

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 457

Data Intensive Task Analysis using Dynamic Voltage and

Frequency Scaling Governors
Miss. Rucha Shankar Jamale [1], Mrs. Sunita Dhotre [2], Dr. Suhas .H Patil [3]

M.Tech [1], Associate Professor [2], Professor [3]

Department of Computer Engineering

 Bharati Vidyapeeth Deemed University College of Engineering

Pune - India

ABSTRACT
Data Intensive Tasks are the tasks whose primary entities are purely data oriented. All the Data Intensive Applications are user

defined, and I/O bound. The word count application is considered as a data intensive application. This paper gives a brief

analysis of Word Count Program using Dynamic Voltage & Frequency Scaling Governors.
Keywords:- Data Intensive Task, Word Count, Dynamic Voltage & Frequency Scaling (DVFS), Governors.

I. INTRODUCTION

Data-intensive tasks [1] are used to describe applications that

are I/O bound [2] or with a need to process large volumes of

data. This aspect gives the complete idea about their I/O

movement, overall processing time as well as data

manipulation [3] [27].

Parallel Computing [4] approach is seen in Data Intensive

platforms which eventually combines multiple disk and

processors into massive computing clusters connected to high-

speed communication networks [5].

The Word Count [6] terms refer to the appropriate numbers in

an individual document, book or thesis. Word Count is

essential, especially where there are particular limitations on

the text. Many tools and programs already exist to measure

the actual and exact word count. The modern tools [7] excel in

measuring lines and characters as well.

The Word Count Application [8] deal only the amount of text

or data included in it and accordingly analyzes the result

hence is purely an Data Intensive Application.

II. RELATED WORK

A. Data Intensive Tasks

The data intensive tasks use Data intensive computing

mechanism. And Data Intensive Computing is carried out by

using parallel computing applications, while the parallel

computing applications use parallel data approach to process

large amount of data typically it is also referred as Big

Data.[9][28]

The application or task can be considered as Data intensive if

they devote maximum processing time [10] to I/O and data

movement and manipulation. The processing of data intensive

application is done by Parallel processing mechanism in

which the data is partitioned or subdivided into multiple data

segments and are then independently processed on an

appropriate computing platform [11] by executing a particular

application program in parallel after that all the results are

assembled to produce a complete output. Parallel processing

[12] benefits more and more when large aggregate data

distribution is carried out. The actual challenge beholds when

large amount of data is parallel processed and simultaneously

managed to thrive desired results with correct output.

The data parallelism [13] applies computation independently

to each data set. The main aim of developing a Data intensive

application is they possess scalable performance and can

improve several levels of performance magnitude. The key

confronts for developing a Data intensive application are the

choice of accurate algorithm, its substantial programming

complexity [14] and limitations to accomplish target

architecture. Designing a Data intensive platform provides

efficiency, reliability, scalability and availability.

The Data Intensive Computation clarifies following

characteristics:

1) The selection of algorithm, data, and programs used

for computation

2) Utilization of respective programming model in an

efficient way

3) Concern regarding availability and reliability

4) The innate scalability of primary software and

hardware architectures.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 458

B. Dynamic Voltage & Frequency Scaling

The power management scheme focuses on two aspects

Dynamic Power Management (DPM) and Dynamic Voltage

and Frequency Scaling (DVFS) [15]. The DPM deals with

executing the high workload at a maximum CPU speed while

remaining workload at low power mode. The DVFS deals

with executing processes at a low-performance setting

regarding voltage and frequency.

DVFS techniques [16][29] are widely applied in smartphones

to reduce power consumption by changing CPU core

frequency and system voltage, and eventually, this results in

variance in response time in smartphones while executing a

precise application.

Many CPU Frequency Scaling Governors exist which allows

the drives to set the target frequency. For the efficient use of

CPU dynamic frequency scaling mechanism [17] is applied.

These governors are embedded in patched Linux kernel

System.

DVFS schemes include governors [18] like Ondemand

governor, Performance governor, Conservative Governor,

Powersave Governor and Interactive governor.

Ondemand governor [19] is the default governor of maximum

Android-based smartphones. Ondemand governor was

introduced in the Linux Kernel 2.6.10. Depending on the

processor utilization it dynamically changes the processor

frequency. The use of the processor is checked, and if the

value exceeds the threshold, this governor set the frequency to

the highest available value. If the utilization is less than the

threshold, the governor steps down the frequency. The range

of frequencies can be controlled by the governor and also the

rate of checking the utilization of the system.

Performance governor sets the frequency to the highest

frequency which is available. This allows the processor clock

[20] speed to be set to maximum thus allowing maximum

performance. No power savings are achieved which

Performance Governor is used, but it allows changing the

frequency.

In Conservative Governor Frequency is dynamically adjusted

based on the processor utilization with a gradual increase in its

value. The frequency of the processor utilization is checked

and if its lies below or above the utilization thresholds, this

governor steps up or down the frequency to the next available

instead directly going to high or low.

