
International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 453

NKS Search in Multidimensional Dataset with and without using

User Preference
Shimna P.T [1], Dilna V.C [2]

AWH Engineering College, Calicut university

Department of Computer science & Engineering

Kuttikkatoor, Kozhikode, India

ABSTRACT
Conventional spatial queries, such as range search and nearest neighbor retrieval, involve only conditions on objects’ geometric

properties. Today, many modern applications call for novel forms of queries that aim to find objects satisfying both a spatial

predicate, and a predicate on their associated texts. For example, instead of considering all the restaurants, a nearest neighbor

query would instead ask for the restaurant that is the closest among those whose menus contain “steak, spaghetti, brandy” all at

the same time. we develop a new access method Preference Tree with user preference. In Preference Tree time and distance is

using as parametrs.We develop another method for without user preferences by Z curve method. The proposed techniques

outperform in query response time significantly.

Keywords :— Nearest Neighbor Search, Keyword Search, Spatial Index.

I. INTRODUCTION

A spatial database manages multidimensional objects (such

as points, rectangles, etc.), and provides fast access to those

objects based on different selection criteria. The importance of

spatial databases is reflected by the convenience of modeling

entities of reality in a geometric manner. For example,

locations of restaurants, hotels, hospitals and so on are often

represented as points in a map, while larger extents such as

parks, lakes, and landscapes often as a combination of

rectangles. Many functionalities of a spatial database are

useful in various ways in specific contexts. For instance, in a

geography information system, range search can be deployed

to find all restaurants in a certain area, while nearest neighbor

retrieval can discover the restaurant closest to a given address.

In Fig. 1, suppose there are a set of businesses whose

locations (represented by squares) and service lists (a set of

keywords) are registered in the online yellow pages of a local

search service provider. When a GPS-enabled smartphone

user wants to find a nearby restaurant to have a piece of pizza

and a cup of coffee, she may send the local search server two

keywords, coffee and pizza. Based on the user’s current

location (e.g., the point q in Fig. 1) derived from the

smartphone and the two query keywords, business p1 is

returned by the server. Note that although businesses p3 and

p4 are closer to q than p1, they do not satisfy the keyword

constraint.

In many real applications, the query workload may vary

from time to time, and the system may encounter a burst of

queries (e.g., queries invoked by a particular event). In this

scenario, the system throughout is poor if a large number of

queries are processed one by one. Motivated by this, a large

body of existing work have been devoted to investigate how to

improve the system throughout with the batch query

processing techniques such that a large number of queries in

the queue can be processed with a reasonable delay.

Figure 1: Online Yellow Pages Example

 In this paper, we propose Preference Tree to enable fast

processing for NKS queries. In particular, we develop an

exact user preference and without user preference that always

retrieves the optimal top-k results. Preference Tree uses a set

of hashtables and inverted indexes to perform a localized

search. The hashing technique is inspired by Locality

Sensitive Hashing, which is a state-of-the-art method for

nearest neighbor search in high-dimensional spaces. Unlike

LSH-based methods that allow only approximate search with

probabilistic guarantees, the index structure in Preference Tree

supports accurate search. A single round of search in a

hashtable yields subsets of points that contain query results,

and Z curve method used to explores each subset using a fast

pruning-based algorithm without user preference. We evaluate

the performance of Preference Tree and Z curve method on

both real and synthetic datasets. The empirical results reveal

that Preference Tree will efficiently work than Z curve

method in the basis of user preference otherwise considering

time time as parametrer Z curve method will work more faster

than preference tree.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 454

II. RELATED WORKS

With the ever-increasing popularity of services such as

Google Earth and Yahoo Maps, as well as other geographic

applications, queries in spatial databases have become

increasingly important in recent years. novel type of query

called the mclosest keywords (mCK) query: given m

keywords provided by the user, the mCK query aims at

finding the closest tuples (in space) that match these

keywords. While such a query has various applications, our

main interest lies in that of a search by document. The bR*-

tree[2] is an extension of the R*-tree. Besides the node MBR,

each node is augmented with additional information. A

straightforward extension is to summarize the keywords in the

node. With this information, it becomes easy to decide

whether m query keywords can be found in this node.

There are many applications which are quality sensitive

and need to efficiently and accurately support near neighbor

queries for all query ranges. propose a novel indexing and

querying scheme called Spatial Intersection and Metric

Pruning (SIMP)[5]. It efficiently supports r-near neighbor

queries in very high dimensional spaces for all query ranges

with 100% quality guarantee and with practical storage costs.

