “Prepare-to-Commit” to all

participants

2 Wait for all replies (Yes/No,

True/False, and a set of policy versions

for each unique policy)

3 If any participant replied No for

integrity check

4 ABORT

5 Identify the largest version for all

unique policies

6 If all participants utilize the largest

version for each unique policy

7 If any responded False

8 ABORT

9 Otherwise

10 COMMIT

11 Otherwise, for participants with old

policies

12 Send “Update” with the largest version

number of each policy

13 Wait for all replies

14 Goto 5

The resilience of 2PVC to system and communication

failures can be achieved in the same manner as 2PC by

recording the progress of the protocol in the logs of the

TM and participants. In the case of 2PVC, a participant

must forcibly log the set of ðvi;piÞ tuples along with its

vote and truth value. Similarly to 2PC, the cost of 2PVC

can be measured in terms of log complexity (i.e., the

number of times the protocol forcibly logs for recovery)

and message complexity (i.e., the number of messages

sent). The log complexity of 2PVC is no different than

basic 2PC and can be improved by using any of log-

based optimizations of 2PC such as Presumed-Abort

(PrA) and Presumed-Commit (PrC)

[12]. The message complexity of 2PVC was analyzed in

[13].

4.3 Using 2PV and 2PVC in Safe Transactions

2PV and 2PVC can be used to enforce each of the

consistency levels defined in Section 3. Deferred and

Punctual (Definitions 5 and 6) proofs are roughly the

same. The only difference is that Punctual will return

proof evaluations upon executing each query. Yet, this is

done on a single server, and therefore, does not need

2PVC or 2PV to distribute the decision. To provide for

trusted transactions, both require at commit time

evaluation at all participants using 2PVC.

Incremental Punctual (Definition 8) proofs are slightly

different. As queries are executed, the TM must also

check for consistency within the participating servers.

Hence,

TABLE 1

Simulation Parameters

a variant of the basic 2PV protocol is used during the

transaction execution. For view consistency, the TM

needs to check the version number it receives from each

server with that of the very first participating server. If

they are different, the transaction aborts due to a

consistency violation. At commit time, all the proofs will

have been generated with consistent policies and only

2PC is invoked. In the global consistency case, the TM

needs to validate the policy versions used against the

latest policy version known by the master policies server

to decide whether to abort or not. At commit time, 2PVC

is invoked by the TM to check the data integrity

constraints and verify that the master policies server has

not received any newer policy versions.

Finally, Continuous proofs (Definition 9) are the most

involved. Unlike the case of Incremental Punctual in a

view consistency, Continuous proofs invoke 2PV at the

execution of each query, which will update the older

policies with the new policy and reevaluate. When a

query is requested, its TM will 1) execute 2PV to

validate authorizations of all queries up to this point, and

2) upon CONTINUE being the decision of 2PV, submit

the next query to be executed at the appropriate server,

otherwise the transaction aborts. The same actions occur

under global consistency with the exception that the

latest policy version is used as identified by the master

policy server.

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 195

V. EVALUATIONS

5.1 Environment and Setup

We used Java to implement each proof approach

described in Section 3 with support for both view and

global consistency. Although the approaches were

implemented in their entirety, the underlying database

and policy enforcement systems were simulated with

parameters chosen according to Table 1. To understand

the performance implications of the different approaches,

we varied the

1. protocol used,

2. level of consistency desired,

3. frequency of master policy updates,

4. transaction length, and

5. number of servers available.

Our experimentation framework consists of three main

components: a randomized transaction generator, a

master policy server that controls the propagation of

policy updates, and an array of transaction processing

servers.

Our experiments were run within a research lab

consisting of 38 Apple Mac Mini computers. These

machines were running OS X 10.6.8 and had 1.83-GHz

Intel Core Duo processors coupled with 2 GB of RAM.

All machines were connected to a gigabit ethernet LAN

with average round trip times of 0.35 ms. All WAN

experiments were also conducted within this testbed by

artificially delaying packet transmission by an additional

75 ms.

