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ABSTRACT 

A set X. In particular, confirming conjecture of Dikranjan, we prove that the topology Tp of pointwise convergence 

on each subgroup G ⊃ Sω(X) of S(X) is the coarsest Hausdorff group topology on G (more generally, the coarsest T1-

topology which turns G into a [semi]-topological group), and Tp coincides with the Zariski and Markov topologies 

ZG and MG on G. Answering another question of Dikranjan, we prove that the centralizer topology TG on the 

symmetric group G = S(X) is discrete if and only if |X| c. On the other hand, we prove that for a subgroup G ⊃ Sω(X) 

of S(X) the centralizer topology TG coincides with the topologies Tp = MG = ZG if and only if G = Sω(X). We also 

prove that the group Sω(X) is σ-discrete in each Hausdorff shift-invariant topology. 

Keywords:- Symmetric group, Topological group, Semi-topological group,[Semi]-topological group, ,Topology of 
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I.    INTRODUCTION 

In this paper we answer several problems of 

Dikran Dikranjan concerning algebraically 

determined topologies on the group S(X) of 

permutations of a set X and its normal subgroup 

Sω(X) consisting of all permutations f : X → X with 

finite support supt. 

 

 

The symmetric group S(X) carries a natural group 

topology, namely the topology of pointwise 

convergence Tp, inherited from the Tychonoff power 

X X of the set X endowed with the discrete topology (a 

topology T on a group G is called a group topology if 

(G,T ) is a topological group). Answering a question 

of Ulam [28, p. 178] (cf. [35]), Gaughan [17] proved 

that for each set X the topology Tp is the coarsest 

Hausdorff group topology on the symmetric group G 

= S(X) (cf. [10, 1.7.9] and [8, 5.2.2]). On the other 

hand, Dierolf and Schwanengel [7] proved that for 

each set X and each subgroup G ⊃ Sω(X) of S(X) the 

topology Tp is a minimal Hausdorff group topology 

on G. In [25] Dikranjan asked if the results of 

Gaughan and Dierolf, Schwanengel can be unified. 

More precisely, he made the following conjecture: 

Conjecture 1.1 (Dikranjan). Let X be an infinite set, 

and G a subgroup of S(X) such that Sω(X) ⊂ G. Then 

the topology of pointwise convergence is the coarsest 

Hausdorff group topology on G. 

 

II. ZARISKI TOPOLOGIES ON   

PERMUTATION GROUPS 
 

In this section we shall consider three algebraically 

determined topologies on a group G: 

• the Zariski topology ZG generated by the sub-base 

consisting of the sets { x ∈ G: xε1 g1xε2 g2 · ·

 · xεn gn = 1G } , where n ∈ N, g1,..., gn ∈ G, 

and ε1,...,εn ∈ {−1,1} ; 

• a restricted Zariski topology ZG, generated by the 

sub-base consisting of the sets { x ∈ G: xbx−1 = 

aba−1 } where a,b ∈ G and b2 = 1G; 

• a restricted Zariski topology ZG,

 generated by the sub-base

 consisting of the sets

 { x ∈ G: xbx−1 = aba−1 } and 
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{ x ∈ G: (xcx  where a,b,c ∈ G and b2 = c2 = 1G. 

Here by 1G we denote the identity element of the group G. 

It is clear that ZG ⊂ ZG ⊂ ZG and these three topologies on G are shift-invariant in the sense that for any points a,b 

∈ G the two-sided shift sa,b : G → G, sa,b : x→ axb, is continuous. It is also clear that the Zariski topology ZG is 

weaker than an arbitrary Hausdorff group topology on G. In particular, ZG ⊂ Tp. 

The Zariski topology ZG is well known in the theory of (topological) groups (see [5,8,13,11,12,14,33,3,4]) and its 

origin goes back to Markov [27]. On the other hand, the restricted Zariski topologies ZG and ZG are less studied and 

seem to be not used before. Observe that for each Abelian group G the topologies ZG and ZG are anti-discrete. 

