
International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 409

Handling Anomalies in the System Design: A Unique Methodology

and Solution
Pratik Rajan Bhore [1], Dr. Shashank D. Joshi [2], Dr. Naveenkumar Jayakumar [3]

Department of Computer Engineering

Bharati Vidyapeeth Deemed University College of Engineering

 Pune - India

ABSTRACT
The primary problem in the software these days is the anomalies occurrence in the design and code of the system. These

anomalies or rather these bugs cause a huge impact on the quality and reliability of the software. It is a big issue in the software

organizations for the developers or the testers creating or developing the software. In this article, we propose a methodology and

a solution for handling these constantly transpiring anomalies in the system design. We take forward our research from the earlier

article where we surveyed about the various anomalies and the novel approach using the different metrics for handling the

anomalies in the system design.

Keywords :— Code Anomalies, Design Anomalies, Software Bugs, Software Development

I. INTRODUCTION

Here to begin with, in this article [2][3] we start by giving a

gist of what our approach was from the previous paper [5] that

we wrote to begin our research on this area. The approach

consisted of various software metrics [6] when integrated

together will create a unique process methodology [1] for the

developers or the testers in the software organizations [4] for

detecting [13] and correcting the bugs in the coding and

design phase of the system. To revise back on the metrics [6],

we had mentioned before they were [5]:

1. Key Process Area

2. Agile Methodology

3. Quality Gate

4. Traceability Matrix

5. Source Code

6. Reverse Engineering/ Reengineering

When all of these are integrated together and used that is

when we get our proposed process model [1] for tackling the

anomalies [9] in system design. It will help in boosting the

software quality as well. Detection and correction of

anomalies [13] are directly proportional to the quality increase

in the software and vice versa.

Quality Enhancement ∝ Detection and Correction of

Anomalies

For achieving this, we further propose a unique methodology

and architectural solution to handle the problem with finesse.

II. THE UNIQUE METHODOLOGY

We propose a unique methodology which implies in carrying

out the following tasks in its proper order:

Fig. 1 Proposed Methodology

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 410

To be precise about the proposed methodology [2][3]we are

going to explain how the method is unique and how it works.

1) Step One:

The model we propose helps the developers and the testers

in predicting [12] and showing what real anomalies [9] are. It

helps in detecting [13] these anomalies occurring in the design

and the coding phases of the software. Humans do not have

enough knowledge for the manual detection and correction

[13]. The required knowledge to find anomalies [9] in the

code or design for humans is immense. Hence auto detection

model helps in predicting [12] the actual anomalies showing

developers where the problem lies in the code [10] or the

design.

2) Step Two:

The model consists of various spectrums which are needed

to be brought together for the orderly functioning of it. These

spectrums are nothing but the software metrics [6] that

function together to achieve the objectives of the model. Here

we employ the spectrums such as KPA, Agile Model, Quality

Gate, Traceability Matrix, Source Code and Reverse

Engineering [5] like we have mentioned in the novel approach

we have stated. It helps in predicting [12] the anomalies [9] in

the code or the design of software.

3) Step Three:

The model correlates the coding and the design phases. It

gets evaluated by using the model. It is crucial knowledge for

the developer for determining what effect the code [10]

refining can cause on the design of the software or vice versa.

The design gets directly affected when the code of the

software gets changed. Hence if the anomalies [9] lie in the

design, they can be directly resolved using the coding phase.

Also, the downside of this is that if there are code anomalies

in the code, then it can affect the design of the software in a

bad way. Hence evaluating the relation between these two

phases is quite important here.

4) Step Four:

The model helps in determining the relation of the code and

design anomalies [9]. Like we see in the third phase it is vital

for the developers to recognize the relation between the code

and design phases as the anomalies get interrelated with each

other after their occurrence. The anomaly in code [10] can

cause an anomaly to occur in the design of the software that’s

how much they are dependent on each other. Moreover, hence

making it imperative to understand and determine their

relation always.

5) Step Five:

The model helps in investigating the impact the anomalies

[9] cause on the software. The introduction of bugs in the code

will directly affect the design of the software with which the

user is in direct contact. The user will experience direct

discomfort using the software and will have negative feedback

hence due to lack of quality. That is why the developers and

testers in the software organizations [4] should investigate

these anomalies [9] before delivery to the customer to have

better feedback.

6) Step Six:

The model is integrated with an agile methodology to give

us a complete model along with the other parameters involved.

Our module chooses the agile methodology rather than SDLC

because they address the code [10] in the development of the

software design swiftly. In such situations FDD or TDD

models are crucial. They address the source code as an

important metric to develop the quality of the software. They

refactor the code [7][8] to give a better design and eliminating

the bugs befalling in the code and design. In our model it is

based on auto detection [13] hence these models help to

achieve our goal rather than the pair programming used in

previous models that are manual based.

 7) Step Seven:

 The model correlated software reliability prediction [12]

with the anomalies occurring in the design [9] or the code [10].

It is important for the organization’s [4] sake that these

anomalies get predicted [12] during the development phases

rather than after the delivery to the customer. Hence the

occurrence is needed to be corrected by prediction to make the

software a reliable one beforehand.