Efficient method to answer top-k spatial keyword queries.

To do so, we introduce an indexing structure called IR2-Tree

(Information Retrieval R-Tree)[3] which combines an R-Tree

with superimposed text signatures. present algorithms that

construct and maintain an IR2-Tree, and use it to answer top-k

spatial keyword queries. method to efficiently answer top-k

spatial keyword queries, which is based on the tight

integration of data structures and algorithms used in spatial

database search and Information Retrieval (IR). In particular,

our method consists of building an Information Retrieval R-

Tree (IR2Tree), which is a structure based on the R-Tree. At

query time an incremental algorithm is employed that uses the

IR2-Tree to efficiently produce the top results of the query.

A hybrid search strategy between LSH-based search and

linear search for r-NN in high dimensional space. By

integrating an auxiliary data structure into LSH hash tables,

we can efficiently estimate the computational cost of LSH-

based search for a given query regardless of the data

distribution. This means that we are able to choose the

appropriate search strategy between LSH-based search and

linear search to achieve better performance. Moreover, the

integrated data structure is time efficient and fits well with

many recent state-of-the-art LSHbased approaches[4].

fundamental application of locating geographical

resources and propose an efficient tagcentric query processing

strategy. In particular, we aim to find a set of nearest co-

located objects which together match the query tags. Given

the fact that there could be large number of data objects and

tags, efficient search algorithm that can scale up in terms of

the number of objects and tags. Further, to ensure that the

results are relevant[7].

Keyword-based search in text-rich multi-dimensional

datasets facilitates many novel applications and tools. In this

paper, we consider objects that are tagged with keywords and

are embedded in a vector space. For these datasets, queries

that ask for the tightest groups of points satisfying a given set

of keywords.Novel method called ProMiSH (Projection and

Multi Scale Hashing) [1]that uses random projection and

hash-based index structures, and achieves high scalability and

speedup.

III. PREFERENCE TREE

In this section hash-based index structures using distance

and time based pruning and achieves high scalability and

speedup. We present an exact and an approximate version of

the algorithm and architecture.

Figure 2 Preference Tree

A. Architecure

Figure 3 Architecture of Preference Tree

Preference tree creation: nodes are created in the basis of

user preference and also checking the distance is less than

threshold.

Rank the plan: in the basis of sum of distance and sum of

time which path getting shortest distance and time.

B. Algorithm

Algorithm

In: location ,point of interest ,place name

Index creation

Get all points containing the features

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 455

First Colum keyword

Second colum point id

Hash table generation

Create hash vector for each point which selected in

previous step

1.User to select the origin

 Either users current location or user can pick the

 point from google map.

2. Find all preference point from index

3.Get all points with i th preference

4. If (distance <threshold)

5.Get all node of levels

6.Generate hash vector using preference

7.Checking the node with hash vector

 Untilfull fill the hash vector

8.Rank the plan

 9.stop

Algorithm 2 Preference Tree using user preference

IV. Z CURVE WITHOUT USER

PREFERNCE

In this section inverted index is compressing using Z curve

to get more space reduction and also producing new algorithm

for without user preference. Furthermore, as the Z curve is

based on the conventional technology of inverted index, it is

readily incorporable in a commercial search engine that

applies massive parallelism, implying its immediate industrial

merits

A. Compression scheme

Compression is already widely used to reduce the size of

an inverted index in the conventional context where each

inverted list contains only ids. In that case, an effective

approach is to record the gaps between consecutive ids, as

opposed to the precise ids. For example, given a set S of

integers {2,3,6,8}, the gap-keeping approach will store

{2,1,3,2} instead, where the i-th value (i ≥ 2) is the difference

between the i-th and (i−1)-th values in the original S. As the

original S can be precisely reconstructed, no information is

lost. The only overhead is that decompression incurs extra

computation cost, but such cost is negligible compared to the

overhead of I/Os. Note that gap-keeping will be much less

beneficial if the integers of S are not in a sorted order. This is

because the space saving comes from the hope that gaps

would be much smaller (than the original values) and hence

could be represented with fewer bits. This would not be true

had S not been sorted.

Compressing an SI-index is less straightforward. The

difference here is that each element of a list, a.k.a. a point p, is

a triplet (idp,xp,yp), including both the id and coordinates of p.

