
International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 4, Jul – Aug 2017

ISSN: 2347- 8578 www.ijcstjournal.org Page 135

Optimizing Fully Homomorphic Encryption Algorithm using

Greedy Approach in Cloud Computing
Kirandeep Kaur [1], Jyotsna Sengupta [2]

Department of Computer Science

 Punjabi University, and Patiala

 Punjab - India

ABSTRACT
With the rapid growth of cloud computing, many users store their data and application on the cloud. However, the growth of

cloud computing is slowed down by cloud security problem. Hence, cloud computing security becomes the current research

focus. To secure the cloud data, encryption is used. Traditional encryption schemes cannot make cloud computing fully safe.

Therefore, Fully homomorphic encryption is used to secure the data from exploitation during computation. In this paper, Fully

Homomorphic Encryption (FHE) encryption scheme is optimized in which the time complexity and space used by encrypted

data is reduced using Greedy approach. Greedy approach is applied to the input data that is tokenized. On this data, greedy

approach will find out the max cost data that is to be encrypted first, but with a condition that it may utilize the full capacity of

resources. The proposed approach that is Greedy based FHE provides better results as compared to the existing FHE encryption

algorithm.
Keywords :— Cloud Computing, Cloud Security, Fully Homomorphic Encryption.

I. INTRODUCTION

Cloud computing is a delivery model of computing resources

over the internet. It enables real time development,

deployment and delivery of wide range of services and

products where different services are delivered to an

organization’s computers and devices through the internet. In

this computing, users are charged based on pay-per-use.
Even though cloud computing has become widely

popular as a service model; adoption of its services is limited

due to concerns about security of data. The solution to this

problem is encryption. However, if the clients wish to perform

computations on their encrypted information in the cloud, they

require to share the secret key with cloud provider in order to

decrypt it before performing the desired operations. Thus, the

best solution is to use homomorphic encryption to deal with

cloud computing security issues. It is because this method

allows the client to perform operations on encrypted data

without having to disclose the secret key required to decrypt

the data.

In 2009, Craig Gentry [1] proposed the first fully

homomorphic encryption scheme. A scheme that allows one

to evaluate circuits over encrypted data without being able to

decrypt. In 2010, Smart and Vercauteren [2] presents a fully

Homomorphic encryption scheme following the Gentry

scheme with small key size and cipher text size. It defines a

new algorithm named Rcrypt, which takes a dirty cipher text

and convert it into new cipher text removing some errors. This

scheme has smaller message expansion and smaller key size

than Gentry encryption scheme. Dijk et al. [3] describes fully

homomorphic encryption obtained from somewhat

homomorphic encryption scheme with using Gentry’s

techniques to convert it into a fully homomorphic. In this

scheme, somewhat encryption uses multiplication and

additions over the integers. Zhao et al. [4] proposed an

algorithm for overcoming the lack of security. In this paper,

fully homomorphism encryption algorithm is described to

ensure that the data stored on the cloud is secure. The

proposed solution provides protection and is suitable for

performing operations on the stored data effectively. Gupta

and Sharma [5] proposed a fully homomorphic encryption

scheme using symmetric keys. The operations are matrix

based, that is mapping the operation on integer to matrix for

processing the private data. Ahmed and Khandekar [6]

proposed the application of a method to perform the operation

without decrypting and provide the same result as

computation performed on plain data. In this scheme, proxy

re-encryption algorithm based on RSA and Paillier is used to

prevent the cipher data from Chosen Cipher text Attack. This

algorithm generates a random key cipher data. This system

provides more security. Dongxi Liu [7] proposed a symmetric

FHE that does not need any noise reduction method. This

scheme allows large amount of noise in ciphertext and

resulting cipher texts get decrypted correctly regardless of the

noise in them. Yao et al. [8] proposed a protocol based on

homomorphic encryption that enables the input of function

can encrypted with different public keys. In new SMC

protocol, two servers used for all the computations except for

initial encryption and final decryption. Sha and Zhu [9]

described an addition algorithm for modifying the existing

RSA algorithm to obtain the characteristics of additions with

characteristics of multiplications. It combines the Pascal's

triangle theorem and RSA algorithm model to build a new

cryptosystem that meets homomorphic computation of some

operations on cipher texts. Jabbar and Najim [10] discussed

the use of homomorphic encryption to encrypt the client’s

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 4, Jul – Aug 2017

ISSN: 2347- 8578 www.ijcstjournal.org Page 136

data before storing in cloud storage. Homomorphic

Encryption allows computation over encrypted data without

decryption. Marwan et al. [11] proposed a technique based on

homomorphic scheme to secure cloud database.