Powersave Governor sets the processor to the lowest available

frequency however a range of frequencies can be adjusted.

The process runs at the slowest frequency.Therefore it takes

the time to go idle.

In Userspace Governor frequency is set manually in this

governor. It does not dynamically change the frequency.

Compare to all other governors Userspace is more

customizable, it has a most efficient way for balancing

between Performance and power of the system.

C. Completely Fair Scheduler

The ultimate goal of CFS is to provide the fair amount to all

the tasks proportional to their weights.

CFS is a virtual runtime scheduler. The CFS algorithm uses

Red-Black Tree, in this tree the tasks are sorted in a tree form

from left to right according to the increasing order of their

respective virtual run times. Meanwhile, CFS executes its task

initiating from left most leaf moving towards the right.
The proposed system [21] focuses on estimation of response

time analysis by designing scheduler driven DVFS scheme.

Response Time Analysis of Linux Kernel Completely Fair

Scheduler [22][23][24] for Data Intensive Task is carried out

by analysis of frequency change by the help of DVFS

properties invoking in Linux kernel with the help of Data

Intensive Task. To optimize the user experience the

Completion time or Response time of a Process is the main

focus of the work. For the given frequency limits the utility of

CPU Scheduling Algorithm will be explored.

III. PROPOSED SCHEME

In the proposed scheme word count is a Data Intensive Task is

explained with the help of DVFS scheme. The results are

gathered by setting different DVFS governors one by one. In

the proposed theory, here only two governors are used for

analysis- Performance and Powersave.

Benchmarking [25] process is also computed here.

Benchmarking helps to measure the performance of the

system as well as compares it with other system results.

Hackbench [26] benchmarking tool is used here. Hackbench is

a benchmarking tool and a stress test widely used in Linux

Kernel Scheduler.

The whole implementation and result analysis are done on

Linux platform Ubuntu 15.10 which helped to accomplish

appropriate results. Hence the proposed work deals at Kernel

level which is unique and assisted in getting better output.

The implementation starts by implementing a word count

program which is written in C programming language through

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 459

which an input text file of 103.4MB is invoked. The word

count program gives the overall count of number of words,

number of lines and number of characters. Hackbench is

installed and built. The DVFS governors are set through a

command line and then the graphs are plotted using time

command.

Above procedure when followed gives the accurate graphical

analysis of the word count program while executing it by

setting different governors on single core, dual core, triple

core, and quad core respectively. The average values are

mentioned in the following table

Governors User System Percentage
Performance 0.994 0.0092 99.4%
Powersave 0.992 0.0106 99.2%

Table.1 User and System average of Governors

The acquired results by following above procedure are as

given below. Two graphs are calculated here by setting two

different DVFS governors Performance and Powersave

respectively.

Fig.1 Word count program analysis using Performance governor

Fig.2 Word count program analysis using Powersave governor

The variation between time vs. number of implementations is

shown by executing the program on different cores. Fig.1

depicts the analysis of Performance governor which

eventually proves that performance governors thrives to the

highest frequency in all cores compare to powersave

governor. The analysis of Powersave governor is shown in

fig.2 which proves that powersave governor works at lowest

frequency while executing the program on different cores

respectively. Hence, from Table.1 the proposed work proves

that Performance governor utilization is 99.4% while

Powersave governor is 99.2% and hence, performance

governor frequency is greater than powersave frequency.

IV. CONCLUSION

Several Data intensive applications are implemented and used

for obtaining precise results. The proposed work here does the

analysis directly on Linux Kernel aspect by the help of DVFS

governors. Hence a word count program is proved to be a data

intensive task with respect to different Dynamic Voltage &

Frequency Scaling Governors through graphical

representation.

The future work for the proposed scheme can be justified by

including DVFS scheme in CFS scheduling algorithm.

ACKNOWLEDGMENT

The authors would like to thank all the Bharati Vidyapeeth

College of Engineering staff members for their valuable inputs

and support.

REFERENCES

[1] Singh, Hartej, et al. "MorphoSys: an integrated

reconfigurable system for data-parallel and

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 460

computation-intensive applications." IEEE

transactions on computers 49.5 (2000): 465-481.

[2] Lee, Walter, et al. "Implications of I/O for gang

scheduled workloads." Job Scheduling Strategies for

Parallel Processing. Springer Berlin/Heidelberg,

1997.

[3] Menon, Jaishankar, David Pease, and Robert Rees.

"Distributed storage system for data-sharing among

client computers running defferent operating system

types." U.S. Patent Application No. 10/323,113.

[4] Hendrickson, Bruce, and Tamara G. Kolda. "Graph

partitioning models for parallel computing." Parallel

computing 26.12 (2000): 1519-1534.

[5] Mascolo, Saverio. "Congestion control in high-speed

communication networks using the Smith

principle." Automatica 35.12 (1999): 1921-1935.

[6] Blumenstock, Joshua E. "Size matters: word count as

a measure of quality on wikipedia." Proceedings of

the 17th international conference on World Wide

Web. ACM, 2008.

