RESEARCH ARTICLE

OPEN ACCESS

Data Display System for Mars Color Camera Onboard MOM

Nisha Chetana Sastry^[1], Nikhil Patil^[2], Samhitha Rao^[3]

Sathvik Shetty^[4], Shyamala G^[5]

Department of Computer Science BMS College of Engineering, Bengaluru

India

ABSTRACT

Mars Orbital Mission (MOM) is first mars mission undertaken by ISRO and also India's first interplanetary space mission. One of the main scientific objectives of the mission is to explore mars surface and study its morphology, topography and mineralogy. To facilitate this study Mars Colours Camera has been installed on the probe. The MCC (Mars Colour Camera) in addition to mars also probes the planet's two satellites, Phobos and Deimos. The camera has sent hundreds of images since its inception, hence a vast database of mars images have been created. There is no debate in the enormous use of the images sent by MCC in facilitating research in studying Mars's surface, morphology, weather, topography etc.

Planetary Data System (PDS) evolved in response to scientists' request for improved availability of planetary data from NASA missions with increased scientific involvement and oversight. PDS archives and distributes scientific data from NASA planetary missions, astronomical observations and laboratory measurements. *Keywords:-* NASA, PDS, MOM

I. INTRODUCTION

PAGE L Ever since Mars Orbiter Mission is in the orbit, it has sent millions of data and images of the mars. It has documented each and every aspect of the Martian surface, climate, weather etc.

Building a data archival system is important to facilitate present and future research in the planetary sciences field. It helps to store the data obtained from different planetary missions. The archival system if successful can be implemented to other missions of ISRO.

A. MOTIVATION

Since ISRO is planning to undertake many future space expeditions, the data-sets obtained from those missions have to be archived for the benefit of the scientific community. Thus developing an archiving tool in accordance with standards set by PDS will help to achieve this intention.

This will also benefit ISRO scientists along with other scientific community and students also .since it will help them to obtain the relevant data from the planetary missions aiding their research .

B. OBJECTIVE

ISRO has expanded its horizon since its inception through launching various satellites, interplanetary missions. In order to maintain the enormous data obtained from various satellite missions, an independent integrated system like PDS is the need of the hour.

Since its inception, PDS has been helpful with substantial data archives available scientists. An independent archival system like PDS is required for ISRO to develop and

maintain standards and tools for assembly and documentation

C. EXISTING SYSTEMS

Existing system which is accepted by the scientific community is the standard set by PDS The problems that existed before the implementation of archival system is documented by CODMAC [1]. The PDS works in four different stages or tasks [1]. PDS uses metadata which is collected from Planetary science data archive. The meta data in the archive is primarily collected to ensure that future. Scientists would be able to understand the context within which the science data was collected and archived. This metadata can be implemented using XML[2].

D. PROPOSED SYSTEM

We are going to develop an data query and display system for the data obtained from the data archiving system. This archival system basically operates on the data-sets of planetary missions, so that the data can be used for future reference and also retains the regulatory compliance. The System consists of a GUI which enables the user to search for the required data. The input from the user is used to query the required data from the database and the relevant data is displayed in the GUI.

II. LITERATURE SURVEY

An exhaustive Literature Survey regarding Mars Orbiter Mission, PDS and Mars Color Camera is given below.

A. Mars Orbiter Mission(MOM)

MOM was launched on 5th Nov 2013 and entered the mass orbit on Sept 24th 2014 with a designed life of six months.

International Journal of Computer Science Trends and Technology (IJCST) - Volume 5 Issue 2, Mar - Apr 2017

The mission has a highly elliptical Martian orbit imaging from 372 km (Periareion) to 80,000 km (Apoareion).[5]

The MOM mission involved three phases, namely, the Earth-centred phase, the heliocentric phase and the Martian phase MOM carried on-board five special payloads to study the surface and atmosphere of Mars. Mars Colour Camera(MCC), Methane Sensor for Mars (MSM), TIRS (Thermal Infrared Imaging Spectrometer), MENCA (Mars Exospheric Neutral Composition Analyzer), LAP (Lyman-Alpha Photometer). All these payloads have been performing as designed, ever since insertion in the orbit and voluminous data have been generated The MOM mission involved three phases, namely, the Earth-centered phase, the heliocentric phase and the Martian phase MOM carried onboard five special payloads to study the surface and atmosphere of Mars. Mars Color Camera(MCC), Methane Sensor for Mars (MSM), TIRS (Thermal Infrared Imaging Spectrometer), MENCA (Mars Exospheric Neutral Composition Analyzer), LAP (Lyman-Alpha Photometer). All these payloads have been performing as designed, ever since insertion in the orbit and voluminous data have been generated[6]

