
International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 1, Jan - Feb 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 1

Hybrid Genetic Algorithm for Extracting Rules Considering the

Dataset Complexity
John Tsiligaridis

Department of Math and Computer Science

Heritage University, Toppenish

WA, USA

ABSTRACT
This work provides a method for rule extraction using hybrid GA, the GANN, which is a combination of Genetic Algorithm

(GA) and a Neural Network (NN). In addition, a rule extraction algorithm based on weight (REAW), and a probabilistic

Decision Tree (DT) algorithm focusing on large frequency classes (DTPL) are also developed. A NN is composed of many

neurons that are linked together according to a specific network topology. A GA, which is suitable for non-linear problems, is

employed to define the network topology which leads to accurate extracted rules. The fitness function is based on the

predictive accuracy of rules to be extracted from the network topology. After the end of GANN process, which provides the

NN parameters an algorithm (REAW) ,based on weights, is developed for extraction rules. REAW is running after the NN is

trained with GA. The rules are extracted from the population with the fittest chromosomes. The complexity of a dataset depends

on many parameters. For sets with low complexity, the DTPL can outperform the proposed method, in terms of accuracy, based

on the cooperation of NN with GA. Simulation results with different complexity data sets are provided.

Keywords :— Genetic Algorithm, Decision Tree, Neural Network, Data Mining.

I. INTRODUCTION

 DTs are one of the most popular techniques of Data Mining.

These are used for the tree based classification [1],[2],[12].

NNs are widely used for classification problems. As the

network size increases the algorithms associated with the

production of rule sets tend to have higher complexity. The

use of GAs will optimize the network topology leading to

shorten the search space. A GA [8],[11] is a class of adaptive

stochastic optimization algorithms involving search and

optimization. The GA uses the chromosomes and map them

directly onto intelligible rules (phenotype)[3]. The

chromosome is easily converted into “if…then” rules

including the attached weighted. The purpose of this work is

to combine the idea of using a GA to evolve a network

topology with the idea of extracting rules from a NN. For the

discovery and extraction of the rules methods based on the

activation values have been developed [2],[7],[10],[13]. A set

of discrete activation values can define the input values and

the hidden nodes activation values first, and the output values

and the hidden nodes activation values afterwards. The rules

are generated considering the output values after the

enumeration of the discretized hidden node activation values.

Finally, the step of the enumeration of the corresponding input

values follows. More details in [5]. An algorithm for

extraction of rules based on weights (REAW) is developed.

Single and multiple condition rules are extracted considering

the two types of weights; the input weights (between input and

the hidden units) and the output weights (between hidden and

the output units). REAW can also be used for discovering

strong rules (larger support and confidence). Two types of

datasets, the low and high complexity, based on parameters’

number (size of instances etc), are considered. Experiments

show the different abilities of the proposed algorithms on

these two types.

II. DTPL

 The DTPL can be created in the following phases:

Phase 1: Discover the root (from all the attributes)

where A: the attributes of the tuples and C

the classes (attribute test).

MP = max (P(EA)) //max attribute test criterion

Phase 2: Split the data into smaller subsets, so that the

partition to be as pure as possible using the same formula.

The measure of nodes impurity is the MP. Continue until the

end of the attributes.

The large frequency classes (DTPL) are also extracted. The

CEB criterion eliminate redundant branches. Most of the

decision trees inducers require rebuilding the tree from scratch

for reflecting new data that has become available.

For an attribute (attr1) with value v1, if there are tuples from

attr2 that have all the values in relation with v1 (of attr1) then

the attr2 is named as: do n’t care attribute. The criterion of

elimination of Branch (CEB) is used to avoid repetition and

replication and it is given by:

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 1, Jan - Feb 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 2

=

If PCEB= 0, between two attributes (A1, A2) then A2 is don’t

care attribute. The CEB criterion is valid when PCEB 0

Theorem: the CEB criterion can determine the existence of a

small DT with the best accuracy (100%, or complete)

avoiding repetitions and replications. Proof: When the CEB

criterion is valid, it discourages the repetition.

III. NN

 A NN [2],[7],[10], is a collection of units that are connected

in some pattern to allow communication between the units.

