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ABSTRACT 

A range of extensions to the HNA method are made in this paper. HNA methods for convex polygons use an 

approximation space on two overlapping meshes, here we use HNA on a single mesh. This single-mesh 

approach is easier to implement, and we prove that the frequency-dependence of the size of the approximation 

space is the same as for the overlapping mesh. We generalise HNA theory to provide a priori error estimates 

for a broader range of incident fields than just the plane wave, including point sources, beam sources, and 

Herglotz-type incidence. We also extend the HNA ansatz to include multiple obstacles. 

In addition to the development of HNA methods, we also consider other ideas and developments related to 

multiple scattering problems. This includes the first (to the best knowledge of the author) mesh and frequency 

explicit condition for wellposedness of Galerkin BEM for multiple scattering. 

Keywords:- BEM, HNA 

 

I.     INTRODUCTION 

To date, every version of the HNA 

technique has been developed for finding issues of 

plane wave incidence (as in Figure 1.2(a)). 

However, root incidence (see Definition 1.6(i) and 

Figure 1.2(c)) additionally happens oft in sensible 

applications. for instance, in acoustic modelling, 

most sounds originate from a supply point; a plane 

wave model is just applicable once the supply is 

much far from the scattering obstacle (a plane wave 

is also taken as a degree supply at infinity).  

Moreover, a degree supply is a lot of 

physically realistic (than a plane wave) because it 

satisfies the radiation condition. maybe less 

ordinarily studied could be a generalisation of the 

purpose supply; the beam source (see Definition 

1.6(ii), and Figure 1.2(d)), that the purpose supply 

is unclean on a line. Our interest within the beam 

supply is just part actuated by direct application; 

we tend to expect it'll even be helpful for 

repetitious multiple scattering versions of HNA 

BEM, that area unit mentioned concisely. we tend 

to are fascinated by scattering by a general 

Herglotz-type incident field and Figure 1.2(b) for 

Associate in Nursing example with Herglotz 

kernel). like the beam supply incidence, solutions 

to such issues might not have as several immediate 

applications.  

Instead, our motivation is nested within a 

bigger plan for finding multiple scattering issues. 

The Tmatrom technique of needs Associate in 

Nursing approximation of the far-field pattern of 

diverging wavefunctions, that the Herglotz kernel 

are often written. therefore it's necessary to grasp 

such issues to develop HNA ways that area unit 

compatible with the Tmatrom technique. 

 

II. TO GENERALISE HNA 

METHODS TO A BROADER 

CLASS OF OBSTACLES 

 

In this paper, we aim to generalise HNA 

methods to a broader class of obstacles, though 

controlling our attention to the case of the convex 

polygon Ω−. For each new x 

            Uj 

 
                Γ+jΓj+Γ−j R2 \ Ujx˜j 

Figure 1.1: Example of a emblematic extension of 

a single side Γj, and the image of x ∈ Uj replicated 

in the inestimable line Γ∞
j = Γ−

j ∪ Γj ∪ Γ+
j , to create 

the point x˜j ∈ R2 \ Uj. problem considered, we will 

derive a boundary illustration analogous to  using a 

half-plane formulation, extending a single side Γj 

(of the boundary Γ of the convex polygon Ω−) 

substantially in both directions to form the 
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boundary of the half-plane (see Figure 1.6 for 

example of an extension of  sa typical side). 

Considering a single side Γj of a convex polygon Γ, 1 ≤ j ≤ nΓ, we define Γ+
j and Γ−

j as the infinite extensions of 

Γj in the clockwise and anti-clockwise directions. Denote by Uj the (open) upper-half plane relative to Γ∞
j := Γ+

j 

∪ Γj ∪ Γ−
j , such that the unit normal nj points into Uj. Finally, we define xj to be the reflection of x across Γj. 

Formally, x = xj when x ∈ Γj, otherwise xej =6 x satisfies dist(x,Γ∞
j ) = dist(xej,Γj

∞) = 1
2|x − xej| (see Figuree 1.1 

for a visual example ). 

We will make manifold uses of the following illustration from which states that for v ∈ C2(Uj) ∩ C(Uj) 

sustaining the Helmholtz equation (1.3) and the radiation condition, we have 

 , x in 

Uj. (1.1) 

 

We note that this illustration holds for v = us (the scattered field constituent of the solution to  and 

holds for plane waves proliferating in direction d, provided that d · nj ≥ 0, i.e. proliferating out of Uj . Our 

illustration for the Neumann trace of the solution to (1.4)–(1.6) will characteristically be of the form 

∂u∂n,xinΓj.

 

 

    (1.2) 

This leads 

to the 

boundary 

representation (2.2), since 

2 

 , where , 

∂ see [16, eq. (1.6)]. 