The ground segment for MOM comprises four major elements, namely Deep Space Network (DSN), Spacecraft Control Centre (SCC), Indian Space Science Data Centre (ISSDC) and Payload Operations Centre (POC). During the Earth Bound Phase of Mars Orbiter Mission, almost all instruments were turned on to acquire data about earth and its neighborhood to verify the instrument's output.[7]

B. Mars Color Camera(MCC)

Mars Color Camera (MCC) operates in visible range (0.4 to 0.7 μ m) and uses RGB Bayer pattern. Its IGFOV varies from 19.5 m to 4 km. The detector array has 2048x2048 elements on a pixel pitch of 5.5 μ .. The objectives that MCC supposed to meet are surface features, methane source, polar ice caps etc. An MCC image is a Bayer filter mosaic, a colour filter array (CFA) for arranging RGB colour filters on a square grid of photo sensors. [8]

C. Planetary Data System

In 1982, the National Academy of Sciences chartered the Committee on Data Management and Computation (CODMAC) [1], which identified serious problems in the way data was managed by NASA. Historically, much planetary data was not delivered to any archive facility. Frequently, data that was stored was difficult to locate or use because the documentation was inadequate for scientists outside the original investigation teams. In addition, in the years since early planetary missions, their tapes containing data were becoming physically unreadable. The NASA Planetary Data System is an active archive that provides high quality, usable planetary science data products to the science community Within PDS, there are four major tasks. The first task is to publish quality, well-engineered data sets.PDS provides easy access to these

data products by a system of online catalog sorted by

тіті б	PAPEPS	PROS	CONS
IIILE	AND	IKUS	CONS
Mars Orbit er Missio n(MO M)	AUTHORS [2] S. Seetha , S. K. Satheesh , "Mars Orbiter Mission" in CURRENT SCIENCE, VOL. 109, NO. 6, 25 SEPTEMBER 2015	This provides us the details of the overall mars mission and instrumental details of the experi- mentsonboard and of articles would beuseful to the wide community, interested in the details of the mission.	But they don't mention technical part of the mars mission which are also helpful for people to do more research.
	[3] S.ManthiraMoo rthi, A.S.Arya , "MARS ORBITER MISSION: SCIENCE DATA PRODUCTS AND ARCHIVE PIPELINE." in 46th Lunar and Planetary Science Conference, 2015	Planetary Data Processing activities goparallel with every mission activity since inception through various operational stages and continue to stay in focus even beyond the mission life into pos-terity. Science finding from the data sets and experi-ments is the prime focus of the planetary missions; need to be supported by data processing activities	Initial phase data is trusted with only PI teams till the data sets are ma-tured and validated and no else are entrusted with initial phase data.
	[4] S. Arunan and R. Satish ,"Mars Orbiter Mission spacecraft and its challenges" in CURRENT SCIENCE, VOL. 109, NO. 6, 25 SEPTEMBER 2015	The configuration and design of MOM spacecraft haveworked perfectly well throughout all the phases of the mission. The excellent working of all the systems of the spacecraft has established the deep space mission heri- tage for these systems and the bus. The configuration and design of these systems/elements can also be adopted future interplanetary missions of ISRO.	The configuration and subsequent design of the space-craft had to take into consideration the mwould face during its mission life.During the mission due to some problem in thermal environmitigati on or radiation it may cause trouble during the mission.

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

planetary disciplines. The next task is to leverage with flight projects for PDS compatible data sets. The great advantages of having projects deliver well-documented products are that the investigator expertise are available and those data can be then be used immediately by the general science community. The third PDS task is to maintain the archive data standards to ensure future usability. The final PDS task is to provide expert scientific help to the user community. PDS is an active archive, rather than a storehouse, which is staffed by engineers and scientists familiar with the data.

PDS was developed to both prescribe the metadata to be collected for the planetary science data archive and to design the PDS catalogue, a high level inventory of the data holdings in the archive. The meta data in the archive is primarily collected to ensure that future scientists would be able to understand the context within which the science data was collected and archived. This metadata can be implemented using XML.[2] PDS format is the standard data format to be used in all planetary science research. The software pipeline with MCC produces calibrated data to generate minimum Planetary Data System (PDS) compliance product.[3] Data processing system processes instrument data for edited and calibrated, derives metadata about mission events etc and housekeeping details from ancillary data to generate data products following PDS standard Data Processing system also produces "Active Archive" for raw and calibrated data form instruments, is minimum PDS compliant which will be accessed by researcher and other users[4].