Theorem 2.1. For each set X of cardinality | X |  3 and each subgroup G ⊂ S(X) with Sω(X) ⊂ G we get 

ZG . 

If the set X is infinite, then ZG = ZG. 

The rest of this section is devoted to the proof of Theorem 2.1. We assume that X is a set of cardinality | X |  3 

and G is a subgroup of the symmetric group S(X) such that Sω(X) ⊂ G. Elements of the set X will be denoted by 

letters x, y,a,b,c, while elements of the symmetric group S(X) by g, f ,h,t, s,u, v, w. For two points x, y ∈ X by tx,y ∈ 

Sω(X) we shall denote the transposition which exchanges x and y but does not move other points of X. It is clear that 

tx,y is a unique permutation t ∈ S(X) with supt(t) = { x, y } . 

Lemma 2.2. For any permutation f ∈ S(X) and any points x, y ∈ X with x = f (x) and y ∈/ { x, f (x)} , the 

transposition tx,y does not commute with f , that is tx,y ◦ f = f ◦ tx,y. 

Proof. This follows from t  

Given a subset A ⊂ X, consider the subgroups 

 G  and G A  

of G. Observe that G A = G(X \ A), G(A) ∩ G A = {1G } and any two permutations f ∈ G(A) and g ∈ G A commute 

because they have disjoint supports: supt( f ) ∩ supt(g) ⊂ A ∩ (X \ A) = ∅ . 

The definitions of the topologies ZG and Tp guarantee that those are T1-topologies. The same is true for the 

topologies ZG and ZG. 

Lemma 2.3. The topologies ZG ⊂ ZG satisfy the separation axiom T1. 

Proof. Given two distinct permutations f , g ∈ G, consider the permutation h = f −1 ◦ g = 1G and find a point x ∈ X 

such that h(x) = x. Since | X |  3, we can choose a point y ∈ X \ { x,h(x)} and consider the transposition t = tx,y. Then 

t2 = 1G and t ◦ h = h ◦ t by Lemma 2.2. Now we see that U = { u  is a ZG-open set which contains h but 

not 1G. Then its shift f ◦ U = { v ∈ G: vtv−1 = f tf −1 } ∈ ZG contains g = f ◦ h but not f  

If the set X is finite, then the group G ⊂ S(X) is finite too. In this case the T1-topologies ZG  are 

discrete and hence coincide. So, we assume that the set X is infinite. 

Lemma 2.4. For each 3-element subset A ⊂ X the subgroup G A is ZG-closed and so also ZG-closed in G. 

Proof. Take any permutation f ∈ G \ G A and find a point a ∈ A with f (a) = a. Since | A | = 3, we can choose a point b ∈ A 

\ {a, f (a)} and consider the transposition ta,b. By Lemma 2.2, ta,b ◦ f = f ◦ ta,b. Since supt(ta,b) = {a,b } ⊂ A, the 

transposition ta,b commutes with all permutations g ∈ G A, which implies that 

 O f = { g ∈ G: g ◦ ta,b = t  

is a ZG-open neighborhood of f that does not intersect the subgroup G A and witnesses that this subgroup is ZG-closed.  

Lemma 2.5. For each 3-element subset A ⊂ X the subgroup G A is ZG-open. 

Proof. Assume that for some 3-element subset A ⊂ X the subgroup G A is not ZG-open. Since the topology ZG is 

shiftinvariant, the subgroup G A has empty interior, and being closed by Lemma 2.4, is nowhere dense in . 

Claim 2.6. For each 3-element subset A ⊂ X the subgroup G A is closed and nowhere dense in . 
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Proof. Choose any permutation f ∈ Sω(X) ⊂ G with f (A) = A and observe that G A −1 ◦ G A ◦ f is closed and 

nowhere dense in  being a (two-sided) shift of the closed nowhere dense subgroup G A 

Claim 2.7. For each 3-element subset A ⊂ X and each finite subset B ⊂ X the subset G(A, B) = { f ∈ G: f (A) ⊂ B 

} is nowhere dense in . 