8) Step Eight:

 In this model, the two metrics that help to check the

changes in the design by the refining of the code are reverse

engineering or re-engineering and traceability matrix. They

carry out the tracing back from the [10] to the design phase to

check if the anomaly is corrected from the code properly.

Therefore this helps in elimination of the real anomaly.

9) Step Nine:

 The model can help the developers assign a metric

threshold value by the anomaly detection [13] to analyze the

quality percentage in the software. If a certain threshold value

is defined and the quality of the software is less than the

defined threshold value [5], then there are bugs in the code or

the design. We can correct the bugs in code or design using

our model and check the quality enhancement then.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 411

 10) Step Ten:

 Like we have seen above the model helps in setting a

quality gate in between phases to check quality. Suppose all

the bugs are detected and eliminated [13], then the quality will

be higher than the predefined threshold value. It is the use of

the quality gate for the developers to determine the exact

quality ratio in the software. It completes the process model [1]

for detecting and correcting the anomalies [9].

11) Step Eleven:

 Lastly, the model gets supplemented by integrating all the

metrics [6] mentioned above and an existing agile method that

focuses on the source code [10]. Like FDD and TDD which

helps automatically detect anomalies [9] in the code such as

JAVA source code or directly the design such as the dynamic

pages on the online software which are in HTML. Our model

helps in detection of bugs in these areas that are widely used

by the software developers. Also using reverse engineering

tool, we can check if the design of JAVA code is improving

by tracing back. While in the HTML code we can directly see

the design in the model which using the reverse engineering

algorithm to give the design outlines. It is all achieved by

integration of the agile method with the metrics stated.

Moreover, in the end, the objective of the anomaly detection

and correction [13] is achieved.

III. THE PROPOSED ARCHITECTURE/

SOLUTION

Fig. 2 Proposed Architecture/Solution Workflow

Fig. 3 Proposed System Architecture/Solution

 To get an insight into the working of the proposed

architectural module, we explain here how the entities in the

diagram mentioned above work. This proposed architectural

module is nothing but the solution that deals with the problem

of anomalies [9] in the system design. Firstly the module has a

login and password. Only the authenticated developer or tester

can enter in the module. Hence only the software organization

[4] employees can access this module. After authentication,

the developers can start to get into the source code of any

software that is based on JAVA or HTML code. In today’s

world, most of the offline software are built in JAVA coding

while all the online software gets built in HTML coding.

Hence our main focus is improving these software processes

[1] to give out very reliable and quality software which gets

fully developed. The module after getting the code starts

analyzing the correctness of the code. We know that the

coding phases and the design phases are interrelated to each

other as they occur one after the other. Hence their anomalies

are correlated to each other as well. Suppose there exists a

code anomaly in the source code of the software, this anomaly

will directly affect the design of the software. The effect

caused a design anomaly in the design phase as well. It proves

that the anomalies [9] in both the phases are interrelated to

each when they occur. In our previous article, [5] we have

explained what the various types of anomalies in the code or

design are and how they occur due to each other. Our module

starts finding the bugs directly from the code saving time and

resources of the developers. It shows the exact placement of

the bug. Metrics [6] such as Line of Codes and the algorithm

used in our module helps to detect the exact line where the

bugs lie in the code. Below it shows what is missing in the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 412

code which resulted to that anomaly occurring in the code.

Using the reverse engineering tool integrated into the module

we can trace back to the design phase where we can check

how the design changes by the introduction of anomalies [9]

in the code. By eliminating these detected bugs [13], we can

hence enhance the quality and reliability of the software. Our

module offers this in JAVA as well as HTML code and design.

HTML is used extensively in the dynamic pages of the online

software. The introduction of bugs occurs a lot in the online

software more than the offline software nowadays. So to have

an extra advantage of correcting the module offers the

developers to keep in check the online software or the

dynamic pages of their software organization [4] in check.

The variation can be seen in the design directly if the code is

refactored [7][8] or refined. In the end, if the code is in check

and the quality is 100% correct [11] after all the anomalies [9]

get resolved then the module also helps in compiling the code

and gives out the desired output. We can then finally check if

the design anomaly is resolved as well to give a perfect design

with perfect quality and reliability for the customers. It is how

our module is unique from other existing models.

IV. ISSUES IN EXISTING MODELS

 There are multiple issues in the existing models that

need to get addressed. Hence in our novel model, we try to

eliminate all these shortcomings or matters in the existing

models to give out a better and developed model for the use of

the software developers or testers in the software organization

[4]. The issues are:

 In the first issue, the existing models fail to address that

the developers have a deadline in which the customers should

be deployed with the desired software. Before the software is

delivered the testing and developing should be fully complete

as per the wish of the stakeholders and the customers. The

only obstacle that can cause a delay in getting the desired

software quality and reliability in time can be the introduction

of the anomalies in the software [9]. Hence to eliminate these

bugs and resolve those in due course the developers need a

model that will remove all the bugs in time and well before

the deadline in their organization [4]. The existing models

consider dealing with these anomalies manually by using

techniques such as pair programming. It can extend the

development further than the actual deadline. The human eye

is bound to miss a few bugs, and hence the quality will be not

improved as per need. Also, there are large types of anomalies

that occur in the code or the design, and the humans do not

have all the knowledge about them which is needed. Hence it

was difficult to determine if it is an anomaly or not. Hence it

is necessary to have an automatically detection model which

can detect all the bugs in the code of the software as well as in

the design and therefore the client gets a high-quality software

with zero bugs fully functioning.