The test data set and the training data set should be disjoint (so

that test data are not used during training). For the NN in the

input layer the neurons correspond to prediction attribute

values of the data set, and the output layer represents the

predicted classes.

 The specification of a typical neural network model

requires the choice of the type of inputs, the number of hidden

units, the number of hidden layers and the connection

structure between the inputs and the output layers

IV. GA

 If there are n input links with binary values, a 2n different

patterns can be produced. A Genetic Algorithm (GA)

[3],[4],[8],[9] is used as a search algorithm for the rule

selection process and refines the rules in order to provide

better accuracy and coverage. For this purpose, a scoring

function, fitness, is created so that GA can provide rules with

higher classification accuracy and coverage. Two are the

components of a GA: the genetic representation (encoding)

and the fitness function. The operations: selection, crossover,

mutation are used in order to converge the GA to a solution.

 The fitness function has high capability to remove the noise

rules. The GA is a classifier, that searches for the best

chromosome (with the highest score value) using the fitness

function. A pseudo-code for this algorithm is:

1. creation of the initial population.

2. while (! solution)

(a) Evaluate the fitness of all the chromosomes of the

population.

(b) The best chromosomes will be selected to reproduce, using

mutation and

crossover.

(c) Substitute the worsts chromosomes of the previous

generation by the newly produced chromosomes [3].

V. GANN

 For the network topology a set of parameters (# of hidden

layers, # of neurons per layer) needs to be tuned, instead of

brute-force searching all the combinations. To this end, GA

can help to "jump" from one combination to another. In this

way, the search space can be "explored" for potential

candidates. The application of GA to NN makes a hybrid GA

(GANN) where the weights of the NN are calculated using

GA approach. From all the search spaces of all the possible

weights, the genetic algorithm will generate new points of the

possible solution [2]. The GANN works with different

datasets. For each dataset different weights and hidden nodes

are discovered. The algorithm works with different number of

iterations or according to a predefined stop condition

(accuracy threshold) and defines the NN topology. After that

the NN is able to discover classification rules. The hyperbolic

tangent function is used as activation function between the

input node and the hidden node and the sigmoid activation

function between the hidden and the output function.

The pseudocode of GANN is as follows:

1.Initial conditions for NN topology

 (number of inputs, numbers of hidden nodes, number of

outputs)

2.Create initial population for GA

3.Compute weights for each chromosome

4.Computer fitness for each chromosome (MSE)

5. Test for exit (criterion)

 if (not) GA creates a new population

 used of: selection, crossover, mutation

 operators

 go to step 2 (for the creation of the next

 population)

 else:

 the population with the best fitness

 chromosomes have been selected

 the best weights will be used for the

 classification purpose

The exit criterion can be the number of iterations

(generations) or to continue running until the mean square

error (MSE) ≤ 0.001. The fitness is computed for all the

chromosomes of the population and the best fit value

chromosomes replace the worst fit ones. The process of

selection, crossover and mutation follows and generates the

next population. This process continues until many of the

chromosomes converge to the same fitness value

(convergence criterion). The final converged population with

the best fit chromosomes has the optimized connection

weights for the NN. Fitness is given by (Ci) = 1/MSE for each

chromosome of the population, where MSE is computed at the

output layer using the sigmoid activation function.

VI. REAW

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 1, Jan - Feb 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 3

 Considering the Data Mining approach, the knowledge

held by the weights in the NNs interconnections is their

strength. The extracted classification rules have the

antecedent part (“if”) containing the input values with the

conjunction condition of the attribute values and the (“then”)

part consequent with the class value. After the GANN, the

topology with the weights of the network is saved and is used

for he rule extraction process. Due to the continuous

activation values of the hidden unit, the rules are not extracted

directly from the NN. The discretization of these values can

be achieved by using a clustering algorithm (or binning

method, [1]) and in this way the activation values are

discretized into a number of discrete values. In addition the

discrete values are discovered for each hidden unit in respect

to keeping the accuracy of the training set. The number of

the output units’ outcomes is dictated by the number of

activation values of each hidden unit. The rules are generated

by the input and output weights. REAW searches for the

weights that can maintain the accuracy of the training set.