For each simulation and each possible combination of

parameters, 1,000 transactions were run to gather

average statistics on transaction processing delays

induced by the particular protocol and system parameter

choices. The randomized transactions were randomly

composed of database read sand writes with equal

probability. To simulate policy updates at different

servers, the master policy server picks a random

participating server to receive the updates.

Given that our interest in this paper lies in exploring the

average performance of each of the different approaches,

we made few assumptions to simplify the

experimentations and help limit the influence of other

factors on transaction execution time. Specifically, we

assumed the existence of a single master policy server

that has to be consulted for the latest policy version

belonging to a specific policy administrator. This

simplifies the 2PV protocol and reduces the number of

exchanged messages to realize the latest version among

all policy servers. We further assumed that all proofs of

authorizations evaluate to true (i.e., only authorized

individuals attempted to run transactions in the system)

and that no data integrity violations were encountered

during any transactions execution. Therefore,

transactions would only abort due to policy

inconsistency. This means that Deferred, Punctual, and

Continuous proofs will always produce successful

commits, whether or not a policy change is detected.

We measure the average execution time of the shortest

successfully committed transactions (denoted ts), which

occurs when there are no policy changes, and the average

execution time of the longest successfully committed

transactions (denoted tf), which occurs when policy

changes force reevaluations of the proofs of

authorizations or multiple rounds of 2PV are invoked

(e.g., in Continuous proofs). Essentially, tf captures the

cost of recovering from a conflict. In the case of

Continuous proofs, the worst case is when a policy

change is detected each time a new server joins the

execution of a transaction. The average transaction

execution time to terminate (abort or commit) for

Deferred, Punctual, and Continuous proofs can be

computed using the following equation, where Pu

represents the probability of a policy update:

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 196

Fig. 3. Results for LAN
experiments.

As opposed to the other proofs of authorization, in

Incremental Punctual proofs, if a policy change is

detected during the execution of a transaction, the

transaction will abort regardless it is using view or global

consistency. Therefore, to compute the average execution

time, we assume that each aborted transaction is re-

executed once to successful commit, with all servers

using consistent policies. This assumption approximates

the cost for rolling back the aborted transactions. We use

the following equation to compute the average

transaction execution time:

where tf denotes the measured average time of the
quickest aborted transactions among the simulation runs,
and ts denote the average time of the successfully
committed transactions.

5.2 Simulation Results

Using (1) and (2), we plot Figs. 3 and 4 to show our

simulation results for both the LAN arrangement and the

simulated WAN, respectively. Each figure shows the

execution time of the committed transaction (y-axis) as

the probability of the policy update changes (x-axis). The

figures contrast between the four different approaches for

proofs of authorizations each with the two validation

modes, namely, view and global consistency. The figures

show different transactions length: 1) short transactions

involve 8-15 operations running on up to five servers, 2)

medium transactions involve 16-30 operations running

on up to 15 servers, and 3) long transactions involve

3150 operations running on up to 25 servers. For each

case, and as a baseline, we measured the transaction

execution time when transactions execute without any

proof of authorization and are terminated using the basic

2PC (shown in figures as a solid line referring to

Deferred 2PC only). In all cases, the average transaction

execution time of Deferred proofs with 2PVC was

effectively the same as the baseline indicating that 2PVC

has negligible overhead over the basic 2PC.

The relative performance of the different proofs of

authorizations is consistent throughout the different

experiments. From the figures, we can conclude that the

Deferred proofs have the best performance of all, as the

transaction operations are allowed to proceed without

interruption until commit time.

Of course, proofs of authorizations failing at commit

time will force the transaction to go into a potentially

expensive rollback. That will not be the case with the

other schemes, as the proofs are evaluated earlier during

the execution of the transactions and the rollback process

of aborted transactions involves fewer operations.

Punctual proofs come next in terms of performance. The

minor difference between Punctual and Deferred proofs

is because Punctual proofs incur the cost for the local

authorization checks each of which is in the range of 3-5

ms. Both Deferred and Punctual proofs are on average

insensitive to the probability of policy updates (as

realized from the graph slope). This is due to the fact that

both schemes only enforce consistency at commit time.