Homomorphic cryptosystem proposed based on RSA and

Palliler algorithms. This approach also guarantees data

confidentiality and allows users to perform arithmetic

operation over encrypted data. Potey et al. [12] focused on

storing data on the cloud in the encrypted format using fully

homomorphic encryption User’s computations are performed

on encrypted data in public cloud. In this scenario, user’s data

is never stored in plaintext on public cloud. This scheme is

used for different medical and business purposes.

This paper addresses the security of user data in

cloud. The main aim of this paper is to introduce the concepts

of Homomorphic encryption and how to optimize the fully

homomorphic encryption discussed by Potey et al. [12] in

their paper.

The rest of the paper is organized as follow: Section

II discuss about cloud computing concepts and its services and

deployment models. Section III describes about cloud security

issues. Section IV discuss encryption in cloud and provide

details about how homomorphic encryption secure the user

data in cloud. Section V describe the design of optimized fully

homomorphic encryption algorithm. Results are shown in

Section VI. Finally our conclusions are drawn in section VII.

II. CLOUD COMPUTING

Cloud computing defines the combination of logical entities

like data, software which are accessible over internet. Client

data is stored in the banks of servers spread across the globe.
If an organizations uses a cloud computing, it does not need to

spend money to buy hardware or software licenses. Therefore,

it drastically reduce the cost and management of owning and

operating computers and networks [13].

A. Cloud Computing Models

1) Services Models: A service model determines what kind

of computer resources and services are offered to consumers

[13].

 Software as a Service refers to software that is

accessed via a web browser.

 Platform as a service provides development

environment as a service.

 Infrastructure as a service offers the computing

resources like storage and processing as a service.

2) Deployment Models: Cloud services can be deployed in

following four ways [13].

 Public cloud is available to all public users who can

subscribe the required services.

 Private cloud owned and managed by the

organization or the designated service provider.

 Hybrid cloud combines two or more clouds. This

model provides flexibility to organizations.

 Community cloud is shared among several

organizations that have common requirements or

concerns and works together to complete their

objectives.

Fig. 1 Cloud Computing Overview

B. Characteristics of Cloud Computing

 Rapid Elasticity: Additional resources can be easily

provisioned or released as per the demand.

 Resource Polling: Cloud resources like storage,

processing and virtual machines can be shared by the

users to serve multiple consumers using a multi-

tenant model [14].

 Broad Network Access: Cloud Services are provided

over the network with secure protocol so that it can

be accessed from various client machines [14].

 Measured Device: The cloud system uses a metering

capability to maintain a transparent record of

resource usage.

III. CLOUD SECURITY

 Cloud Security is an evolving sub-domain of computer

security, network security and information security [15]. Data

location is critical factor in cloud security. The users have no

control and no knowledge about what could happen to their

data. This is a great concern in cases when users store

precious and their personal information in a cloud. Some of

security aspect with data in cloud are described below:
Data Confidentiality ensures that data contents are not made

available or disclosed to illegal users.

Data Access Controllability means that a data owner can

perform the selective restriction of access to his data stored in

cloud [15].

Data Availability gets affected by the denial of attack and

network deficiency. To overcome this issue, Fault tolerance

and load balancing techniques are used [15].
Data Integrity demands maintaining and assuring the accuracy

and completeness of data.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 4, Jul – Aug 2017

ISSN: 2347- 8578 www.ijcstjournal.org Page 137

IV. ENCRYPTION IN CLOUD

Cloud encryption is the transformation of a cloud service

customer's data into cipher text. Cloud service provider offers

cloud encryption schemes to encrypt data before storing on

cloud. The cloud encryption capabilities of the service

provider need to match the level of sensitivity of the data

being hosted.

A. Homomorphic Encryption

Homomorphic Encryption scheme allow

computation with encrypted data. One can perform additions

or multiplication over two encrypted numbers and the other

could decrypt the results without of being able to find the

values of individual numbers. Homomorphic Encryption

originated from the concept of privacy homomorphism

introduced by the Rivet et al [16]. In their paper, they

discussed about performing operations on encrypted data. In

2009, Craig Gentry introduced the first Fully Homomorphic

Encryption. In 2010, M. Dijk, C Gentry et al discussed the

second fully homomorphic encryption scheme.

1) Homomorphic Encryption types: There are two types of

homomorphic encryption schemes.