For the accuracy the confusion matrix [13] referred to two-

class problem is considered. For encoding the Michigan

Approach [14] is used.

 A conjunction of at most (n-1) attributes consist the

antecedent of a rule. The consequent contains the decision as a

single term having the goal attribute.

 Single and multiple condition rules can be extracted with

REAW. For the single condition rule extraction, a rule

template method can be created (“if gene1 (weight between

input unit and hidden unit) then class”). Two genes can be

considered. The one gene stands for a node in the input layer

and the other gene stands for a node of the hidden layer. The

consequence of the rule comes from the activation on the

particular input node. The fitness can be computed as the

absolute summation of the weights from input to hidden unit

and from hidden unit to output considering also the accuracy.

For example, for a dataset, the list [4,2] represents the input

layer is the 4th unit and the 2nd unit in the hidden layer. The

fitness of the chromosome will be : 4.3230 (-2.0567 from the

input unit to hidden unit and -2.2663 from hidden unit to

output). The multiple condition rule extraction is an extension

of the single condition extraction tuples. The process starts

first from the part related to the hidden layer nodes and the

output (part1) and continue with the input and the

corresponding hidden layer nodes (part2).

The REAW has the following phases.

input: the input weights (w i j , between i inputs and j hidden

units), the output weights (w’jk ,between j hidden units and k

output units), thr:

is the minimum acceptable value of accuracy

output: rules

variables: n input units and m hidden units, rm : rules r1,r2..rt

//compute the weights (w, w’)

//A. for a single condition rule

for each hidden unit

 for each discretized activation value

 find the weights (w’jk) for a class output

 (part1)

 for each weight (w’jk)

 find the weight (w i j) (part2)

 create the rule rm with fitness

 sum (w i j + w’jk), m=1..t (# rules)

 extract the rule with max (sum) and

 accuracy < thr

 //B. for multiple condition rules

 define the weights (w’jk) for a class output

 (part1)

 for each weight (w’jk)

 find the weights (wr j), where r=2..g

 (r= # selected of attribute,

 g=total # of attributes) (part2)

 create the rule r m with fitness:

 sum (w r j + w’jk),

 extract the rule with sum ≤ max (sum)

 and accuracy ≥ thr

 The rules can be created by taking the maximum fitness

values, considering also to maintain the accuracy for the

training set. A threshold value is used in order to have the

desired accuracy. If the accuracy falls under the desired value

with the maximum summation (ideal condition) of the weights,

then there are two cases. First, finding weights with lower

than the maximum summation providing also the desired

accuracy. A sorting algorithm for the weights is used for that

purpose. Second, changing the threshold to lower acceptable

values. The number of rules that are extracted from each

population depends on the complexity of data and the network

structure. Most important rules can come from most fit

chromosomes.

The REAW for the IRIS dataset has given the rules (single

and multiple condition): R1: if petal length ≤ 1.9 then setosa

R2: if petal width > 1.6 then virginica

R3: if petal length > 1.9 and petal width ≤ 1.6 then

versicolor

For the ZOO dataset the multiple condition rules:

R1: if domestic =0 and aquatic =1 then class=3

R2: if breathes=1 and domestic=1 then class=6

R3: if fins=1 and cat-size=1 then class=1

VII. COMPLEXITY

 The complexity of rule discovery arises from the fact that

the number of possible rules in a given dataset all of which

must be examined in exhaustive rule discovery, may be very

large.

 It can be seen [6] that the number of possible rules in a

given dataset is approximately as shown below:

r is the # of outcomes , n is # of attributes classes and ki is the

number of values of each i attribute.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 1, Jan - Feb 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 4

 The complexity of a ruleset depends on the size of a dataset,

the number of the attributes, and the number of the cases.
Experiments for the different behavior of the dataset are

presented.

VIII. SIMULATION

 Simulation is based on various experiments.

1. DTPL vs GA_NN : DTPL extract rules for iris dataset (low

complexity) faster than GANN (evolution for 500 iterations).

It takes more time for GANN even for low complexity data.

