
International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 377

Response Time Analysis Using Linux Completely Fair Scheduler

for Compute-Intensive Tasks
Pooja Tanaji Patil [1], Prof. Sunita Dhotre [2]

PG Scholar [1]

Department of Computer Engineering [1] & [2]

Bharati Vidyapeeth Deemed University College of engineering

 Pune - India

ABSTRACT

Embedded systems are getting more numerous and complex day by day. Due to the need of portable devices to run the multiple

application concurrently, power management is the biggest issue occurred in such systems. To maintain the performance of

embedded system analysis of frequency change is an essential task. To reduce the energy consumed by systems the frequency

of CPU has to minimize. Hence, the optimization of system can be achieved by estimating the response time of the completely

fair scheduler (CFS) of Linux kernel. To achieve the better user experience the response time estimation is a huge threat.This

paper deliberate the estimation of Response time by running Compute-intensive Task.

Keywords :— Embedded System, Power Management, Response Time, CFS, CPU Frequency

I. INTRODUCTION

Modern Linux operating system based portable devices

such as Android, Apple’s iPod, iPhone, Smartphones, tablets,

etc. are experiencing considerable growth in performance and

functionality to meet the multiplicity of user need. For such

portable devices, the CPU frequency and software complexity

is increasing day by day which demands the high power. But,

the battery capacity did not increase significantly. Therefore

the user experience is greatly affected due to limited battery

capacity which is an unstable factor. So, power management

is the biggest challenge faced by today’s battery-limited

devices. To address this problem several traditional Power

Management schemes have been developed which provides

more battery lifetime by managing the energy[1]. Dynamic

Power Management executes workload to completion at the

maximum CPU Speed and allows the rest of the system to

perform in low power mode. The Dynamic Voltage and

Frequency Scaling (DVFS) assumes that highest energy

saving is possible by executing process at the lowest

performance setting [2]. The proposed research focuses on

designing a Scheduler driven DVFS Scheme by estimating

frequency change analysis for Compute Intensive Task to

minimize the Response time.

II. LITERATURE SURVEY

In the paper [3] author C. S. Wong, R. D. Kumari , and J.

W. Lam has compared the two Linux kernel scheduler such as

O (1) and Completely fair scheduler (CFS) in terms of fair

sharing policy and interactive performance. In Linux kernel

2.6 O(1) scheduler is used while in 2.6.23 uses the CFS. O(1)

replaced by CFS . Design goals of CFS are to provide the fair

amount of CPU among all runnable tasks without immolating

their interactive performance. Both schedulers share some

characteristics in terms of fairness and interactive

performance. Author has measured these design goals by

using benchmarks that measure the system performance in

terms of throughput. The results from the test conclude that

the CFS is fairer than O(1) in the case of CPU bandwidth

distribution and interactive performance.

In paper[2] author J. Wei, R.Ren, Juarez, F. Pescador

provides the Energy based Fair Queuing scheduling

algorithm(EFQ) which consume the energy on many devices.

EFQ algorithm can achieve proportional sharing of power by

consuming power on both CPU and I/O tasks based on their

energy consumptions. This algorithm can achieve the power

management scheme in battery limited mobile systems by

providing proportional power sharing and efficient time-

constrain compliance.EFQ algorithm achieves an energy-

centric power management. Author focuses on energy-centric

scheduling algorithm. Author also proposed that the EFQ can

protect the sharing the power of specific application which is

impossible for CFS. Author first improves the

implementation of EFQ by using Pthread-based Test bench.

Benchmark task are programmed into three type, real-time,

interactive and batch also the performance of these tasks are

retrieved under EFQ scheduling algorithm. Second, the power

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 378

consumption of each task is measured based on hardware

metering system and based on obtained energy values are

given as input to the Pthread-based test bench. Finally, the

ability of EFQ of providing proportional power sharing is

verified by calculating energy consumption caused by both

CPU and I/O operations as total energy consumption of

system. So, the CFS is extended by adding the new scheduling

policy SCHED_EFQ. Four variables are included to the

structure such as sched_entity and struct cfs_rq and initial

weight, reserved share, energy packet size and warp

parameters are added. Then the Linux nice values are

calculated from 40 to 100. The nice values ranges from [-20 to

19] which is further modified to [-50 to 40].