Proof. Since the set of functions from A to B is finite, there is a finite subset F ⊂ G(A, B) such that for each 

permutation g ∈ G(A, B) there is a permutation f ∈ F with g | A = f | A. Then f −1 ◦ g | A ∈ G A, which implies that the set 

G  f ◦ G Af ∈Fis closed and nowhere dense in , being a finite union of shifts of the closed nowhere 

dense subgroup G A.  

Now we can finish the proof of Lemma 2.5. Since X is infinite, we can find two disjoint 3-element subsets A, B 

∪ G(B, A ∪ B) is nowhere dense in . For any ⊂ X. Claim 2.7 guarantees that the set G(A, A ∪ B) 

points a ∈ A, b ∈ B consider the transposition ta,b ∈ Sω(X) 

⊂ G and put T = {ta,b: a ∈ A, b ∈ B } . For any 

transpositions t, s ∈ T with t ◦ s = s ◦ t, the setU is a ZG-open neighborhood of 1G 

by the definition of the topology ZG. Since T is finite, the intersectionU , ts = st }is a ZG-open 

neighborhood of 1G. Choose a permutation u ∈ U, which does not belong to the nowhere dense subset G(A, A ∪ B) 

∪ G(B, A ∪ B). Then u(a),u(b) ∈/ A ∪ B for some points a ∈ A and b ∈ B. Choose any point c ∈ B \ {b } and 

consider two non-commuting transpositions t = ta,c and s. 

 

It follows from u ∈ U ⊂ U that the transposition v =does not commute with the transposition t. On the other 

hand, the support suptdoes not intersect the set A ∪ B ⊃ {a,c } =     supt(t), which implies that tv = vt. This 

contradiction completes the proof of Lemma 2.5.  Now we can prove the first part of Theorem 2.1.Lemma 2.8. ZG 

. 

Proof. Since ZG , the equality ZG = ZG = Tp will follow as soon as we check that . Since the 

topology Tp of pointwise convergence is generated by the sub-base consisting of the sets G(x,, x, y ∈ X, it suffices to 

show that any such set G(x, y) isZG-open. Choose any permutation f ∈ Sx and observe that the shiftsubset A ⊂ X 

with x ∈ A. By Lemma 2.5, the subgroupf ◦ G(x, y) = G(x, x) = G{x} is a subgroup ofG A is ZG-open, and so are the subgroupG, 

which contains the subgroupG(x,Gx)
A ⊃for any 3-elementG A and its shift G  

 

Finally, we prove the second part of Theorem 2.1. 

Lemma 2.9. If the set X is infinite, then ZG = Tp. 

Proof. Assumefor a contradiction, that ZG = Tp. Then for any point a ∈ X, the Tp-open neighborhood G(a,a) = 

{ g ∈ G: g(a) = a } of 1G is ZG-open. Consequently,n : vfiv−1 = gi fi g i=1for some 

permutations f1, g1,..., fn, gn ∈ G such that fi
2 = 1G = fi for all i  n. We can assume that the permutations f1,..., fn are 

ordered so that there is a number k ∈ ω such that a permutation fi, 1  i  n, has finite support supt( fi) if and only if i > 

k. Consider the finite setnF i=k+1and choose any injective function u0 : F → X \ 

F. For every i ∈ {1,...,k } by induction choose two points xi ∈ supt( fi) and yi ∈ X such that for the finite sets

 X  and Y  

the following conditions hold 

(1) xi ∈/ F ∪ X<i ∪ fi−1(F ∪ X<i) ∪ gi−1(u0(F) ∪ Y<i); 

(2) yi ∈/ { gi(xi), gi( fi(xi))} ∪ u0(F) ∪ Y<i. 

The choice of the points xi, yi, 1  i  k, allows us to find a permutation u ∈ Sω(X) such that 
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 u | F = u0, u(xi) = gi(xi) andu  yifor every i ∈{1,...,k } . 

u gi ◦ fi ◦ gi for every i ∈ {1,...,n } . If i > k, then the permutation G has We claim that u ◦ fi ◦ 

nonempty support supt(u ◦ fi ◦ u− ) = u(supt( fi)) ⊂ u0(F) disjoint with F ⊃ gi(supt( fi)) = supt(gi fi gi− ), which implies 

that ufiu−1 = gi fi gi−1. If i  k, then for the point gi(xi) = u(xi) we get 

u ◦ fi ◦ u  u ◦ fi(xi) = yi = gi ◦ fi(xi) = gi ◦ fi ◦ g . 

