
International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 107

FAST JPEG Encoding Using OpenMP
M. M. Raghuwanshi [1], Malhar Ujawane, Sameer Bhute,

Sankalp Saoji, Madhushree Warkhade, Shivani Kadpati
Professor [1]

Department of Computer Technology

Yeshwantrao Chavan College of Engineering

Nagpur – India

ABSTRACT
Multi-core programming has given rise to advanced implementations in computing. Increasing number of compression

algorithms are being remodelled to utilize the multi-core computational power available at hand. In JPEG (Joint Photographic

Experts Group) compression, DCT is a computationally intensive function which bottlenecks the performance of the algorithm.

This paper presents a fast solution for DCT with the help of parallel programming, using OpenMP for the implementation on a

multi-core CPU. The results indicate that in the parallel implementation exhibits considerable speedup as compared to the serial

implementation.

Keywords :- JPEG, DCT, image compression, OpenMP, parallel programming, multi-core processor.

I. INTRODUCTION

One of the recent innovations in computer engineering has

been the development of multicore processors, which are

composed of two or more independent cores in a single

physical package. Today, many processors, including digital

signal processor (DSP), mobile, graphics, and general purpose

central processing units (CPUs) [2] have a multicore design,

driven by the demand of higher performance. Major CPU

vendors have changed strategy away from increasing the raw

clock rate to adding on-chip support for multi-threading by

increases in the number of cores; dual and quad-core

processors are now commonplace. Image processing

progammers can benefit dramatically from these advances in

hardware, by modifying single-threaded code to exploit

parallelism to run on multiple cores. This article describes the

use of OpenMP (Open Multi-Processing) to multi-thread

image processing applications to take advantage of multicore

general purpose CPUs. OpenMP is an extensive and powerful

application programming interface (API), supporting many

functionalities required for parallel programming. The

purpose of this article is to provide a high level overview of

OpenMP, and present simple image processing operations to

demonstrate the ease of implementation and effectiveness of

OpenMP. More sophisticated applications could be built on

similar principles [1].

In recent years many new standards have emerged for

image compression. JPEG (Joint Photographic Experts Group)

is one of the most widely used and adapted standard for still

images. JPEG is a common standard for lossy image

compression, especially images produced digitally.

Modifications to the JPEG baseline algorithm allow us to

balance trade-offs between storage size and quality.

In this paper, we describe an approach to implement the

JPEG encoder in parallel on a multiple cores of the CPU. The

computationally intensive element of the encoding scheme

namely DCT, will be run in parallel on the multi-core CPU.

The program for parallel JPEG encoder with modified DCT

function is implemented in OpenMP. The evaluation of the

execution is done by comparing the serial and parallel

execution times.

II. JPEG ENCODING

JPEG, which stands for Joint Photographic Experts Group

(the name of the committee that created the JPEG standard), is

a lossy compression algorithm for images. A lossy

compression scheme is a way to inexactly represent the data in

the image, such that less memory is used yet the data appears

to be very similar. This is why JPEG images will look almost

the same as the original images they were derived from most

of the time, unless the quality is reduced significantly, in

which case there will be visible differences. The JPEG

algorithm takes advantage of the fact that humans can’t see

colors at high frequencies. These high frequencies are the data

points in the image that are eliminated during the compression.

JPEG compression also works best on images with smooth

color transitions.[9]

For each mode, one or more distinct codecs are

specified. As seen in Fig. 1, they are: downsampling, forward

DCT (Discrete Cosine Transform), quantization, entropy

encoding. Codecs within a mode differ according to the

precision of source image samples they can handle or the

entropy coding method they use. Although the word codec

(encoder/decoder) is interoperable, there is no requirement

that implementations must include both an encoder and a

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 108

decoder. Many applications will have systems or devices

which require only one or the other [9].

Fig. 1 Baseline JPEG encoding process

The four modes of operation and their various codecs have

resulted from JPEG’s goal of being generic. The multiple

pieces can give the impression of undesirable complexity, but

they should actually be regarded as a comprehensive “toolkit”

which can span a wide range of continuous-tone image

applications. It is unlikely that many implementations will

utilize every tool -- indeed, most of the early implementations

now on the market (even before final ISO approval) have

implemented only the Baseline sequential codec [9].

The Baseline sequential codec is inherently a rich and

sophisticated compression method which will be sufficient for

many applications. Getting this minimum JPEG capability

implemented properly and interoperably will provide the

industry with an important initial capability for exchange of

images across vendors and applications [9].

III. JPEG ENCODING PROCESS

The algorithm behind JPEG is relatively straightforward

and can be explained through the following steps:

1. Take an image and divide it up into 8x8-pixel blocks. If the

image cannot be divided into 8x8 blocks, then add-in empty

pixels around the edges, essentially zero-padding the image.

2. For each 8-by-8 block, get image data such that you have

values to represent the color at each pixel.

3. Take the Discrete Cosine Transform (DCT) of each 8-by-8

block.

4. After taking the DCT of a block, matrix multiply the block

by a mask that will zero out certain values from the DCT

matrix.