 Partially homomorphic encryption: Partially

homomorphic schemes only support one type of

homomorphic operation. RSA and El Gamal

provides support to only multiplication operation.

Pascal Pallilier introduced the Pallilier cryptosystem,

which support the additive homomorphism [16].

 Fully homomorphic encryption: Fully homomorphic

support both the operations i.e additions and

multiplications. Craig Gentry firstly proposed this

type of encryption.

V. DESIGN OF GFHE ALGORITHM

Optimized algorithm named as greedy based fully

homomorphic encryption (GFHE). In this, greedy approach

combines with fully homomorphic encryption. Using the

greedy approach, the blocks of text get sorted by the greedy

method so utilize the full memory utilization. Using this

property of the greedy approach the time and space utilization

reduced. (J, K) forms a private key and (P0, P1) presents

public key.

To convert a string into integer following equation is to be

used

S [0]*31^ (n-1) + S [1]*31^ (n-1) +....+ S [n-1]..........(1)

A. Flow Chart of GFHE Algorithm

 Fig. 2 Flow Chart

Start

Choose 4 bit random integer K’

Compute P0 = JD and P1 = JF + KK’

Accept text string “T” from user

Generate Token “to” from the text
string

Convert text into integer values

“S” using eq 1

Input all the numbers to greedy

method

Set S = Starting Point

Visited blocks, V = {S}

All text

blocks
visited

Set S as top of stack for encryption

Find Min cost (space) from

unvisited text from whole text

P2 = [T1 P1] mod P0 Encryption

Cipher Text C = [S + T2 P2] mod

P0
 (T1, T2 are a 4-bit random integer)

Decryption D = (C mod J) mod K

Start

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 4, Jul – Aug 2017

ISSN: 2347- 8578 www.ijcstjournal.org Page 138

VI. RESULTS

The result of an algorithm is totally based on these

parameters. However, the comparison between the algorithms

can be convenient by using different parameters. This thesis

uses parameters which are reflecting the performances and are

as follows:
Encryption Time: The time used to generate a cipher text

from a plaintext, is known as encryption time.

TABLE I

ENCRYPTION TIME

FILE SIZE

ENCRYPTION (ns)

FHE GFHE

10 KB 92503905 69299243

20 KB 185845371 140502077

30 KB 370320532 279702323

40 KB 458119567 359806729

50 KB 654295471 475599707

Comparison between these algorithms is shown in the form of

following graphs.

Fig. 3 Encryption time / File size

From the fig. 3 it is clear that the Greedy based Homomorphic

Encryption algorithm perform encryption operations in less

time as compared to Homomorphic Encryption because

greedy algorithm always tends to do more operations in a

particular defined resource set.

TABLE II

 DECRYPTION TIME

FILE SIZE

DECRYPTION (ns)

FHE GFHE

10 KB 99851365 43103282

20 KB 187306817 86802770

30 KB 351155769 173007138

40 KB 459532653 217506729

50 KB 603764791 316599707

Fig. 4 Decryption time / File size

Fig. 4 shows that the Greedy based Homomorphic Encryption

algorithm takes less time to decrypt the cipher data as

compared to fully homomorphic encryption algorithm.

Space Utilization: Space utilization of an algorithm

quantifies the amount of space or memory taken by an

algorithm to run as a function of the length of the input.

TABLE III

SPACE UTILIZATION

FILE SIZE

Space Utilization (bits)

FHE GFHE

10 KB 91296 76080

20 KB 189292.6 157744

30 KB 388723.2 323936

40 KB 485155.9 404296

50 KB 678700.8 565584

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 4, Jul – Aug 2017

ISSN: 2347- 8578 www.ijcstjournal.org Page 139

Fig. 5 Space Utilization / File Size

Fig. 5 depicts that the Greedy based Homomorphic

Encryption perform operations takes less space as compared

to Homomorphic Encryption because greedy algorithm

always tends to do more operations in a particular defined

resource set.

Encryption Overheads: Encryption overheads defined as the

number of extra bits required to perform some kind of

operations.

 Encryption overhead (bits) = encrypted bits - plaintext bits

TABLE IV

COMPUTATIONAL OVERHEADS

Fig. 6 Computational Overheads / File Size

From the fig 6 it is clear that the computational overheads are

more in case of Homomorphic encryption because this

encryption has not any support of optimization so it will not

tend to fully utilize the resource vector that is given.