Now we see that 

n 

u : vfiv−1 = gi fi g  

i=1 which is not possible as u(a) = u0(a) ⊂ u0(F) ⊂ X \ F  

III. THE COINCIDENCE OF MARKOV AND ZARISKI TOPOLOGIES ON 

PERMUTATION GROUPS 

In this section we study the interplay between Zariski and Markov topologies on permutation groups and their 

subgroups. By definition, the Markov topology MG on a group G is the intersection of all Hausdorff group 

topologies on G. The Markov topology MG was explicitly introduced in [11,12] and studied in [13,14]. 

It is clear that ZG ⊂ MG for any group G. By a classical result of Markov [27], for each countable group G, the 

topologies ZG and MG coincide. The equality ZG = MG also holds for each Abelian group G; see [13,12]. Dikranjan 

and Shakhmatov in Question 38(933) of [11] asked if the topologies ZG and MG coincide on each symmetric group 

G = S(X). The following corollary of Theorem 2.1 answers this problem affirmatively. 

Corollary 3.1. For any set X and any subgroup G ⊃ Sω(X) of the symmetric group S(X) we get ZG = MG. 

Proof. If X is finite, then the topologies ZG and MG coincide, being T1-topologies on the finite group G. If X is 

infinite, then the trivial inclusion ZG ⊂ MG ⊂ Tp and the non-trivial equality ZG = Tp established in Theorem 2.1 

imply thatZG  

Corollary 3.1 implies the following corollary that solves Question 40(i) of [11] and Question 8.4(i) of [14]. 

Corollary 3.2. For each uncountable set X the symmetric group G = S(X) has ZG = MG but contains a subgroup H ⊂ 

G with ZH = MH. 

Proof. By Corollary 3.1, the group G = S(X) has ZG = MG. Since X is uncountable, the symmetric group G = S(X) 

contains an isomorphic copy of each group of cardinality ω1, according to the classical Cayley’s Theorem [31, 

1.6.8]. In particular, G contains an isomorphic copy of the group H of cardinality | H | = ω1 with ZH = MH, 

constructed by Hesse [20] (see also [14, Theorem 3.1]).  

IV. THE MINIMALITY OF THE TOPOLOGY OF POINTWISE CONVERGENCE ON 

PERMUTATION GROUPS 

In this section we shall confirm Dikranjan’s Conjecture 1.1 and shall prove that for each subgroup G ⊃ Sω(X) of 

the symmetric group S(X) the topology of pointwise convergence is the coarsest Hausdorff group topology on G. In 

fact, we shall do that in a more general context of [semi]-topological groups. We shall say that a group G endowed 

with a topology is 

• a topological group if the function q : G × G → G, q : , is continuous; 

• a para topological group if the function s : G × G → G,  xy, is continuous; 

• a quasi-topological group if the function q : G × G → G, q : (x, y) → xy−1, is separately continuous; 

• a semi-topological group if the function s : G × G → G, s : (x, y) → xy, is separately continuous; 

• a [quasi]-topological group if the functions q : G × G → G, q : (x, y) → xy−1, and [ · · ] : G × G → G, [ · · ] : (x, 

y) → xyx−1 y−1, are separately continuous; 

• a [semi]-topological group if the functions s : G × G → G, s : (x, y) → xy, and [ · · ] : G × G → G, [ · · ] : (x, y)

 → xyx−1 y−1, are separately continuous. 
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These notions relate as follows: 

topological group  [quasi]-topological group  quasi-topological group 

 
paratopological group  [semi]-topological group  semi-topological group 

Observe that a semi-topological (resp. quasi-topological) group G is [semi]-topological (resp. [quasi]-topological) if 

and only if for every a ∈ G the function γa : G → G, γa : x → xax−1is continuous. In the sequel such a function γa 

will be called a conjugator. In [22] a quasi-topological (resp. a [quasi]topological) group (G,τ) whose topology τ 

satisfies the separation axiom T1 is called a T1-group (resp. a C-group).It is easy to see that  are 

quasi-topological groups, while (G,ZG) and (G,MG) are [quasi]-topological groups. 