 
 (a) (b) 

 
 (c) (d) 

Figure 1.2: Examples of types of incident field solvable in this chapter, with wavenumber k = 40 (although 

the wavenumber is irrelevant for (a) and (c)). (a) Plane wave. (b) Herglotz-type wave with kernel gHerg = 
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−e−iℓθ/(2π). (c) Point source. (d) Beam source (see Definition 1.5) with γ = {(x1,x2) ∈ R2 : x1 ∈ [−1/2,1/2],x2 = 

0} and . As promised in Remark , we will generalise the definition of M(u) to problems 

where the incident field is unbounded at points inside the scattering domain Ω+. This definition will continue 

to depend on the size of u in some sense. We will conclude this introduction with a theorem which will be 

used in each problem considered in this chapter, and the multiple scattering problems. This theorem will 

enable us to bound the scattered field us in terms of the k-weighted norm of the incident field uinc on the 

boundary ∂Ω. 

THEOREM 1.1. For an obstacle Ω− with boundary ∂Ω and incident field uinc (in the sense of Definition 1.1), 

we have the following bounds on the corresponding scattered field us = u − uinc, where u is the solution to 

(1.4)–(1.6): For star-shaped polygonal Ω− with boundary Γ = ∂Ω, 

 2diam(Ω

 , 

where, 

x∈Γ 

where nΓ is the number of sides of Γ, whilst L∗ denotes the length of the longest side and γE ≈ 0.577 denotes 

the Euler constant. 

(i) More generally, for a non-trapping polygon Ω− with boundary ∂Ω, given k0 > 0, 

 kuskL∞(Ω+) . k−1/2 log1/2(k)kuinckHk1(∂Ω), for k ≥ k0. 

(Recall that a . b is equivalent to a ≤ cb, where c depends only on the geometry of Ω−.) 

Proof. (i) We have the illustration us = −SkA−
k 

1fk in Ω+ (follows immediately from (1.10)), where Ak and fk are 

As uinc ∈ C∞(N) by, it follows that uinc ∈ H1(Γ). Hence by the definition of fk, kfkkL2(Γ) ≤ diam(Ω−)k∇uinckL2(Γ) 

+ k(diam(Ω−) + 1/2)kuinckL2(Γ) 

 2diam(Ω  . (1.3) 

The result follows by combining (1.3) with the bound on Sk of [35, Lemma 4.1] and the bound on A−
k 

1 of [35, 

(4.5)] (noting that our definition of Ak is twice that of Ak in [52], as warned by Remark 1.5) with the bound 

 . (1.4) 

(ii) In rapports of the Dirichlet to Neumann map, we may ponder the BVP with Dirichlet data us = −uinc on the 

boundary ∂Ω, hence inc. We consequently have the illustration 

 inc, in Ω+, 

which we can bound 

. 

We have that kSkkL2(∂Ω) . k−1/2 log1/2 k from [35, Lemma 4.1] provided we choose k0 ≥ max{2L∗,2/L∗}, also k0 

must be chosen such that this proves the assertion.  In the overhead Theorem 1.1, the bound (i) is a special 

case of the more general bound (ii), choosing√ k0 = max{2L∗,2/L∗} and k-independent constant c = 

C1[2diam(Ω−)+2. In this chapter, we consider only convex polygons (a sub-class of star-shaped polygons, so 

all results concerning star-shaped obstacles hold), however Theorem 1.1(ii) is a general result which will also 

apply to multiple obstacles in  non-convex obstacles. 

 

III. HERGLOTZ-TYPE PREVALENCE 

First, we extend the well-studied case of plane wave occurrence to a weighted vital of plane waves. 

From the point of view of the mathematical analysis, this is the simplest case we consider, as flatness 

possessions are inherited from the single plane wave case. We aim to solve the problem for a single convex 

polygon Ω− with boundary Γ = ∂Ω, where the occurrence field is a Herglotz-type function (in the sense of 

Definition 1.8), for which the Herglotz kernel gHerg ∈ L2(0,2π) is known, henceforth 

C 1 = 

p 
5 n Γ / (8 log 2)[1+(2 /π )(1 − γ E + e 1 / 4 )] 

essinf ( x · n ( x )) 
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  for x ∈ R2, 

where dθ := (cosθ,−sinθ). We shall typically not stipulate the second argument (the Herglotz kernel) of

), and instead write uinc
Herg(x). We now separate the leading order behaviour (reflected terms) 

of , by piercing the incident wave uinc
Herg into incoming and outgoing waves relative to the half-plane Uj, 

to obtain a representation of the form (1.2). To do this, we require  

and      .  

We may now split the incident wave into plane waves divided over these sets, and use the illustration 

(1.1) on to obtain for x in Uj 

 

 

Figure 1.3: Example of the two types of waves split over the vital. Dashed arrows are those in , regular 

arrows are in . 

. 