VII. CONCLUSION

In the proposed work, fully homomorphic encryption

algorithm is improved with greedy approach. Using the

greedy approach, the blocks of text are sorted by the greedy

method to utilize the full memory utilization. Using this

property of the greedy approach the time and space utilization

is reduced also. The comparative study of the Fully

Homomorphic Encryption and Greedy based Fully

Homomorphic Encryption is done on the basis Encryption

time, Decryption time, space utilization, encryption overheads

and throughput. From the result part, it shows that that

proposed approach is far better than that of existing

Homomorphic encryption.

In future, this algorithm can be improved by reducing

the space complexity with time. This algorithm can be used

for encryption of multimedia data.

ACKNOWLEDGEMENT

The fruition of any research relies on collaboration,

coordination and consolidated endeavours of information. I

am thankful to Dr. Jyotsna Sengupta (Associate Professor,

Punjabi University, Patiala).

REFERENCES

[1] C. Gentry, “Fully Homomorphic encryption using

Ideal Lattices,” InProc of STOC, pp. 169-178, 2009.

[2] N.P. Smart and F. Vercauteren, “Fully homomorphic

encryption with relatively small key and ciphertext

sizes,” public Key Cryptography-PKC Springer

Berlin Heidelberg, vol. 6056, pp. 420-443, 2010.

FILE SIZE

Computation overheads (bits)

FHE GFHE

10 KB 81786 66570

20 KB 169574 138026

30 KB 348231.8 283444

40 KB 434618 353759

50 KB 608002.8 494886

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 5 Issue 4, Jul – Aug 2017

ISSN: 2347- 8578 www.ijcstjournal.org Page 140

[3] M.V. Dijk, C. Gentry, S. Halevi and V.

Vaikuntanathan, “Fully homomorphic over the

integers”, In Proc. of Eurocrypt, vol. 6110, pp. 24-

43, Jan 2010.

[4] F. Zhao, C. Li and C.F. Liu, “A cloud computing

security solution based on fully homomorphic

encryption,” pp. 485-488, 2014.

[5] C. P. Gupta and I. Sharma, “A Fully Homomorphic

Encryption scheme with Symmetric Keys with

Application to Private Data Processing in Clouds,”

International Journal of Communication Networks

and Distributed Systems, vol. 14, pp. 379-39, Oct

2009.

[6] I. Ahmad and A. Khandekar,“Homomorphic

encryption applied to cloud computing,”

International journal of Information and computer

and technology, vol. 4, pp. 1519-1530, 2014.

[7] D. Liu, “Practically Fully Homomorphic Encryption

without Noise Reduction,” Technical report, IACR

Cryptol. ePrint Arch., vol. 12, pp. 305-309, 2015.

[8] Y. Yao, J. Wei, J. Liu and Ru Zhang, “Efficiently

secure multiparty computation based on

homomorphic encryption,” Cloud Computing and

Intelligence Systems, IEEE, pp. 343-349, 2016.

[9] P. Sha and Z. Zhu, “The modification of RSA

algorithm to adapt fully homomorphic encryption

algorithm in cloud computing,” Cloud Computing

and Intelligence Systems, IEEE, pp. 388-392, 2016.

[10] I. Jabbar and S. Najim, “Using Fully Homomorphic

Encryption to Secure Cloud Computing,” Internet of

Things and Cloud Computing, vol. 4, pp. 13-18,

2016.

[11] M. Marwan, A. Kartit, and H. Ouahmane,“Applying

homomorphic encryption for securing cloud

database,” Information Science and Technology,

IEEE, pp. 658-664, 2016.

[12] M. M. Potey, C. A. Dhote, and D. H. Sharma,

“Homomorphic Encryption for Security of Cloud

Data,” 7th International Conference on

Communication, Computing and Virtualization, vol.

79, pp. 175-181, 2016.

[13] Y. Jadeja and K. Modi, “Cloud Computing Concepts,

Architecture and Characteristics,” International

Conference on Computing, Electronics and

Electrical Technologies, pp. 877-880, 2012.

[14] P. Singh and A. Jain, “Survey Paper on Cloud

Computing,” International Journal of Innovations 'in

Engineering and Technology, vol. 3, pp.84-89, 2014.

[15] K. Munir and S. Palaniappan, “Security

threats/attacks present in cloud

environment,” IJCSNS, vol. 12, no. 12, pp.107-110,

2012.

[16] R. L. Rivest, A. Shamir, and L. Adleman, “A method

for obtaining digital signatures and public-key

cryptosystem,” Communication of the ACM, vol.21,

pp.120-126, 1978.

.

http://www.ijcstjournal.org/