Fig. 1 DTPL vs GANN

2.The inverse error: The inverse error is examined while the

GANN works and define the NN parameters. The inverse

error of the population (population average error -1/MSE-)

increases as the MSE becomes smaller until the GANN

terminates. The termination condition is the number of the

population generations from GANN. At that time GANN is

able to define the NN parameters which will be used for

classification of the datasets. In Fig.1 there is the evolution of

the population inverse error.

Fig.2 Evolution of population inverse error

3. Accuracy: Fig.3 shows the training time error for breast

cancer dataset. After the preparation for the NN parameters It

was observed that the training set gives good values for the

accuracy.

 Fig. 3 Accuracy for the breast cancer data

4. The complexity: The complexity of a dataset depends on the

number of instances, the number of attributes, the number of

values for each attribute and the number of the class labels.

It is shown that the GANN can extract rules with high

predictive accuracy. The accuracy rate of the discovered rules

was 97.4% and 98% for Car Evaluation and Breast Cancer

respectively. GANN works fine for the rule discovering no

matter of the how many attributes with their number of values

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 1, Jan - Feb 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 5

and classes’ number is included in the datasets. For example,

Breast Cancer, 9 input attributes with a number of values and

the Car Evaluation with 6 input variables and 4 output cases.

Fig. 4 Accuracy of rules with GANN after 10 generations

IX. CONCLUSIONS

 The discovery of the NN parameters play significant role

for the extraction rules from dataset. The hybrid GA finds out

the suitable parameters for NN design. DTPL has superiority

over the GANN due to the low complexity data.

 REAW can extract rules using the two types of weights.

REAW can work also for discovering many rules (significant

or not) considering the different types of weight’s

combination for different complexity datasets.

 For higher complexity data, GANN can provide good

accuracy since it can define the correct parameters of NN that

minimize the MSE. Future work will be the use of NNs for

classification purposes.

REFERENCES

[1] J. Han, M. Kamber, J. Pei, “Data Mining Concepts

and Techniques”, Morgan Kaufman 3ed ,2012

[2] M. Karntardzic, “Data Mining: Concepts, Models,

Methods, and Algorithms”, IEEE Press, 2003

[3] D. Goldberg, “Genetic Algorithms in Search,

Optimization and Machine Learning”, Pearson,

2002.

[4] S. Perez, “Apply genetic algorithm to the learning

phase of a neural network “, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc / /download?

doi=10.1.1.187.5220&rep=rep1&type=pdf

[5] H. Lin, S. Tan, (1995),”X2R: A Fast Generator”, Int.

Conference on Systems, Man and Cybernetics”,

Vancouver, Canada,1995

[6] D. McSherry, “Attribute-value distribution as a

strategy for increasing the efficiency of data

mining”, IEEE Colloquium Knowledge Discovery

and Data Mining, (Digest No. 1998/310), June 1998.

[7] S. Haykin, “Neural networks: A Comprehensive

Foundation”, Prentice Hall, 2e

[8] A. Freitas, “Data Mining and knowledge Discovery

with Evolutionary Algorithms”, Springer-Verlag,

Berlin Heidelberg,2002.

[9] R. Carvalho, A. Freitas, “A gentic-algorithm for

discovering small-disjunct rules in data mining”,

Applied Soft Computing, vol.2, 2002, pp. 75-88.

[10] M. Smith, “Neural Networks for Statistical

Modeling, Nan Nostrand Reinhold, 1993.

[11] H. Bhasim, S. Bhatia, “Application of Genetic

Algorithms in Machine Learning”, IJCSIT

International Journal of Computer Science and

Information Technologies, Vol.2 (5), 2011,

pp. 2412-2415.

[12] M. Bramer,” Principles of Data Mining”, Springer-

Verlag, London Limited, 2007. [13] H. I. Witten, E.

Frank, “Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations”,

2nd edition. Morgan Kaufmann,2005

[13] A. Freitas,” Data Mining and Knowledge Discovery

with Evolutionary Algorithms”, Springer, 2002.

http://www.ijcstjournal.org/
http://citeseerx.ist.psu.edu/viewdoc%20%20%20%20%20%20%20%20/

