
International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 424

A Treatment for I/O Latency in I/O Stack
Ashutosh Kumar Singh [1], Dr. S.H.Pati [2], Dr. Naveenkumar Jayakumar [3]

Department of Computer Engineering

Bharati Vidyapeeth Deemed University

Pune - India

ABSTRACT

Nowadays everywhere have computers are present and everybody is using it with the help of software and applications. The main

problem in the software is the slow performance to complete its task after as the software size increases system performances

decreases. It is a big problem for the developers to keep pace with system performance in day to day life. In this paper, we are

being proposing a new method which uses to accelerate I/O latency in minimum time execution.

Keywords :— CORI Burst buffer, Lower Latency, Heavy Overloaded Layers, Complex Resource Management

I. INTRODUCTION

It is being observed that in existing research I/O stack have

dark overloaded layers which result in increasing I/O latency.

It results from the interposition of drivers taking a long time

for executing I/O request. The complex resource management

such as scheduling and prioritizing also cause high I/O latency.

Another reason is no appropriate semantics for virtualization.

Another reason is data duplication when I/O request move

from physical stack to virtualized I/O stack it creates data

copy, so it is needed to develop a model which can minimize

I/O latency by removing heavy overloaded layers in I/O

stack[1]

1. Low latency

2. Heavy overloaded layers

3. Interposition

4. Complex resource management

5. Data duplication

6. Interposition of layers

Previous work says that I/O stack processing is heavily

overloaded processing due to thick presence layers of I/O

stack. This results in an increase in I/O latency which affects

the performance of the system because the request has to pass

through from first physical I/O stack and then virtual I/O

stacks. This also the main reason for an increase in latency.

Hence our work is to create a method to execute I/O latency in

minimum execution by CORI burst buffer[2]

Fig 1.Issues in I/O Latency

II. ISSUES IN EXISTING MODELS

The paper proposed by M. Mahalingam focuses on the

architecture of virtualization. This paper does not explain the

TCP offload and DMA operations. This paper does not

explain the needs of virtualizations. This paper explains the

[3]performance in resembles to CPU utilization. This paper

also explains the fanning out of a process to different CPU

cores for physical NIC acceleration, but it does not solve the

needs of the fanning process. It also does not explain the Pass-

through mechanisms properly. This paper does not eliminate

the dependency of hardware and data centre consolidation.

This paper describes various technologies like virtual device

checkpoint and writes protect preoccupied guest memory[4]

This paper proposed to explore the issues motivating the

selection of this architecture for secondary storage and review

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 425

state of the art in disk devices and I/O controllers and will

describe new approaches for very high-performance I/O based

on redundant arrays of inexpensive disks (RAIDs).This paper

does not describe that DMA operation is suitable for not

mapping operations when the driver is not initialized. This

paper explains application using massively parallel processors

often required high bandwidth.[5] This paper does not explain

the latency to reduce wait of the process .It processing

depends upon the execution of gigabyte speed of

communicating rate and communication bandwidth another

dependency is that its capacity should accommodate gigabyte

speed capacity.[6]

This paper proposes the new algorithm the new algorithm has

a lower I/O complexity than I/O efficient model checking

algorithms, including detection accepting cycle, maximize

allowing predecessors, and long depth-first search. This

algorithm is not suitable for smaller systems, and it is only for

large scale systems.[7] This paper introduces an I/O efficient

algorithm which is used for large-scale systems to lower I/O

complexity and to reduce time. This paper does not explain

the free space management. This paper describes the cache

duplication detection technique which increases additional

time and additional overhead both. This paper does not

describe the process of I/O operation so as to reduce time

efficiency[8]

These paper big data resources and their processing

management capabilities. This paper explains the existing

algorithms of I/O linear temporal logic. This paper describes

the rationale of detection of all excepting cycles which is

called as detecting all complete cycles.(DAAC).[9] This

paper does not explain correct semantics and interfaces in the

processing of detection.[10] This paper does not explain the

criteria for detecting all cycles. This problem of detection

sometimes violates of the linear logic of I/O subsystems. This

paper demonstrates the computation technique and path

management technique. This paper does not explain lowering

of I/O complexity and additional overhead. Sometimes in path

control causes space explosion problem.[11]

Table 1.Merits and Demerits of Existing Models

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 426

III. THE PROPOSED METHODOLOGY

We propose a methodology which concludes the following

procedures

Fig 2.Proposed System Methodology Work Flow

We are going to our proposed methodology how it works for

I/O execution. A file system is a designed to check workloads

and checkpoints. CORI burst buffer scans the application

function calls at link time and support both DRAM and SSD.

Each process writes the data to local storage which makes

CORI flexible and valuable method. It is the design that many

writes where each process writes a separate file and where

many processes access to single shared file. It overcomes the

complex resource management of I/O request by making

many patterns for data retrieval. It overcomes the limitation of

the interposition of layers by spreading the metadata workload

at distributive value store, and it also helps in allowing one

process to retrieve the data from another node for reading

operation. It is dedicated for single parallel jobs at each

computing nodes at a time. It enables the pipelining

technology for data transfer between application and server is

improved .at the end all data are consolidated and purified

Fig 3.CORI Burst Buffer

IV. FUTURE WORK AND CONCLUSION

In this paper, we have explained our methodology which

describes how CORI burst buffer works for executing i/o

request and possible issues which it overcomes during the

execution .this paper will be helpful coming developers to be

more knowledge in handling i/o request.

REFERENCES

[1] N. Jayakumar, M. Bhor, S.D. Joshi, A Self Process

Improvement For Achieving High Software Quality,

2011.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 427

[2] A. K. Singh, “A Study on Merits and Demerits of SAN

Protocols,” vol. 3, pp. 1–5, 2015.

[3] Ashutosh Kumar Singh, S.H.Patil, Naveenkumar

Jayakumar,” A survey of increasing i/o latency in i/o

stack”, IJCTA, May 2017

[4] N.k.Singh, A. K. Singh, “A Study on Virtue and Faults

of Security in Cloud Computing,” vol. 5, no. 1, pp. 93–

97, 2017

[5] Feitelson, D. G., Corbett, P. F., Baylor, S. J., & Hsu, Y.

Parallel I/O subsystems in massively parallel

supercomputers. IEEE Parallel and Distributed

Technology, 3(3), 33–47. http://doi.org/10.1109/M-

PDT.1995.414842,1995

[6] P Wu, L., Huang, H., Su, K., Cai, S., & Zhang, X. An

I/O efficient model checking algorithm for large-scale

systems. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 23(5), 905–915.

http://doi.org/10.1109/TVLSI.2014.2330061.R.

Bhore,2015.

[7] Zhou, Z., Yu, M., &Gligor, V. D. Dancing with giants:

Wimpy kernels for on-demand I/O isolation. IEEE

Security and Privacy, 13(2), 38–46.

http://doi.org/10.1109/MSP.2015

[8] Computers, I. S. Disk System Architectures for High

Performance Computing, 77(12), 1842–1858,1990

[9] Li, C.. High-speed optical interconnect for multimedia

systems, 390–412

[10] W. Paper, “Solving I / O Bottlenecks to Enable Superior

Cloud Efficiency,” pp. 1–6.

[11] M. Principal, “Eliminating the I / O Blender Effect and

Realizing World Class Storage Performance in Virtual

Storage Environments,” no. December, pp. 1–12, 2014.

http://www.ijcstjournal.org/