 The next issue in the existing models is that none of

them uses the reverse engineering to check if the code

correction eliminates the design anomaly. They use various

programming techniques and algorithms but fail to check in

the actual design if the anomaly is corrected. As the client

comes in contact with the outlet design of the software, it

makes it the most important phase in the software. The proper

design can attract more clients, and if the quality is high in the

design, then the clients will be satisfied as well.

 The next issue is that they do not consider the

traceability matrix and trace back and forth from code to

design. Also, the models fail to keep a record of the anomalies

[9] resolved so that next time when the developer faces similar

anomaly, then he can handle it in no time.

 The next issue is that they cannot eliminate all the

bugs in the code or design as the algorithms they use is not

bound to pick up a few anomalies, while our model gives a 90

-100% quality [11] enhancement as it detects [13] all the

anomalies in the code and design. The detected anomaly is

shown below in our model that in which line of code it lies

and how it affects the design of the software. It helps the

developer to resolve the anomaly from the LOC [11] directly.

By doing this the desired quality and reliability is achieved.

 The next issue is that none of them consider using the

quality gate in their processes [1]. The quality gate is an

important milestone which is vital in checking quality in the

code or design. It can be applied to the both phases. A metric

threshold value is defined where if more anomalies are

detected [13] then it is determined that if the quality is lower

than set threshold value. This is all considered in our model.

 The next issue is none of them can analyze all the bugs

in a JAVA or HTML [11] code or design. Our model offers

correction in both these languages which get mostly used in

the online and offline used software. Hence making this

necessary to be used in today’s software. Therefore, this helps

in achieving the objective of high quality and reliability in the

end. Also, the customer satisfaction gets guaranteed about the

software.

FUTURE WORK AND CONCLUSION

 In this article, [5] we have explained our unique

methodology which consists of sequential tasks and our

unique solution consisting of the proposed architectural

module which will deal with the anomalies [9] in the coding

or the design phase of the software. The main objective hence

is completed which is quality enhancement and reliability

achievement which can be gained using this model. In the

coming days we will present in our next article with the result

and implementation of this proposed model to give a better

idea to developers or researchers.

REFERENCES

[1] N. Jayakumar, M. Bhor, S.D. Joshi, A Self Process

Improvement For Achieving High Software Quality,

2011.

[2] P.R. Bhore, A Survey on Storage Virtualization and its

Levels along with the Benefits and Limitations.

International Journal of Computer Sciences and

Engineering, vol. 4, no. 7, pp. 115-121, July 2016.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 413

[3] P.R. Bhore, A Survey on Nanorobotics Technology,

International Journal of Computer Science &

Engineering Technology, vol. 7, no. 9, pp. 415-422,

September 2016.

[4] T.B. Patil, S.D. Joshi, Software Improvement Model for

small scale IT Industry, 2015.

[5] P.R. Bhore, Dr. S.D. Joshi, Dr. N. Jayakumar, A Survey

on the Anomalies in System Design: A Novel Approach,

International Journal of Control Theory and Applications,

vol. 10, May 2017.

[6] N. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous

and Practical Approach, ACM DL, 1998.

[7] M. Fowler, Refactoring—improving the design of

existing code. 1st edn. Addison-Wesley, Reading. 1999.

[8] W.J. Brown, R.C. Malveau, W.H. Brown, H.W.

McCormick, T.J. Mowbray, Anti Patterns: Refactoring

Software, Architectures, and Projects in Crisis. 1st edn.

Wiley, New York. 1998.

[9] M. Kessentini, W. Kessentini, H. Sahraoui, M.

Boukadoum,A. Ouni, Design anomalies Detection and

Correction by Example. IEEE. 2011.

[10] N. Yoshida, T. Saika, E. Choi, A. Ouni, K. Inoue,.

Revisiting the relationship between code smells and

refactoring. IEEE 24th International Conference on

Program Comprehension (ICPC), pp. 1-4, Austin, TX.

2016.

[11] T. Mens, T. Tourwé, A Survey of Software Refactoring.

IEEE Transactions on Software Engineering., vol. 30, no.

2, 126-139, February 2004.

[12] H. Sahraoui, H. Abdeen, K. Bali, B. Dufour, Learning

dependency-based change impact predictors using

independent change histories. Information & Software

Technology, pp. 220-235, 2015.

[13] N. Moha, Y.G. Gueheneuc, L. Duchien, Le Meur.

DECOR: A Method for the Specification and Detection

of Code and Design Smells. IEEE Trans. Softw. Eng.

2010.

http://www.ijcstjournal.org/