(1.5) We cannot use the representation (1.1) over Zj
↓, instead we may consider 

 ur(x) = −Z ↓ gHerg(θ)eikx˜j·dθ dθ, x in Uj,Zj 

the integral of images of plane waves reflected in the line Γ∞
j (see Figure 1.3). As this consists only of incident 

waves which are outgoing relative to x˜j, we can use the representation (1.1) with v = us to obtain 

 , x in Uj, (1.6) 

where y˜j has been replaced by yj, as y = y˜j on Γ∞
j . Summing (1.5), (1.6) and (1.1) with v = us yields 

,x in Uj, (1.7) 

finally taking the Neumann trace gives the representation (1.2) 

 ∂,x in Γj, (1.8) 

where 

 ΨHerg(x) = 2ik Z ↓[nj · dθ]gHerg(θ)eikx·dθ dθ, x in Γj.Zj 

We note that the representation (1.8) appears identical to (1.2), the key difference being the definition of Ψ = 

ΨHerg. 

THEOREM 1.2. Suppose that the incident field is a Herglotz-type function  (in the sense of Definition 

1.8), and Ω− is a convex polygon. It follows that Assumption 

holds, with 

M(u) = M∞(u) := sup |u(x)|, 

x∈Ω+ 

hence the functions , are analytic in the right half-plane Re[s] > 0, where they satisfy 

the bounds 

n j U j 

 2 \ U j 
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where δj

+,δj
− ∈ (0,1/2) are given by δj

+ := 1 − π/ωj and δj
− := 1 − π/ωj+1. The constant Cj

+ depends only on c∗, 

and ωj, whilst the constant Cj
− depends only on c∗, and ωj+1. Here the constants c∗ ωj are as in Definition 2.1. 

Proof. Given the boundary representation (1.8), [35, Theorem 1.1] describing the behaviour close to the 

corners holds for Herglotz-type functions, and the assertion follows by exactly the same arguments as [35, 

Theorem 1.2].  

The estimates above can be rewritten in terms of known parameters using the following bound. 

COROLLARY 1.1. Suppose that uinc
Herg and Ω− are as in Theorem 1.2. Given the 

Herglotz kernel gHerg ∈ L2(0,2π) of uinc
Herg we have the following bound 

2diam(Ω  , 

where C1 and L∗ are as in Theorem 1.1. Hence, if there exists a β′ > 0 such that 

kgHergkL2(0,2π) . kβ′, Assumption  holds. 

Proof. The bound on M∞(u) follows by writing 

  (1.9) 

and noting by it follows that  , hence we may use Theorem 

1.1 to bound  of (1.9), with  √2πkgHergkL2(0,2π), which again follows.

 Through Theorem 1.2 and Corollary (1.3), we have shown that both components of Assumption 

hold, exponential convergence of the Galerkin method for Herglotz-type incidence is guaranteed. We do not 

present numerical experiments for problems of Herglotz-type incidence here. Although the theory was 

initially developed to integrate HNA methods with the T-matrix method of , we will develop a more efficient 

method in which serves the same purpose, using the theory developed in. To implement the theory of this 

section, one may apply the method  to approximate , noting that if we choose A = Ak then fully explicit 

error estimates follow from  on any N-dimensional subspace VN
HNA(Γ), by Corollary 1.1. 

 

IV. SOURCE-TYPE PREVALENCE 

In this section, we tend to aim to generalise the HNA technique to cases that the incident field uinc 

6∈ C∞(R2). Naturally, some regularity is needed for the HNA technique to figure. we tend to aim to contain 

the less regular regions of the incident field, for instance a degree at that the incident field is boundless, within 

a group that's sufficiently faraway from the scatterer Ω− specified Assumption holds, and so the HNA 

technique still converges at associate degree exponential rate. we tend to denote by Z a group within that this 

less regular behaviour is contained. Previous analyses of the HNA technique utilized the finitude of u once 

bounding the diffracted waves  it follows from (1.2) that v± may be written as integrals along the extended 

line Γ±
j . The idea is to take M∞(u) outside of the integral using H¨older’s inequality with ) and

). However, we'll demonstrate here that if there exists a delimited open Z ∈ R2 outside of that uinc is sleek, 

it's sufficient  on for uinc to be L2 integrable on Γ±
j ∩ Z, while Theorem 1.1 provides a sure on kuskΓ±j . To 

ensure uinc satisfies these conditions, we tend to outline the line 

  , for c ∈ R and θ ∈ [0,π). (1.10) 

We will make use of the following norm, which considers the trace on the intersection of such lines with Z, 

for a function w 

 , for ǫ > 0, (1.11) 

where τℓc,θ denotes the trace operator mapping to the line ℓc,θ. Given that w ∈ H1/2+ǫ(Z) we know that w is 

continuous across ℓc,θ, hence the trace is the same regardless of the direction in which it is taken. Figure 1.4 

depicts the type of lines considered, for a set Z. 
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Figure 1.4: A finite set of lines intersecting some shaded region Z. The L(Z) norm considers the infinite set 

of all such lines, and bounds above the L2 norm of a function restricted to any such straight line. 