[7] Bangert-Drowns, Robert L. "The word processor as

an instructional tool: A meta-analysis of word

processing in writing instruction." Review of

Educational research 63.1 (1993): 69-93.

[8] Pennebaker, James W., Martha E. Francis, and Roger

J. Booth. "Linguistic inquiry and word count: LIWC

2001." Mahway: Lawrence Erlbaum

Associates 71.2001 (2001): 2001.

[9] Rucha Shankar Jamale."A Study On Near Data

Processing", Volume 4, Issue VII, International

Journal for Research in Applied Science and

Engineering Technology (IJRASET) Page No: ,

ISSN : 2321-9653

[10] Daniels, Richard L., and Panagiotis Kouvelis.

"Robust scheduling to hedge against processing time

uncertainty in single-stage production." Management

Science 41.2 (1995): 363-376.

[11] Baratloo, Arash, Partha Dasgupta, and Zvi M.

Kedem. "Calypso: A novel software system for fault-

tolerant parallel processing on distributed

platforms." High Performance Distributed

Computing, 1995., Proceedings of the Fourth IEEE

International Symposium on. IEEE, 1995.

[12] Hwang, Kai, and Zhiwei Xu. Scalable parallel

computing: technology, architecture, programming.

Boston: WCB/McGraw-Hill, 1998.

[13] Bal, Henri E., and Matthew Haines. "Approaches for

integrating task and data parallelism." IEEE

concurrency 6.3 (1998): 74-84.

[14] Kitchenham, Barbara A. "Measures of programming

complexity." ICL Technical Journal 3 (1981): 298-

316.

[15] R. C. Garcia, J. M. Chung, S. W. Jo, T. Ha, and T.

Kyong, “Response time performance estimation in

smartphones applying dynamic voltage & frequency

scaling and completely fair scheduler,” Proc. Int.

Symp. Consum. Electron. ISCE, vol. 2, no. 2, pp. 1–

2, 2014.

[16] Choi, Kihwan, Ramakrishna Soma, and Massoud

Pedram. "Dynamic voltage and frequency scaling

based on workload decomposition." Proceedings of

the 2004 international symposium on Low power

electronics and design. ACM, 2004.

[17] Dhiman, Gaurav, and Tajana Simunic Rosing.

"Dynamic voltage frequency scaling for multi-

tasking systems using online learning." Low Power

Electronics and Design (ISLPED), 2007 ACM/IEEE

International Symposium on. IEEE, 2007.

[18] D.Brodowski, "CPUFreq Governors,"

https://www.kernel.org/doc/Documentation/cpu-

freq/governors.txt, Nov. 2013.

[19] Pallipadi, Venkatesh, and Alexey Starikovskiy. "The

ondemand governor." Proceedings of the Linux

Symposium. Vol. 2. No. 00216. sn, 2006.

[20] Noble, James L., et al. "Adjusting clock frequency

and voltage supplied to a processor in a computer

system." U.S. Patent No. 5,760,636. 2 Jun. 1998.

[21] Rucha Shankar Jamale, Sunita Dhotre and Pooja

Tanaji Patil “A Survey on Response Time Analysis

using Linux Kernel Completely Fair Scheduler for

Data Intensive Tasks” 5 th International Conference

on Communications, Electrical, Electronics and

Computer Engineering (ICEEC 2017) Paper ID :

ICEEC802017

[22] Dilipkumar, Vora Shivani, M. Tech, and S. S.

Dhotre. "Runtime CPU Scheduler Customization

Framework for Real Time Operating System."

[23] Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil.

"A Modified O (1) Algorithm for Real Time Task in

Operating System."

[24] Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil.

"A Study of Modified O (1) Algorithm for Real Time

Task in Operating System." Sinhgad Institute of

Management and Computer Application

NCI2TM (2014).

[25] Pollard, Daniel A., et al. "Benchmarking tools for the

alignment of functional noncoding DNA." BMC

bioinformatics 5.1 (2004): 6.

http://www.ijcstjournal.org/
https://www.kernel.org/doc/Documentation/cpu-
https://www.kernel.org/doc/Documentation/cpu-

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 2, Mar – Apr 2017

ISSN: 2347-8578 www.ijcstjournal.org Page 461

[26] Zhang, Yanmin. "Hackbench." U RL http://people.

redhat. com/mingo/cfs-scheduler/tools/hackbench.

c (2008).

[27] Silberschatz, Abraham, et al. Operating system

concepts. Vol. 4. Reading: Addison-wesley, 1998.

[28] Kumar, Vipin, et al. Introduction to parallel

computing: design and analysis of algorithms. Vol.

400. Redwood City, CA: Benjamin/Cummings,

1994.

[29] Carroll, Aaron, and Gernot Heiser. "An Analysis of

Power Consumption in a Smartphone." USENIX

annual technical conference. Vol. 14. 2010.

http://www.ijcstjournal.org/