In the paper [4] author has estimated the response time

performance for smartphones. This response time estimation

scheme is proposed by applying Dynamic Voltage and

Frequency Scaling (DVFS) at CPU and Completely fair

scheduler at Linux kernel.DVFS which controls scheduling

reduces the power consumptions in smartphones through

adaption of CPU core frequency level and system voltage. The

change in CPU frequency ultimately changes the Response

Time.In proposed Response Time Estimation Scheme there

are two unit application architecture, first is Time

measurement unit (TMU) which measures the response time

of the second unit that is Instantaneous event unit (IEU). TMU

launches the IEU and performs data parsing. IEU activate an

update progress in separate threads.The effectiveness of

proposed scheme is demonstrated by capturing various the

changes in frequency levels based on executing various

background applications for Smartphone.

The research paper [1] focuses on maximizing user experience

in battery limited embedded system by using Energy-fair

queuing which is class of energy-aware scheduling algorithm.

In order to achieve the user-specified battery lifetime for

embedded system, author proposed the energy instead of CPU

should be managed. Author merges the traditional energy-

efficient algorithm with EFQ to more maximize the user

experience. EFQ algorithm manages the energy by scheduling

each task based on their consumption of energy. This energy

consumption controls the power of each task to avoid the

energy starvation. For proportional time sharing relationship

between CPU occupation time and energy consumption is

considered. The maximization the user experience during its

complete lifetime is simplified to one epoch. To achieve on

epoch , first the applications which are preferred by user

should executed with user-desired performance during whole

epoch; after that, at the end of one epoch the remaining energy

should be minimized to confirm that the rest of the task's

performance is maximized. Based on this concept author has

proposed the EFQ algorithm and it is tested on Linsched-

based testbench which is an open-source Linux scheduler

simulator.To frame the testbench author has modified the

Linux Fair.c file and Linsched API to support new scheduling

policies such as reserved share, Weight values and warp

parameter. The new scheduling policy SCHED_EFQ is

defined in sched.h file of Linux kernel and after that CFS code

in Fair.c file is modified to implement the EFQ scheduling

policy. Three types of Task are considered such as Real-time,

Interactive and batch. Based on Setting of some parameters

the maximum long-term power share and worst-case power

share has computed. The other energy Efficient scheme such

as DVFS in combination with the application self-adaption

can be used to consume power and maximizing user

experience.

III. RELATED WORK

The above observations and literature studies[3-7] indicate

that CFS is not connected with the frequency scaling scheme

of the CPU. As there is a possibility to enhance the response

time by changing the frequency, CFS can be linked to the

Dynamic Voltage and Frequency Scaling (DVFS) Algorithm.

This leads to the need of design of a DVFS Scheme with an

added scheduler governor wherein the responsive time of

Compute-Intensive Task will be estimated to enhance the user

experience. Scheduler-driven Frequency scaling scheme

desires to exploits both the global information and per-task in

the scheduler to improve the frequency selection scheme and

achieves better responsiveness or performance and lesser

energy consumption[5] so, to obtain the efficient performance

from the users perspective, the proposed work utilizing the

multi-threaded program executing in a multi-processor

environment. The multithreaded program is implementing by

compute-intensive task where the only CPU is utilized.

A. Completely Fair scheduler (CFS)

The latest Linux kernel scheduler is Completely Fair

scheduler (CFS)[7][12] which was introduced in Linux Kernel

2.6.23 and extended in 2.6.24. CFS is “Desktop” process

scheduler which was implemented by Ingo Molnar. Its core

design can be summed up in single sentence: “CFS basically

models an 'ideal, precise multitasking CPU' on real hardware

[9][14].” It is impossible to get the ideal CPU in reality, but

the CFS tries to imitate such ideal processor in system [16].

For scheduling the process CFS uses the process priority and

timeslice [11][17]. timeslice is defined as the total amount of

time taken by process to run and the process which is having

the large timeslice is considered as higher priority process.