The following Theorem bounds the L2(ℓc,θ ∩Z) norm uniformly for any c ∈ R,θ ∈ [0,π). This is useful given 

that our definition of M(u) for source-type incidence will contain the L(Z) norm. 

THEOREM 1.4. If uinc|Z ∈ Hs(Z) for s ∈ (1/2,3/2), where Z is a finite union of convex bounded sets open in 

R2, then 

kuinckL(Z) ≤ CτkuinckHs(Z), where Cτ > 0 depends only on Z. Proof. Initially we consider the case for Z 

convex. We consider a line ℓc,θ which intersects Z, and consider the two (also convex) sets formed via the 

bisection of the set Z by ℓc,θ. Denote by one of these two sets Zˆ, chosen to be the set inside of which the 

largest ball can be constructed, and assume for now that diam(Zˆ) = 1. Denote by ∂Zˆ the boundary of Zˆ. It 

follows by [36, Lemma 4.4] that 

  , for w ∈ Hs(Z), 

where Cˆτ depends on Zˆ and | · |Ws(Zˆ) denotes the Sobolev–Slobodeckij semi-norm, order s over Zˆ (see e.g. 

[42, p74] for a definition). As ℓc,θ ∩ Z ⊂ ∂Zˆ, and Zˆ ⊂ Z we have 

 , for w ∈ Hs(Z). 

Given the conditions of [36, Lemma 4.4], we may choose Cˆτ to be the constant corresponding to the ℓc,θ which 

minimises the radius of the largest open ball that can be constructed inside of the set Zˆ. Given Z, this choice 

will produce the maximal value of Cˆτ. Combining this maximal constant with the equivalence of the Sobolev– 

Slobodeckij and Bessel potential norms (see , Theorem 1.30(ii)) we may write kwk2L(Z) ≤ Cτkwk2Hs(Z),for 

w ∈ Hs(Z), where Cτ depends only on Z. Repeated applications of the above steps extend this result to finite 

unions of convex sets. Likewise, scaling arguments can be used for the case diam(Zˆ) = 1.6 Now we may 

define the space of source-type incident waves which we will solve via the HNA method. 

DEFINITION 1.5 (Source-type incidence). Given a bounded open Z ⊂ R2 such that dist(Z,Ω+) ≥ 1/k, we 

define the set of source-type incidences as 

, for s > 1/2, ϕ|R2\Z ∈ C∞(R2\Z)}. 

The above definition takes into consideration the result of Theorem 1.4; by restricting to ϕ|Z ∈ Hs(Z) 

this ensures that kϕkL(Z) < ∞ for all functions in the space. We note also that classical C∞(R2) incidences, for 

example plane or Herglotz-type waves, are accommodated by the above definition, in which case Z may be 

chosen to be empty. 

Intuitively, the set Z can be thought of as the region in which the incident wave may be less regular, and all 

weakly singular behaviour should be strictly inside of Z. Given that we still have smoothness inside a 

neighbourhood of Γ, we can obtain the required bounds on |v±|  for a carefully chosen M(u). 

V. FOREMOST DIRECTIVE BEHAVIOUR FOR SCATTERING BY POINT AND 

BEAM SOURCE PREVALENCE 

We currently limit our attention to a selected category of source-type incident fields, in order that 

the leading order behaviour is separated, as is needed to represent the answer within the type (1.2) 

DEFINITION 1.6 (Localised source). The localised source uinc ∈ Hsrc(Ω+,Z) is defined as uinc(x) = 

hϕ,˜ Φ(x,·)i, for x ∈ R2 \ Z, 

where ϕ˜ is a distribution, and the values of Z for which x is defined depends on the particular choice of ϕ˜, 

as discussed in Remark 1.7 below. We are interested in two particular cases: 
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(i) The point source emanating from s ∈ Z, corresponding to ϕ˜ = δs, where δs is the Dirac Delta function 

translated to s, for which 

 uinc(x) = uinc
PS(x;s) := Φ(x,s), for x ∈ R2 \ {s}. 

(ii) The beam source emanating from a Lipschitz curve γ of Hausdorff dimension one, with density ϕ ∈ 

L2(γ), 

 uinc(x) = uinc
BS(x;ϕ) := Z Φ(x,y)ϕ(y)ds(y), for x ∈ R2.γ 

See Figure 1.6 for examples of typical Z for source type waves. Hereafter we shall often make the second 

arguments s and ϕ of uinc
PS and uinc

BS implicit, writing uinc
PS(x) and uinc

BS(x) instead. 