III.LITERATURE SURVEY

	$\begin{bmatrix} 1 \end{bmatrix} A S A rya$	Mars color	
	$\begin{bmatrix} 1 \end{bmatrix} A.S. Alya,$	color	Dut comptimes
Mars	R.P. Rajasekhar	camera nave been	But sometimes
	et al , "MARS	useful in	mars color
Color	COLOR	providing various	camera are not
Camer	CAMERA	features of mars	able to give
MCC		surface, details of	proper details
	UNBUARD	methane source	on mars surface
)	MARS	on mars surface	due to some
ĺ	ORBITER	and many other	error in camera
	MISSION:	aspects like polar	or some other
	SCIENTIFIC	caps.dustdevils,te	problem,so
	ODIECTIVES &	mperature and	scientists
	Objectives a	climate.	should be
	EARTH	Due to mars color	careful in these
	IMAGING	camera scientist	matters.
	RESULTS"聽 in	get the details of	
	45th Lunar and	the mars surface	
	Planetary Science	and try to	
	Canfananaa	research on the	
	conterence ,	basis of the	
	2014.	details provided	
		by the mars color	
		camera.	

	[5] Lynn D. V.	PDS provides	.
	Neakrase , Reta	easy access to	In some cases
	F. Beebe, Nancy	these data	PDS found
1 4 -	J. Chanover ,	products by a	problems with
laneta	Lyle F. Huber,	system of online	a product but
y Data	Daniel Crichton	catalog sorted by	PDS was not
ystem	聽 , Sean	planetary	able to rework
	Hardman ,	disciplines. The	it, usually due
	"PLANETARY	next task is to	to financial
	DATA SYSTEM:	leverage with	limitations,
	SUPPORTING	flight projects for	was released
	ARCHIVING OF	PDS compatible	but peer
	DERIVED	data sets. The	review
	DATA" in 47th	great advantages	comments
	Lunar and	of having projects	were entered
	Planetary Science	deliver well-	in the PDS
	Conference ,2016	documented	catalogs so
	,	products are that	that product
		the investigator	warned
		expertise are	murneu.
		available and	
		those data can be	
		then be used	
		immediately by	
		the general	
		science	
		community. The	
		third PDS task is	
		to maintain the	
		archive data	
		standards to	
		ensure future	
		usability. The	
		final PDS task is	
		to provide expert	
		scientific help to	
		the user	
		community.	
		Significant	
		progress has been	But still after so
	[6] D.	made over the	much
	Crichton ,R.	past year on	progress
	Beebe et	PDS4, and PDS	sometimes pds
	al ,"PDS4:	is now planning	faces some
	Developing the	for the	slight problems
	Next Generation	operational	while involved
	Planetary Data	release. PDS is	in the
	System" in	now testing the	missions.So
	EPSC-DPS Joint	software and	kept in mind
	Meeting ,2011	planning for the	while design.
		transition. The	
		transition covers	
		migration to	
	1	1	

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

	PDS4, changes in	
	the software	
	infrastructure,	
	and planning for	
	missions support.	
	As part of this	
	project, the PDS	
	has gained	
	significant	
	experience in	
	upgrading a	
	major archive	
	system that	
	involves a	
	number OI	
	stakenoiders.	
[7]Susan K. McMahon, " Overview of the Planetary Data System",Planetar y and Space sciene 1996	PDS format is the standard data format to be used in all planetary science research. The software pipeline with MCC produces calibrated data to generate minimum Planetary Data System (PDS) compliance product.	But still isro doesn't have its own data archiving system,so it wants to build one similar to nasa which is a part of a project undertook by isro.

IV. CONCLUSIONS

Since its inception, PDS has been helpful with substantial data archives available to scientists. An independent archival system like PDS is required for ISRO to develop and maintain standards and tools for assembly and documentation of datasets. The display system for this archive will facilitate research by scientists and enthusiasts alike.

REFERENCES

- S. M. Metev and V. P. Veiko, *Laser Assisted Microtechnology*, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.
- [2] J. Breckling, Ed., *The Analysis of Directional Time Series: Applications to Wind Speed and Direction*, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.
- [3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, "A novel ultrathin elevated channel low-temperature poly-Si TFT," *IEEE Electron Device Lett.*, vol. 20, pp. 569– 571, Nov. 1999.
- [4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, "High resolution fiber distributed measurements with coherent OFDR," in *Proc. ECOC'00*, 2000, paper 11.3.4, p. 109.
- [5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, "High-speed digital-to-RF converter," U.S. Patent 5 668 842, Sept. 16, 1997.
- [6] (2002) The IEEE website. [Online]. Available: http://www.ieee.org/
- [7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/texarchive/macros/latex/contrib/supported/IEEEtran/
- [8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
- [9] "PDCA12-70 data sheet," Opto Speed SA, Mezzovico, Switzerland.
- [10] A. Karnik, "Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP," M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.
- [11] J. Padhye, V. Firoiu, and D. Towsley, "A stochastic model of TCP Reno congestion avoidance and control," Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.
- [12] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.