The nice value given to each process according to user’s

perspective determines the priority of process. The proportion

of the time that any processor receives is determined by the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 379

difference between the nice values of runnable process and the

nice value of process itself. To decide the balance among

multiple tasks CFS inaugurated the concept of “virtual

runtime (vruntime)” [13]. Virtual runtime elucidate as the

total amount of time provided to given task. The task which is

having small virtual time means it has higher priority and will

schedule first. The virtual runtime can be considered as a

weighted time slice, which is represented by following

equation- [11][12]

 (1)

From the equation (1) of virtualruntime , delta_exec is the

total amount of execution time of task, default weight of

process means the unit value of weight and load.weight is

weight of task/entity[19]. The weight of runnable processes is

decided by their priority.

This scheduler also maintains the fairness for those

processes which are waiting for I/O events to occur. Instead of

maintaining these processes in run queue, the Completely Fair

Scheduler maintains the time order Red-Black tree (RBTree)

in a view to decide the task to schedule next on CPU.

B. DVFS(Dynamic Voltage and Frequency scaling)

The DVFS uses a disconnected set of governors namely

Performance, Powersave, Interactive, Conservative and

Ondemand[15]. Many CPU Frequency Scaling Governors

exist which allows the drives to set the target frequency.

Dynamic frequency Scaling[16] mechanism is applied for

using the CPU efficiently.

C. Compute-Intensive Task-

Compute-Intensive is any task or application of computer

which needs a lot of CPU/computation. These tasks are spends

more time in executing the codes so also known as CPU

bound processes in the operating system (OS). Linux

scheduling policies attempt to achieve two goals such as fast

response time and high throughput. So, in order to evaluate

the performance measurements of scheduler the Compute-

intensive tasks are implemented.

IV. PROPOSED SYSTEM

This research works on designing the scheduler-driven

frequency scaling scheme to optimize the user experience

from the perspective of Operating System. The analysis of

change in frequency will be carried out by running Compute-

Intensive Task which utilizes the system performance.

Considering that the scheduler in the kernel plays a vital role

in today’s multi-core operating systems for estimating the

performance. The proposed system aims to obtain the

connectivity among the scheduler and DVFS scheme in order

to optimize the Response time of the process and provide the

better user experience.

Fig. 1 System Level Implementation

As shown in fig. 1 , proposed research which aims to design

the CFS enabled Frequency Scaling scheme. The Existing

DVFS algorithm will be loaded in the kernel module along

with the existing governors. The modification will be done in

CFS header file sched.c. Then the Compute-Intensive task will

be executed by setting different governors for analysis of

change in CPU frequency and to estimate the Response time.

VI. CONCLUSION

Completely Fair scheduler has disconnected design from

frequency scaling algorithm, so CFS could not controls the

CPU frequency. Proposed research work will achieve the

connection among CFS and Dynamic Frequency scaling

scheme. Our work will focus on optimizing the user

experience by analyzing the Response time for scheduler-

driven frequency scaling scheme with the help of Compute-

intensive Task and will compare the results with existing

frequency scaling algorithm.

ACKNOWLEDGMENT

The proposed paper on “Response Time Analysis Using Linux

Completely Fair Scheduler for Compute-Intensive Tasks” has

been prepared by Pooja Tanaji Patil under the guidance of

Prof. Sunita Dhotre.

Author would like to thank whole department, friends and

parents for the valuable support and confidence in me.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 380

REFERENCES

[1] J. Wei, E. Juarez, M. J. Garrido, and F. Pescador,

“Maximizing the user experience with energy-based fair

sharing in battery limited mobile systems,” IEEE Trans.

Consum. Electron., vol. 59, no. 3, pp. 690–698, 2013.

[2] J. Wei, R. Ren, E. Juarez, and F. Pescador, “A linux

implementation of the energy-based fair queuing

scheduling algorithm for battery-limited mobile

systems,” IEEE Trans. Consum. Electron., vol. 60, no. 2,

pp. 267–275, 2014.