REMARK 1.7 (Dependence on regularity of ˜ϕ). We now explain in more detail the values of x ∈ Z for which 

uinc(x) is defined, given ϕ˜, noting the regularity of the fundamental solution, 

 Φ(x,·) ∈ H1−ǫ(R2), for all ǫ > 0, for all x ∈ R2. (1.12) 

(As we could not locate a derivation of the regularity (1.12) in the literature, we present an argument in 

Appendix A.4.) Given that the inner product is well defined between any space and its dual, it follows from 

(1.12) that uinc(x) = hϕ,˜ Φ(x,·)i is defined for all x ∈ Z (and therefore all x ∈ R2) if ϕ˜ ∈ H−1+ǫ(R2), as is the 

case for the beam source of Definition 1.6(ii). However, this is not the case for the point source, as we have 

taken the less regular ϕ˜ = δs ∈ H−1−ǫ(Z) ∩ (C(Z))∗, for s ∈ Z and ǫ > 0, yielding Φ(x,s), for which x is undefined 

at s. However, for the point source case, it follows from (1.12) that Φ(·,s) ∈ Hs(R2) for s ∈ (1/2,1), hence by 

Definition 1.5 we have that Φ(·,s) ∈ Hsrc(Ω+;Z) for s in a suitable Z containing s. This is sufficient to prove 

the bounds on |v±|, as required , Now we derive a representation for  which explicitly separates the 

leading order (reflected) terms in terms of known components of uinc, for the case of the beam source and the 

point source. The general rule is that if the side Γj can see the source, then the leading order term Ψ is equal 

to 2 inc, otherwise it is equal to zero. 

THEOREM 1.8. For a point source incidence uinc = uinc
PS (as in Definition 1.6(i)), the leading order 

behaviour of (1.2) is 

2∂+Φ(x,s), s ∈ Uj, ∈ 

0, otherwise, for x Γj, (1.13) 

where Uj denotes the upper half plane relative to  (as defined at the start of this Chapter, depicted in 

Figure 1.1). 

Proof. Define the half-plane Dirichlet Green’s function 

 Gj(x,y) := Φ(x,y) − Φ(xej,y), x =6 y, 

where xj is the reflection of x in the line Γ∞
j , as defined at the beginning of this chapter. We split into three 

cases, depending on the position of the source pointes: 

(i) For s in Uj, we apply Green’s second identity to uinc
PS and Gj(x,·) in Uj ∩BR(0)∩ Bǫ(s), where BR is a 

ball chosen sufficiently large that Γj and Bǫ(s) are inside it, for ǫ > 0. Taking the limit as ǫ → 0 and R 

→ ∞ yields the result 

 , x ∈ Uj. (1.14) 

Taking the Neumann trace gives the result 

 , x ∈ Γj, (1.15) 

as claimed. 

(ii) For s ∈ Γ∞
j , the same approach as (i) holds, although the factor of 2 in (1.14) is replaced by a 1, as 

only half of the ǫ-ball is in Uj. This makes no difference however, as ∂n + Φ(x,s) = 0 for s ∈ Γ∞
j , so 

the leading order term Ψ is zero in this case. 

(iii) For a source in the relative lower-half plane, s ∈ R2 \Uj, the representation (1.1) may be used, as uinc
PS 

is smooth in the upper half plane Uj, hence 

 , x ∈ Uj, 

and taking the Neumann trace yields 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016 

ISSN: 2347-8578                       www.ijcstjournal.org                                       Page 331 

, 

 
Figure 1.5: Depiction of the imaging argument used in the proof of Theorem 1.9. Here γa := γ ∩ Uj, γb := γ \ 

Uj and γr := {x˜j ∈ R2 : x ∈ γa}. Physically, γr corresponds to the reflection of γa in the line γj
∞ := Γ−

j ∪ Γj ∪ Γ+
j . 

The wave ua
inc

 emanates from γa, uinc
b emanates from γb, and may be interpreted as a wave emanating from 

γr (although it is formulated differently in (1.20)). 

Combining each case, summing with the representation (1.19) of the Neumann trace of the scattered field us 

yields 

∂u 

n , x ∈ Γj,  ∂

as claimed  

THEOREM 1.9. For a beam source incidence uinc = uinc
BS with density ϕ ∈ L2(γ) (as in Definition 1.6(ii)), the 

leading order behaviour of (1.2) is 

 , for x ∈ Γj. (1.16) 

Proof. We will use a method of images style argument (depicted in Figure 1.5). We split uinc
BS into two 

components, corresponding to the contribution to the intensity at x from the components of the incident field 

above and below the extended line Γ∞
j , uinc

a (x) :=Φ(x,y)ϕ(y)ds(y), and uinc
b(x) := Z Φ(x,y)ϕ(y)ds(y),γ∩Ujγ\Uj 

(1.17) 

 

= uinc
a +uinc

b . Given that uinc
b |Uj ∈ C2(Uj)∩C(Uj), we can apply (1.1) to obtain the noting that uinc 

representation 

 uinc
b , x ∈ Uj. (1.18) 

We note that the same representation holds for us, hence 

 , x ∈ Uj. (1.19) 

For ϕ ∈ L2(γ), it follows from [13, Theorem 2.15] that  

C(Uj), hence we cannot apply (1.1). Instead we make use of  C2(Uj) ∩ 

), which physically corresponds to the reflection of  in 

the extended line Γ∞
j (See Figure 1.5). Applying (1.1) yields 

 
for x ∈ Uj. We may now add both sides of (1.20) to u = uinc + us, and split the 

incident field uinc = uinc
a + uinc

b to obtain 

{, x ∈ Uj. 