As gap-keeping requires a sorted order, it can be applied on

only one attribute of the triplet. For example, if we decide to

sort the list by ids, gap-keeping on ids may lead to good space

saving, but its application on the x- and y-coordinates would

not have much effect. To attack this problem, let us first leave

out the ids and focus on the coordinates. Even though each

point has 2 coordinates, we can convert them into only one so

that gap-keeping can be applied effectively. The tool needed is

a space filling curve (SFC) such as Hilbert- or Z-curve.

SFC converts a multidimensional point to a 1D value

such that if two points are close in the original space, their 1D

values also tend to be similar. As dimensionality has been

brought to 1, gap-keeping works nicely after sorting the

(converted) 1D values. For example, based on the Z-curve2,

the resulting values, called Z-values, of the points in Figure 1a

are demonstrated in Figure 5 in ascending order. With gap

keeping, we will store these 8 points as the sequence

12,3,8,1,7,9,2,7. Note that as the Z-values of all points can be

accurately restored, the exact coordinates can be restored as

well. Let us put the ids back into consideration. Now that we

have successfully dealt with the two coordinates with a 2D

SFC, it would be natural to think about using a 3D SFC to

cope with ids too. As far as space reduction is concerned, this

3D approach may not a bad solution.

 The problem is that it will destroy the locality of the

points in their original space. Specifically, the converted

values would no longer preserve the spatial proximity of the

points, because ids in general have nothing to do with

coordinates. If one thinks about the purposes of having an id,

it will be clear that it essentially provides a token for us to

retrieve (typically, from a hash table) the details of an object,

e.g., the text description and/or other attribute values.

Furthermore, in answering a query.

B. Architecure

Figure 4. Architecture of Z curve method

Fetch condition: set a radious r and compare with all points

in Z curve using point of intrest.add the point in list if the

point satify condition.condition is point will present within the

radious in Z curve and satisfy all point of inttrest.

Rank the points:after generating hash vector until full fill the

pont of intrerest.

C. Algorithm

Algorithm

Input: location ,point of interest
1. User select the origin

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 456

2. Convert point into Z curve

3. Set radious r

4. Get all points from Z curve satisfying radious

5. Fetch point()

All point satisfy the condition radious as well as

all point of intrestAdd to list

6. Generate hash vector

Until hash vector satisfy until full fill the point of

interest

7. Generate plan

8. Otherwise

Radious = r+Δr

9. Repeat step 4

10. Stop

Algorithm 2. Z curve without user preference

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed solutions to the problem of topk

nearest keyword set search in multi-dimensional datasets. We

proposed a novel index called Preference Tree. hash-based

index structures using distance and time based pruning and

achieves high scalability and speedup. We present an exact

and an approximate version of the algorithm. we have

remedied the situation by developing an access method called

the Z curve without user preference. Not only that the Z curve

is fairly space economical, but also it has the ability to

perform keyword-augmented nearest neighbor search in time

that is at the order of dozens of milliseconds.

In the future, we plan to explore other scoring schemes for

ranking the result sets Then, each group of points can be

scored based on distance between points and weights of

keywords. Furthermore,the criteria of a result containing all

the keywords can be relaxed to generate results having only a

subset of the query keywords.using satellite imading to find

the nearest locations.

REFERENCES

[1] Vishwakarma Singh, Bo Zong, Ambuj K. Singh, Nearest

Keyword Set Search in Multi-dimensional Datasets, IEEE

Transactions on Knowledge and Data Engineering in

2016.

[2] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M.

Kitsuregawa, “Keyword search in spatial databases:

Towards searching by document,” in ICDE, 2009, pp.

688–699

[3] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search

on spatial databases,” in ICDE, 2008, pp. 656–665

 [4] Ninh Pham, IT University of Copenhagen Denmark

ndap@itu.d, Hybrid LSH: Faster Near Neighbors

Reporting in High-dimensional Space, in ICDE, 2010.

[5] Vishwakarma Singh, Santa Barbar, Ambuj,K. Singh,

SIMP: Accurate and Efficient Near Neighbor Search in

High Dimensional Spaces, EDBT 2012, March 26–30,

2012.

 [6] Yufei Tao, Cheng Sheng, Fast Nearest Neighbor Search

with Keywords, IEEE Transactions on Knowledge and

Data Engineering , in 2012.

[7] Dongxiang Zhang, Beng Chin Ooi, Anthony K. H. Tung,

Locating Mapped Resources in Web 2.0 , SIGMOD, 2013.

http://www.ijcstjournal.org/