Incremental Punctual proofs show the worst performance

of all schemes and are the most sensitive to the

probability of policy updates. This is due to the fact that

Incremental Punctual proofs using either view or global

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 197

 Fig. 4. Results for WAN experiments.

TABLE 2

consistency have the risk of aborting and re-executing

each time a policy update is encountered. As the policy

update probability increases, the performance of

Incremental Punctual is severely penalized.

Continuous proofs show better performance than the

Incremental Punctual approach, but are worse than the

Deferred and Punctual approaches. Just as with

Incremental Punctual, the performance of Continuous

proofs suffers as the probability of policy update

increases, as with each policy update all previously

evaluated proofs will go through a reevaluation phase

using the 2PV protocol.

A final observation is that in most cases, global

consistency proofs are slightly slower than view

consistency. This extra latency comes from the

additional communication round between TM and the

master policy server to retrieve the latest policy version.

Global consistency proofs were faster than view

consistency ones in the few cases when the latest policy

happens to match the policy used by all participating

servers and as a result all servers skip the reevaluation

step of 2PVC.

VI. TRADEOFF DISCUSSION

In this section, we briefly discuss the strengths and

weaknesses of each of our protocol variants relative to

three metrics: performance, accuracy, and precision.

Since choosing a scheme for data and policy

consistency enforcement is a strategic decision that has

to consider many tradeoffs, we also discuss the impact

of application level requirements on this decision.

6.1 Absolute Comparison

Table 2 represents a comparison between each of our

eight approaches for consistency enforcement. In this

chart, all approaches are assessed relative to one another

using the metrics described above. Note that the

rankings used in the chart (high, moderate, low, and

poor) are not absolute; rather each approach is assessed

comparatively.

From the table, we can see that scoring “high” in all the

metrics is not possible, indicating a tradeoff between

performance and the other metrics. By design, all our

approaches are highly precise, as all participants

internally agree on the policy version to be used during

the transaction, although the accuracy of this policy can

vary. In the general case, view consistency is less

accurate than global consistency, since the view of the

servers executing the transaction might not account for

recent updates to the policy in use. Precision and

accuracy together define the security of the system.

Deferred proofs are less accurate and, thus, less secure

than the other approaches—as policies remain

unchecked until the end of a transaction—but have the

best performance overall. The Punctual approach has

similar performance to Deferred, but is slightly more

accurate than Deferred, since authorizations are at least

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 198

checked locally throughout the transaction. Incremental

Punctual has the worst performance—especially when

frequent policy updates occur—but is more accurate

and secure than the previous approaches. Finally,

Continuous has moderate to low performance, which is

the penalty that must be paid for the high accuracy

afforded by this approach.

6.2 Impact of Application Requirements

Choosing a consistency enforcement scheme is not

something that can be done in isolation, as application

requirements may limit the schemes available for use

within a particular application. We now investigate two

cloud-based applications that are representative of

larger classes of interesting applications to show how

requirements can impact the choice of the consistency

enforcement scheme. In particular, we consider three

orthogonal axes of requirements: code complexity

(which is directly related to trusted computing base

size), transaction mix (i.e., write-only, read/ write with

internal reads, and read/write with materialized reads),

and policy/credential update frequency.

Application: Event Scheduling. Consider an Event

Monitoring Service (EMS) used by a multi campus

university to track events within the university and to

allow staff, faculty members, and student organizations

to make online event registrations. The university is

using a cloud infrastructure to host the various EMS

databases and execute the different transactions. Users

have varying access privileges that are governed by

authorization policies and credentials issued by a

university-wide credentialing system. In this system,

read requests must be externalized to users during the

transaction execution so that intermediate decisions can

be made. Furthermore, the university system in general

has infrequent policy and credentials updates, and

requires lower code complexity to minimize code

verification overheads.

Recommendation. In this case, the use of Punctual

proofs makes the most sense. Note that this approach

has low code complexity, performs fast, and is suitable

for systems with infrequent updates. Read

externalization is also permissible, as policies are

checked prior to each operation in the transaction.

Application: Sales Database. This example is derived

from the traveling salesperson example in [13].