Substituting the representation for uinc
a of (1.17) and (1.19), we obtain 

Γ j Γ − j Γ + 
j 

U j 

 2 \ U j 

γ a 

γ b γ r 

Z 
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 , x ∈ Uj. 

Taking the Neumann trace to Γj yields 

∂  

  , x ∈ Γj, 

as claimed.  

The definition of Ψ for purpose some extent degree supply is also simply extended to multiple point sources 

by taking a linear combination of the leading order by taking a linear combination of the leading order 

behaviour for every individual point source. Recalling that the beam supply could become a helpful construct 

in unvaried  multiple scattering ways, we tend to remark that the case of a a lot of general density density ϕ 

∈ H−1/2(γ) should be understood for associate unvaried  resolution of a configuration of multiple screens, as 

this can be the answer area of the screen downside. we tend to speculate that an analogous result holds in such 

a case, but one should watch out once ripping the beam supply into uinc = uinc
a + uinc

b , because the integral 

currently should be understood within the sense of distributions. 

We will see that the leading order for beam supply incidence is closely associated with our multiple scattering 

operator; the key distinction is that ϕ becomes associate unknown density within the multiple scattering case. 

 
Figure 1.6: Example of components used for half-plane representation, in which the shaded region(s) 

denote(s) the choice of Z. This diagram may be used to explain the point source (at s) or beam source (at γ) 

case, or the incident wave corresponding to the combination of both. 

VI. REGULARITY OF V± FOR SOURCE-TYPE TERMS 

In the previous subsection we separated the leading order behaviour for a large class of source-type 

incidences, of the form stated in Definition 1.6. We now relax further, to the entire space Hsrc(Ω+;Z), inside of 

which we prove the required bounds on the diffracted waves. 

THEOREM 1.10. For incident field uinc, if there exists Z such that uinc ∈ Hsrc(Ω+;Z) (as in Definition 1.5), then 

Assumption 2.4 holds with M(u) = MZ(u), that is 

 . (1.21) 

Hence the functions vj
±, for j = 1,...,nΓ, are analytic in the right half-plane Re[s] > 

0, where they satisfy the bounds 

Γ j 

Γ + 
j 

U j 

Γ − j 
Ω − 

n 

γ 

s 

∂B R 
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where δj

+,δj
− ∈ (0,1/2) are given by δj

+ := 1 − π/ωj and δj
− := 1 − π/ωj+1. The constant Cj

+ depends only on c∗, 

and ωj, whilst the constant Cj
− depends only on c∗, and ωj+1. 

Proof. The analyticity of the functions ) in Re[s] > 0 follows from the analyticity of µ(s) in the same set, 

which is shown in [35, Lemma 1.4]. 

Firstly we deal with the case of |s| > 1/k. It follows that k(s + t) > 1, hence the bound [35, (1.7)] can be 

simplified and we may write 

(1.22) (1.23)  

 

We now split the integral, 

set Z′ ⊂ (1/k,∞) separating the 

containing all t such that yj(L˜j−1 − t) ∈ Z. It follows that 

+ 

Since |s| > 1 

 
and 

, 

hence by the Cauchy-Schwarz inequality 

 |vj
+(s)| ≤ MZ(u)k|ks|−1/2 for . 

For |s| ≤ 1/k, the definition of vj
+ gives 

 
As (0,1/k) 6⊂ Z′, it follows from the Definition of Hsrc(Ω+;Z) that uinc is infinitely differentiable in this region, 

and satisfies [35, Lemma 1.5], hence 

 u(x) ≤ CkukL∞(Ω+\Z)(k|x|)π/ωj,for |x| < 1/k, for C independent of k, andu(x) ≤ 

CMZ(u)(k|x|)π/ωj, for |x| < 1/k. The first integral is bounded as in the proof of [35, Theorem 1.2], hence 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016 

ISSN: 2347-8578                       www.ijcstjournal.org                                       Page 334 

 
whilst the second fundamental is bounded as in the case |s| > 1/k. Coalescing all bounds proves the declaration. 

Provided that MZ(u) has only numerical growth in k, the conditions are satisfied, and a hp method as described 

converges exponentially. We note again that up to this point, the case uinc ∈ C∞(R2) also fits inside of this 

framework, by choosing Z empty. We now seek fully unambiguous bounds on MZ(u) for the case of point 

source incidence. 