5. Finally, to get the data for the compressed image, take the

inverse DCT of each block. All these blocks are combined

back into an image of the same size as the original [4].

A. Downsampling

Due to the densities of color- and brightness-sensitive

receptors in the human eye, humans can see considerably

more fine detail in the brightness of an image (the Y

component) than in the color of an image (the Cb and Cr

components). Using this knowledge, encoders can be designed

to compress images more efficiently [10].

The transformation into the YCbCr color model enables the

next step, which is to reduce the spatial resolution of the Cb

and Cr components (called "downsampling" or "chroma

subsampling"). The ratios at which the downsampling can be

done on JPEG are 4:4:4 (no downsampling), 4:2:2 (reduce by

factor of 2 in horizontal direction), and most commonly 4:2:0

(reduce by factor of 2 in horizontal and vertical directions).

For the rest of the compression process, Y, Cb and Cr are

processed separately and in a very similar manner [10].

B. DCT

The Discrete Cosine Transform (DCT) is a Fourier-like

transform, which was first proposed by Ahmed et al. (1974).

While the Fourier Transform represents a signal as the

mixture of sines and cosines, the Cosine Transform performs

only the cosine-series expansion. The purpose of DCT is to

perform decorrelation of the input signal and to present the

output in the frequency domain. The DCT is known for its

high “energy compaction” property, meaning that the

transformed signal can be easily analyzed using few low-

frequency components. It turns out to be that the DCT is a

reasonable balance of optimality of the input decorrelation

(approaching the Karhunen-Loève transform) and the

computational complexity. This fact made it widely used in

digital signal processing and image processing [5].

Fig. 2 Sample DCT 8x8 blocks

There are several types of DCT [6]. The most popular is

two-dimensional symmetric variation of the transform that

operates on 8x8 blocks (DCT8x8) and its inverse (Fig. 3). The

DCT8x8 is utilized in JPEG compression routines and has

become a de-facto standard in image and video coding

algorithms and other DSP-related areas [5]. This can be seen

in Fig. 2.

Fig. 3 Formula for 2-D DCT function

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 109

DCT is a computationally intensive task and hence

parallelising this function would greatly improve the

execution time.

C. Quantization

Quantization, in mathematics and digital signal processing,

is the process of mapping a large set of input values to a

(countable) smaller set. Rounding and truncation are typical

examples of quantization processes. Quantization is involved

to some degree in nearly all digital signal processing, as the

process of representing a signal in digital form ordinarily

involves rounding. Quantization also forms the core of

essentially all lossy compression algorithms [4].

D. Entropy Encoding

Entropy coding is a special form of lossless data

compression. It involves arranging the image components in a

"zigzag" order employing run-length encoding (RLE)

algorithm that groups similar frequencies together, inserting

length coding zeros, and then using Huffman coding on what

is left [10].

The JPEG standard also allows, but does not require, the

use of arithmetic coding, which is mathematically superior to

Huffman coding. However, this feature is rarely used as it is

covered by patents and because it is much slower to encode

and decode compared to Huffman coding. Arithmetic coding

typically makes files about 5% smaller [10].

While using Huffman coding, the zigzag ordering of the JPEG

components is done as:

Fig. 4 Zig-Zag ordering in JPEG [10]

E. Compression Ratio and Artifacts

The resulting compression ratio can be varied according to

need by being more or less aggressive in the divisors used in

the quantization phase. Ten to one compression usually results

in an image that cannot be distinguished by eye from the

original. 100 to one compression is usually possible, but will

look distinctly artifacted compared to the original. The

appropriate level of compression depends on the use to which

the image will be put [10].

At many times JPEG images appear with certain

irregularities which are due to compression artifacts. These

are due to the quantization step of the JPEG algorithm. They

are especially noticeable around sharp corners between

contrasting colours (text is a good example as it contains

many such corners). They can be reduced by choosing a lower

level of compression; they may be eliminated by saving an

image using a lossless file format, though for photographic

images this will usually result in a larger file size.

Compression artifacts make low-quality JPEGs unacceptable

for storing height maps. The images created with ray-tracing

programs have noticeable blocky shapes on the terrain.

Compression artifacts are acceptable when the images are

used for visualization purpose. Unfortunately subsequent

processing of these images usually result in unacceptable

artefacts [10].

IV. OPENMP

Historically, a key challenge in parallel computing has

been the lack of a broadly supported, simple to implement

parallel programming model. As a result, numerous vendors

provided different models, with often mixed degrees of

complexity and portability. Software programmers

subsequently found it difficult to adapt applications to take

advantage of multicore hardware advances. OpenMP was

designed to bridge this gap, providing an industry standard,

parallel programming API for shared memory multi-

processors, including multicore processors. A vendor-

independent OpenMP Architecture Review Board (ARB),

which includes most of the major computer manufacturers,

oversees the OpenMP standard and approves new versions of

the specification. Support for OpenMP is currently available

in most modern Fortran and C/C++ compilers as well as

numerous operating systems, including Microsoft Windows,

Linux, and Apple Macintosh OS X. Version 1.0 of OpenMP

was released in 1997. The latest version, 3.0, was released in

2008 [1,3].