[3] C. S. Wong, R. D. Kumari, and J. W. Lam, “Fairness and

Interactive Performance of O(1) and CFS Linux Kernel

Schedulers,” no. 1, 2008.

[4] R. C. Garcia, J. M. Chung, S. W. Jo, T. Ha, and T.

Kyong, “Response time performance estimation in

smartphones applying dynamic voltage & frequency

scaling and completely fair scheduler,” Proc. Int. Symp.

Consum. Electron. ISCE, vol. 2, no. 2, pp. 1–2, 2014.

[5] C. S. Wong, I. Tan, and R. Deena, “Towards Achieving

Fairness in the Linux Scheduler,” pp. 34–43.

[6] S. Wang, “Fairness and Interactivity of Three CPU

Schedulers in Linux,” pp. 2–7, 2009.

[7] S. M. Mostafa, H. Amano, and S. Kusakabe,

“FAIRNESS AND HIGH PERFORMANCE FOR

TASKS IN GENERAL PURPOSE MULTICORE

SYSTEMS,” vol. 29, no. December, pp. 74–86, 2016.

[8] J. Lozi, J. Funston, F. Gaud, V. Qu, and A. Fedorova,

“The Linux Scheduler : a Decade of Wasted Cores.”

[9] “Completely Fair Scheduler _ Linux Journal.”

http://www.linuxjournal.com/magazine/completely-fair-

scheduler .

[10] “Tuning the Task Scheduler _ System Analysis and

Tuning Guide _ openSUSE Leap 42.”

https://doc.opensuse.org/documentation/leap/tuning/html

/book.sle.tuning/cha.tuning.taskscheduler.html.

[11] G. Cheng, “A Comparison of Two Linux Schedulers,”

Master thesis, pp. 1–89, 2012.

[12] Yigui Luo, Bolin Wu, “A Comparison on Interactivity of

Three Linux Schedulers in Embedded System”,

Communications, Computers and Signal

Processing(PacRim), 2011 IEEE Pacific Rim

Conference, pp. 494-498, August 2011.

[13] Wei-feng MA, WANG Jia-hai, “ Analysis of the Linux

2.6 Kernel Scheduler” 2010 IEEE International

conference on computer Design and Applications,

pp.71-74, 2010

[14] Prajakta Pawar, SS Dhotre, Suhas Patil, “CFS for

Addressing CPU Resources in Multi-Core Processors

with AA Tree”, International Journal of Computer

Science and Information Technologies, Vol. 5 (1), 913-

917, 2014

[15] R. Ge, R. Vogt, J. Majumder, and A. Alam, “Effects of

Dynamic Voltage and Frequency Scaling on a K20

GPU.”

[16] “Power Management & DVFS.”

http://www.arteris.com/power-management-dvfs .

[17] P. T. Patil, “A Study on Evolution of Storage

Infrastructure,” vol. 6, no. 7, pp. 501–506, 2016.

[18] Poonam Karande, SS Dhotre, Suhas Patil, “Illustration

of Task Scheduling in Heterogeneous Quad-Core

Processors”, International Journal of Engineering and

Technology Research, Vol 03, Issue 08, Pages:1389-

1393, May 2014

[19] Dilipkumar, Vora Shivani, M. Tech, and S. S. Dhotre.

"Runtime CPU Scheduler Customization Framework for

Real Time Operating System."

[20] Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil. "A

Modified O (1) Algorithm for Real Time Task in

Operating System."

[21] P. Malviya, “A Study Paper on Storage Area Network

Problem-Solving Issues,” vol. 4, no. 4, pp. 151–156,

2016.

[22] Pawar, Supriya Haribhau. "A Study on Big Data

Security and Data Storage Infrastructure." International

Journal 6.7 (2016).

[22] A. Silberschatz, P.B. Galvin, G. Gagne, “Operating

System Concepts,” 7th Edition, John Wiley & Sons

Inc.,2005

[23] Richard Petersen, “The Complete Reference” Linux,

Second Edition, Tata McGraw Hill.

[24] Daniel P. Bovet & Marco Cesati”. Understanding the

Linux Kernel, OReilly October 2000

http://www.ijcstjournal.org/