 

THEOREM 1.11. For point source incidence uinc = uinc
PS(·;s) with dist(s,Γ) > 1/k, it follows that uinc

PS ∈ 

Hsrc(Ω+;Z) (of Definition 1.5) with Z = Br(s) and r = min(1,1/(2k)), moreover we have a k-explicit bound 

on the constant of Theorem 1.10 

2diam(Ω  , 

where C1 and L∗ are the constants from Theorem 1.1, and 

. 

 

Proof. Noting the definition (1.21) of MZ(u), we bound each of the three components separately. 

(i) The bound on 

 
follows immediately from (A.7); given the monotonicity of the absolute value of Hankel functions, the 

maximal value will occur at the boundary of Z. 

(ii) Secondly we prove the bound on kuskL∞(Ω+). By Definition A.4 of the Hk
1 norm, we have 

 , 

which we can bound using (a + b)1/2 ≤ a + b for a and b non-negative, hence 

 . 

 Given the definition of Φ, and that 0, using 

(A.7) and (A.8) to bound these yields 

 . 

Combining with Theorem 1.1, we obtain 

 2diam(Ω  ! 

(iii) Thirdly we prove the bound on kuinc
PSkL(Z). We choose ℓ∗ to be a line of the form (1.10) containing 

s; given the monotonicity of |Φ(·,s)|, this line will maximise the norm. By definition of Φ and the 

L2 norm, 
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Using (A.10) we can write  

 

, 

hence 

. 

Noting the definition (1.21), it follows from (i) and (iii) that 

, 

the result follows, with (ii) contributing the k-dependent components of the bound. 

Now we prove a similar result for the beam source case. 

THEOREM 1.12. Suppose uinc
BS is a beam source incidence (in the sense of Definition 1.6(ii)) with 

density ϕ ∈ L2(γ), emanating from γ with dist(γ,Ω+) ≥ 1/k. If M(u) = MZ(u) where Z is a bounded open 

neighbourhood containing γ, or if M(u) = M∞(u), then given k0 > 0 we have the bound 

 M(u) . log1/2(k)kϕkL2(γ), for k ≥ k0. 

Hence if there exists a β′ > 0 such that kϕkL2(γ) . kβ′, then Assumption 2.4(ii) holds. 

Proof. Noting the Definition (1.21) of MZ(u), we bound each of the three components separately. 

(i) Firstly, the bound on kuinc
BSkL∞(Ω+\Z), 

ds(y) 

and using (A.7) we can bound 

, 

from which it follows that 

 kuincBSkL∞(Ω+\Z) . k−1/2kϕkL2(γ). (1.25) 

(ii) Secondly, the bound on kuskL∞(Ω+). We start by rewriting the k-weighted norm 

. 

We may bound further using Lemma 5.14(i) and (ii), to obtain 

kuincBSkHk1(Ω+) . (k1/2 + 1)kϕkL2(γ), 

which when combined with Theorem 1.1(ii) yields 

 kuskL∞(Ω+) . log1/2 kkϕkL2(γ), (1.26) 

for k ≥ k0. 

(iii) Thirdly, the bound on kuincBSkL(Z). Using the definition (1.11) of the L(Z) norm, we may write 
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using the bound on the Hankel function (A.7) once more. It then follows by [7, Lemma 1.2(a)] that 

 kuincBSkL(Z) . k−1/2kϕkL2(γ). (1.27) 

Combining (1.25)-(1.27) with the definition (1.21) yields the result for MZ(u). The result for M∞(u) 

follows by taking the limit as the region Z shrinks towards a set of measure zero.  

We note that Theorems 1.11 and 1.12 imply M(u) = MZ(u) . log1/2 k for sufficiently large k, which is 

sharper in its k-dependence than the plane wave case of Remark  for which the corresponding bound is 

M(u) = M∞(u) . k1/2 log1/2 k. It should be noted that this bound is not believed to be sharp, as numerical 

experiments suggest M(u) = O(1) for for plane wave incidence (see [35, §6]). These theorems, coupled 

with Theorem 1.10 show that Assumption holds for the point source and beam source incidence, therefore 

exponential convergence of the HNA method. 