A. Using OpenMP

OpenMP works as a set of pre-processor directives,

runtime-library routines, and environment variables provided

to the programmer, who instructs the compiler how a section

of code can be multithreaded. In Fortran, the directives appear

as comments, while in C/C++ they are implemented as

pragmas. In this way, compilers that do not support OpenMP

will automatically ignore OpenMP directives, while compilers

that do support the standard will process, and potentially

optimize the code based on the directives. Since the OpenMP

API is independent of the machine/operating system, properly

written OpenMP code for one platform can easily be

recompiled and run on another platform. An OpenMP

application always begins with a single thread of control,

called the master thread, which exists for the duration of the

program. The set of variables available to any particular

thread is called the thread’s execution context. During

execution, the master thread may encounter parallel regions, at

which the master thread will fork new threads, each with its

own stack and execution context. At the end of the parallel

region, the forked threads will terminate, and the master

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 110

thread continues execution. Nested parallelism, for which

forked threads fork further threads, is supported [1].

V. PARALLEL DCT IN JPEG ENCODER

The two-dimensional input signal is divided into the set of

nonoverlapping 8x8 blocks and each block is processed

independently. This makes it possible to perform the block-

wise transform in parallel, which is the key feature of the

DCT8x8 [5].

As the pixel data for each 8-by-8 block is independent of

the other’s, the data can be passed in parallel – SIMD. It is a

case of data parallelism where different blocks are sent in

parallel to the dct function. When multiple blocks are passed

to the dct function, it takes as input DCTMatrix which is a

8x8 block of the image and performs the DCT on the block.

Our parallel JPEG encoding scheme relies on OpenMP for

implementing the 2-D DCT. Every time the dct function is

called, the OpenMP loop is executed. OpenMP parallel for

clause along with the schedule() clause is used to run the loop

in parallel. This schedule(runtime) scheduling routine leaves it

on the processor to decide onto which thread the iteration of

the loop is to be processed. This ultimately permits for an

optimal use of the available CPU threads.

VI. EXPERIMENTAL SETUP

System Parameters Value

CPU Intel Core i7 6700k @

4.00GHz

RAM 8.00GB

Operating System Ubuntu 16.04 (64-bit)

Compiler gcc 5

OpenMP OpenMP 4.0

OpenCV OpenCV 3.0

Image Type BMP

Image Size 512x512

Table 1. System Configuration

In our experimental setup, gcc was used to compile the

program, with OpenCV being used for reading and writing of

image data and OpenMP to parallelise the program. We

considered different sets of 512x512 images.The program was

run for “n” images and the serial v/s parallel results for

varying n values were obtained. The time taken was calculated

using “get time of the day”.

Fig. 5 Performance comparison serial v/s parallel

Speed Up = (Time for Serial)/ (Time for Parallel)

Fig. 6 Speed up Graph for parallel implementation

Average speed up = Tserial / Tparallel = 4.7

VII. CONCLUSIONS

Modern computers with multi-core CPUs possess great

computational power and an opportunity to increase

processing performance with the use of parallel programming.

This paper presented an optimization in the JPEG encoder by

parallelizing computationally intensive DCT function.

OpenMP was used for this purpose. Our experimental results

show that the re-modeled implementation of the JPEG

encoder with parallel DCT function performed considerably

faster as compared to the serial implementation. It was

observed that using runtime scheduling gave the best

performance. Also, the speed up increased as we increased the

number of images.

The parallel implementation results exhibit a 4.7 times

speed up in the processing speed as compared to the serial

implementation.

REFERENCES

[1] “Multicore Image Processing with OpenMP”, Greg

Slabaugh, Richard Boyes, Xiaoyun Yang.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 111

[2] G. Blake, R. G. Deslinski, and T. Mudge, “A survey of

multicore processors: A review of their common

attributes,” IEEE Signal Processing Magazine, vol. 26,

no. 6, pp. 26–37, 2009.

[3] The OpenMP website. [Online]. Available:

http://www.openmp.org/

[4] Matt Marcus, “JPEG Image Compression”, Dartmouth

College

[5] Nvidia Developers website. “Discrete Cosine Transform

for 8x8 Blocks with CUDA” [Online]. Available:

http://developer.download.nvidia.com/assets/cuda/files/d

ct8x8.pdf

[6] P. Soille, Morphological Image Analysis. Springer-

Verlag, second ed., 2003.

[7] A. Jain, Fundamentals of Digital Image Processing.

Prentice Hall, first ed., 1989.

[8] Stanford Image Compression Techniques [Online].

Available:

http://cs.stanford.edu/people/eroberts/courses/soco/proje

cts/data-compression/lossy/jpeg/dct.htm

[9] Gregory K. Wallace “The JPEG Still Picture

Compression Standard”, North Carolina State University,

December 1991

[10] Harsh Vardhan Dwivedi, “Design of JPEG Compressor”,

National Institute of Technology, Rourkela (2009)

http://www.ijcstjournal.org/