According to company requirements, a customer’s data

should only be read by the representatives in the

operations region of that customer, while any other data

should not be materialized until commit time. The

company also experiences very frequent policy and

credential updates, as representatives are frequently

assigned to different operational regions. The company

considers security to be very important as to avoid

incorrect authorization decisions that might leak

customer information. Finally, the company has enough

resources to manage complex code, but still requires

reasonable execution latency.

Recommendation. This company should use the

Continuous global approach for the highest accuracy to

avoid any information leakage at runtime, or

Continuous view for slightly lower accuracy. This

provides a good balance between accuracy and

performance, at the cost of higher code complexity.

VII. SIGNIFICATION OF AUTOMATION

FOR 2PVC LIFE CYCLE

IMPLEMENTATION

Automation of implementing the 2 Phase Validation

Commit Protocol can be achieved by the REST APIs,

Powershell or Cross Platform Scripting languages

like Node.Js in Microsoft Cloud Computing platform

i.e. Azure. Similar capabilities are provided by

Amazon Web Services. By Automating the 2 Phase

Validation Check, The Delay in Approval Window

by Cloud Servers & Transaction Managers can be

significantly reduced. Thus, drastically decreasing

the Over All Turn-Around Time of the Completeness

of the Transaction. Automation will also plays

significant role in Updated policy replication among

different respective Policy manager servers by live

monitoring for any latest versions of the policy

updates. The 2 Phase Validation Life Cycle, thus can

be implemented in a fully automatic way, which can

implement faster secure transactions with Proofs Of

Authorizations.

Automation also reduces the Manual effort required

to Approve the Transaction based on the policy

definition both by Cloud Server & Transaction

Manager.

Automation also helps in Privacy & Performance of

Transactions by implementing Parallel Processing of

Transactions. The Accuracy & Security is achievable

through Automation by Independently executing the

Transactions with Automation Strategy.

VIII. RELATED WORK

Relaxed Consistency Models for the Cloud. Many

database solutions have been written for use within the

cloud environment. For instance, Microsoft’s No SQL

Database, Amazon’s Dynamo database [14]; Google’s

BigTable storage system [15]; Facebook’s Cassandra

[16]; and Yahoo!’s PNUTS [17]. The common thread

between each of these custom data models is the relaxed

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 199

notion of consistency provided to support massively

parallel environments.

Such a relaxed consistency model adds a new

dimension to the complexity of the design of large scale

applications and introduces a new set of consistency

problems [18]. The authors of [19] presented a model

that allows queriers to express consistency and

concurrency constraints on their queries that can be

enforced by the DBMS at runtime. On the other hand,

[20] introduces a dynamic consistency rationing

mechanism that automatically adapts the level of

consistency at runtime. Both of these works focus on

data consistency, while our work focuses on attaining

both data and policy consistency.

Reliable Outsourcing. Security is considered one of the

major obstacles to a wider adoption of cloud computing.

Particular attention has been given to client security as

it relates to the proper handling of outsourced data. For

example, proofs of data possession have been proposed

as a means for clients to ensure that service providers

actually maintain copies of the data that they are

contracted to host [21]. In other works, data replication

have been combined with proofs of retrievability to

provide users with integrity and consistency guarantees

when using cloud storage [22], [23].

To protect user access patterns from a cloud data store,

Williams et al. [24] introduce a mechanism by which

cloud storage users can issue encrypted reads, writes,

and inserts. Further, Williams et al. [25] propose a

mechanism that enables untrusted service providers to

support transaction serialization, backup, and recovery

with full data confidentiality and correctness. This work

is orthogonal to the problem that we focus on in this

paper, namely consistency problems in policy-based

database transactions.

Distributed Transactions. CloudTPS provides full

ACID properties with a scalable transaction manager

designed for a NoSQL environment [26]. However,

CloudTPS is primarily concerned with providing

consistency and isolation upon data without regard to

considerations of authorization policies.

There has also been recent work that focuses on

providing some level of guarantee to the relationship

between data and policies [27]. This work proactively

ensures that data stored at a particular site conforms to

the policy stored at that site. If the policy is updated, the

server will scan the data items and throw out any that

would be denied based on the revised policy. It is

obvious that this will lead to an eventually consistent

state where data and policy conform, but this work only

concerns itself with local consistency of a single node,

not with transactions that span multiple nodes.