 

VII. ALGEBRAIC EXPERIMENTATIONS FOR THE POINT SOURCE 

We now establish via numerical examples the effectiveness of the Hybrid Numerical 

Asymptotic method for the point source problem. Specifically we consider the problems where Ω− is an 

equilateral triangle (nΓ = 3) with Lj = 2π for j = 1,...,nΓ, with incident field uinc
PS(x;s) for a range of s which 

will be introduced shortly. Figure 1.10 plots the approximation u to both problems, whilst Figure 1.12 

plots the boundary solution νp of for the triangle and regular pentagon (nΓ = 5). In both cases the absolute 

value of the boundary solution is largest at the point of the boundary which is closest to the source. This 

is largely accounted for by the geometrical optics component ΨPS. We solve using the classical combined 

formulation using the Galerkin method outlined on a single mesh, hence we seek vN ∈ (Γ) such 

that 

  , for all , (1.28) 

where ΨPS is as in (1.13). For the mesh parameters. we introduce some polynomial dependence on αj , 

choosing αj = min((1 + (pj)i)/8,2), where i corresponds to the ith mesh element on the jth side. The result 

of Theorem  still holds, given that αj is bounded above by a constant independent of the polynomial 

degree. We choose cj = 2, and we choose the polynomial degree vectors pj in accordance with Remark. 

We compute all inner products in the Galerkin method using the quadrature routines discussed in 

Appendix B. We note also that the set Z discussed throughout this section is not a parameter of the 

numerical method; we require only that such a Z exists. Convergence analysis was run for k ∈ 

{5,10,20,40,80,160} with p ∈ {1,...,7}, taking p = 8 as the reference solution. The approximation was 

also validated by means of comparison against a standard BEM solution, we do not give these results 

here. For the triangle, the vertices are 

P  , 

whilst the point sources we consider are emanating from 

s  . 

Figures 1.8 and 1.9 show the convergence of the HNA Galerkin method for each of the three cases for the 

triangle, which are depicted in Figure (1.7). In each case 

 

s 2 

s 1 

s 3 

Γ + 
2 
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Figure 1.7: Schematic of triangular scatterer Ω− with position of each source point 

 
p 

Figure 1.8: Relative L2(Γ) errors for the triangle, for source point s1. 

                                                              Figure 1.9: 

Relative L2(Γ) errors for the triangle, for source point s2 and s1. 
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Figure 1.10: Real part of uN for p = 8 in Ω+ for the regular triangle and the pentagon, with wavenumber k 

= 20. The source point s is covered by a set Z = B1/k(s) inside which we do not evaluate u. This was done 

for aesthetic reasons; the colourbar scale would be skewed for large values of Φ(x,s), when x is close to 

s. 

we observe similar rates of exponential convergence. Moreover, for fixed p the error does not 

increase with k, indeed it can be seen to decrease, which demonstrates the frequency independence of our 

approach. For a source point s1, we observe the lowest relative errors, which can be explained as the 

source is furthest away from Ω− in this case. Theorem (1.11) suggests that MZ(u) of (1.21) grows with 

1/pdist(s,Ω−). The point s2 is closer to Ω− than s1, with distance |s2 − P1| ≈ 0.372, for which the rate of 

convergence appears to be shifted by a multiplicative constant which further justifies the hypothesis that 
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convergence is weaker for source point closer to Γ. The point s3 was chosen to lie on the extended line 

Γ+
2 , such that the integrand of (1.2) is unbounded, as the path of integration contains a singularity. This 

confirms the theoretical result that the HNA method will converge exponentially, even if the solution u 

is unbounded on the extended line (as previous analyses of HNA methods would not explain this). The 

method can be seen to converge similarly for s3, which is to be expected given the distance is |s3 −P3| ≈ 

0.858, s3 is a similar distance from Ω− as s2. Figure 1.11 shows how the conditioning of the discrete system 

grows with p and k. Recall from that the conditioning of the discrete system depends closely on the choice 

of αj, which here is chosen to be min((1+(pj)i)/8,2). It is difficult to determine trends in the conditioning 

from this plot, for lower wavenumbers k = 5,20,40 the conditioning appears to peak, and then drop for 

higher p. If poor conditioning causes the system to become unstable, a larger value of αj should be chosen, 

removing unnecessary basis elements. This can be done without computation of any further inner 

products; carefully selected rows and columns from the discrete system can be removed to achieve this. 

Implementation of the beam source problem follows similarly, although we do not present any results 

here. In such a case, the right hand side will contain a triple integral (AΨBS,φ)L2(Γ) for basis function φ, 

as in this instance ΨBS itself contains an integral. 

 

VIII. CONCLUSIONS AND FURTHER WORK 

In this paper we have developed theory that proves the HNA method converges exponentially 

for Herglotz-type, point and beam source incidence. This was demonstrated by numerical examples for 

the case of the point source. A key development for future work is to generalise the density of the beam 

source term to H−1/2(γ), rather than H−1/2+ǫ(γ) for ǫ > 0 that has been explored here. This would be essential 

for analysis of iterative HNA methods for multiple screen 

 
P 

Figure 1.11: Plot of condition number of Galerkin matrices against k and p, for the triangle problem. 
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(a) 

 
(b) Figure 1.12: Plot of real part of boundary solution, for the problems depicted in Figure 1.10 (a) and 

(b). problems, which we plan to address in future work. Alternatively, the methods in this paper may be 

combined with non-convex polygons of the penetrable obstacles. 
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