Distributed Authorization. The consistency of

distributed proofs of authorization has previously been

studied, though not in a dynamic cloud environment

(e.g., [4]). This work highlights the inconsistency issues

that can arise in the case where authorization policies

are static, but the credentials used to satisfy these

policies may be revoked or altered. The authors develop

protocols that enable various consistency guarantees to

be enforced during the proof construction process to

minimize these types of security issues. These

consistency guarantees are similar to our notions of safe

transactions. However, our work also addresses the case

in which policies—in addition to credentials—may be

altered or modified during a transaction.

IX. CONCLUSIONS

Despite the popularity of cloud services and their wide

adoption by enterprises and governments, cloud

providers still lack services that guarantee both data and

access control policy consistency across multiple data

centers. In this paper, we identified several consistency

problems that can arise during cloud-hosted transaction

processing using weak consistency models, particularly

if policy-based authorization systems are used to

enforce access controls. To this end, we developed a

variety of lightweight proof enforcement and

consistency models—i.e., Deferred, Punctual,

Incremental, and Continuous proofs, with view or

global consistency—that can enforce increasingly

strong protections with minimal runtime overheads.

We used simulated workloads to experimentally

evaluate implementations of our proposed consistency

models relative to three core metrics: transaction

processing performance, accuracy (i.e., global versus

view consistency and recency of policies used), and

precision (level of agreement among transaction

participants). We found that high performance comes at

a cost: Deferred and Punctual proofs had minimal

overheads, but failed to detect certain types of

consistency problems. On the other hand, high-accuracy

models (i.e., Incremental and Continuous) required

higher code complexity to implement correctly, and had

only moderate performance when compared to the

lower accuracy schemes. To better explore the

differences between these approaches, we also carried

out a tradeoff analysis of our schemes to illustrate how

application-centric requirements influence the

applicability of the eight protocol variants explored in

this paper.

REFERENCES
[1] M. Armbrust et al., “Above the Clouds: A Berkeley View

of Cloud Computing,” technical report, Univ.

of California, Feb. 2009.

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 200

[2] S. Das, D. Agrawal, and A.E. Abbadi,

“Elastras: An Elastic Transactional Data Store

in the Cloud,” Proc. Conf. Hot Topics in Cloud

Computing (USENIX HotCloud ’09), 2009.
[3] D.J. Abadi, “Data Management in the Cloud:

Limitations and Opportunities,” IEEE Data
Eng. Bull., vol. 32, no. 1, pp. 3-12, Mar. 2009.

[4] A.J. Lee and M. Winslett, “Safety and

Consistency in Policy-Based Authorization

Systems,” Proc. 13th ACM Conf. Computer

and Comm. Security (CCS ’06), 2006.
[5] M. Myers, R. Ankney, A. Malpani, S.

Galperin, and C. Adams,
“X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol - Ocsp,” RFC 2560,

http://tools.ietf.org/html/rfc5280, June 1999.
[6] E. Rissanen, “Extensible Access Control

Markup Language (Xacml) Version 3.0,”

http://docs.oasis-open.org/xacml/3.0/ xacml-

3.0-core-spec-os-en.html, Jan. 2013.
[7] D. Cooper et al., “Internet x.509 Public Key

Infrastructure Certificate and Certificate

Revocation List (CRL) Profile,” RFC 5280,

http://tools.ietf.org/html/rfc5280, May 2008.
[8] J. Li, N. Li, and W.H. Winsborough,

“Automated Trust Negotiation Using

Cryptographic Credentials,” Proc. 12th ACM

Conf. Computer and Comm. Security (CCS

’05), Nov. 2005.
[9] L. Bauer et al., “Distributed Proving in

Access-Control Systems,” Proc. IEEE Symp.

Security and Privacy, May 2005.
[10] J. Li and N. Li, “OACerts: Oblivious Attribute

Based Certificates,” IEEE Trans. Dependable

and Secure Computing, vol. 3, no. 4, pp.

340352, Oct.-Dec. 2006.
[11] J. Camenisch and A. Lysyanskaya, “An

Efficient System for NonTransferable

Anonymous Credentials with Optional

Anonymity Revocation,” Proc. Int’l Conf.

Theory and Application of Cryptographic

Techniques: Advances in Cryptology

(EUROCRYPT ’01), 2001.
[12] P.K. Chrysanthis, G. Samaras, and Y.J. Al-

Houmaily, “Recovery and Performance of

Atomic Commit Processing in Distributed

Database Systems,” Recovery Mechanisms in

Database Systems, Prentice Hall PTR, 1998.
[13] M.K. Iskander, D.W. Wilkinson, A.J. Lee, and

P.K. Chrysanthis, “Enforcing Policy and Data

Consistency of Cloud Transactions,” Proc.

IEEE Second Int’l Workshop Security and

Privacy in Cloud Computing (ICDCS-

SPCCICDCS-SPCC), 2011.
[14] G. DeCandia et al., “Dynamo: Amazons

Highly Available KeyValue Store,” Proc. 21st

ACM SIGOPS Symp. Operating Systems

Principles (SOSP ’07), 2007.
[15] F. Chang et al., “Bigtable: A Distributed

Storage System for Structured Data,” Proc.

Seventh USENIX Symp. Operating System

Design and Implementation (OSDI ’06), 2006.
[16] A. Lakshman and P. Malik, “Cassandra- A

Decentralized Structured Storage System,”

ACM SIGOPS Operating Systems Rev., vol.

44, pp. 35-40, Apr. 2010.
[17] B.F. Cooper et al., “PNUTS: Yahoo!’s Hosted

Data Serving Platform,” Proc. VLDB

Endowment, vol. 1, pp. 1277-1288, Aug. 2008.
[18] W. Vogels, “Eventually Consistent,” Comm.

ACM, vol. 52, pp. 4044, Jan. 2009.
[19] H. Guo, P.-A. Larson, R. Ramakrishnan, and J.

Goldstein, “Relaxed Currency and

Consistency: How to Say “Good Enough” in

SQL,” Proc. ACM Int’l Conf. Management of

Data (SIGMOD ’04), 2004.
[20] T. Kraska, M. Hentschel, G. Alonso, and D.

Kossmann, “Consistency Rationing in the

Cloud: Pay Only When It Matters,” Proc.

VLDB Endowment, vol. 2, pp. 253-264, Aug.

2009.
[21] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D. Song,

“Provable Data Possession at Untrusted

Stores,” Proc. 14th ACM Conf. Computer and

Comm. Security (CCS
’07), 2007.
[22] K.D. Bowers, A. Juels, and A. Oprea, “HAIL:

A High-Availability and Integrity Layer for

Cloud Storage,” Proc. 16th ACM Conf.

Computer and Comm. Security (CCS ’09),

2009.
[23] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y.

Michalevsky, and D. Shaket, “Venus:

Verification for Untrusted Cloud Storage,”

Proc. ACM Workshop Cloud Computing

Security (CCSW ’10), 2010.
[24] P. Williams, R. Sion, and B. Carbunar,

“Building Castles Out of Mud: Practical

Access Pattern Privacy and Correctness on

Untrusted Storage,” Proc. 15th ACM Conf.

Computer and Comm. Security (CCS ’08),

2008.
[25] P. Williams, R. Sion, and D. Shasha, “The

Blind Stone Tablet: Outsourcing Durability to

Untrusted Parties,” Proc. 16th Annual Network

and Distributed System Security Symp. (NDSS

’09), 2009.
[26] Z. Wei, G. Pierre, and C.-H. Chi, “Scalable

Transactions for Web Applications in the

Cloud,” Proc. 15th Int’l Euro-Par Conf.

Parallel Processing (Euro-Par ’09), Aug. 2009.

http://www.ijcstjournal.org/

ISSN: 2347-8578 www.ijcstjournal.org Page 201

[27] T. Wobber, T.L. Rodeheffer, and D.B. Terry,

“Policy-Based Access Control for Weakly

Consistent Replication,” Proc. ACM Fifth

European Conf. Computer Systems (EuroSys

’10), 2010.

http://www.ijcstjournal.org/