Proposition 4.1. Let T be a topology on a group G. 

(1) If T is a T1-topology and (G,T ) is a [semi]-topological group, then ZG ⊂ T . 

(2) If T is a T2-topology and (G,T ) is a semi-topological group, then ZG ⊂ T . 

Proof. (1) Assume that T is a T1-topology and (G,T ) is a [semi]-topological group. Fix any elements a,b,c ∈ G with 

b2 = c2 = 1G and observe that the conjugator γb : G → G, γb : x → xbx−1, is T -continuous, being the composition γb = 

sb ◦ [ · ,b ] of two T -continuous functions  xbx−1b−1 and sb : y →yb.  

Consequently, the set  = aba ZG 

is T -open. In particular, the set U  is T -open.Next, consider the T -continuous function γc : G → 

G, γc : x →xcx−1,and observe  

that the set ZGis T -open too. Now we see 

that ZG ⊂ T because all sub-basic sets of the topology ZG 
belong to T . 

(2) Assume that T is a T2-topology and (G,T ) is a semi-topological group. We should prove that for any 

elements a,b ∈ G with b2 = 1G the sub-basic set U = { x ∈ G: xbx−1 = aba−1 } ∈ ZG is T -open. Fix any point x ∈ U 

and observe that xb = cx where c = aba−1. Since the topology T is Hausdorff, the distinct points xb and cx of the 

group G have disjoint T -open neighborhoods Oxb and Ocx. The separate continuity of the group operation yields a 

neighborhood Ox ∈ T of the point x such that Ox · b ⊂ Oxb and c · Ox ⊂ Ocx. Then Ox ⊂ U, witnessing that the set U is 

T -open.  

The following theorem confirms Dikranjan’s Conjecture 1.1 and generalizes results of Gaughan [17] and Dierolf, 

Schwanengel [7]. 

Theorem 4.2. For each set X and each subgroup G ⊃ Sω(X) of the symmetric group S(X), the topology Tp of 

pointwise convergence on G is the coarsest T1-topology turning G into a [semi]-topological group. 

Proof. Let T be a T1-topology on G turning G into a [semi]-topological group. By Proposition 4.1(1), ZG ⊂ T and by 

Theorem 2.1,  

Remark 4.3. Observe that for an infinite set X and any subgroup G ⊃ Sω(X) of S(X) the restricted Zariski topology 

ZG is a T1-topology turning G into a quasi-topological group, nonetheless, ZG by Theorem 2.1. This example 

shows that Theorem 4.2 cannot be generalized to the class of semi-topological or quasi-topological groups. 

V. CENTRALIZER TOPOLOGY ON PERMUTATION GROUPS 

In this section we study the properties of the centralizer topology TG on permutation groups G. This topology was 

introduced by Taimanov in [34] (cf. [9,14]) with the aim of topologizing non-commutative groups.For a group G its 

centralizer topology TG is generated by the sub-base consisting of the sets ,where a,b ∈ G. 

The centralizer topology TG has a neighborhood base at 1G consisting of the centralizers  

cG(A)= { = }a∈A 
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of finite subsets A ⊂ G. These centralizers cG(A) are open-and-closed subgroups of G, which implies that ZG ⊂ TG 

for each group G. By [9, §4], a group G endowed with its centralizer topology is a topological group. This 

topological group is Hausdorff if and only if the group G has trivial center cG(G) = {1G } ; see [9, 4.1]. In this case, 

ZG MG ⊂ TG. Theorem 2.1 and Lemma 2.3 imply that ZG ⊂ ZG = ZG = MG = Tp ⊂ TG for any 

permutation group G ⊂ S(X) with Sω(X) ⊂ G on a set X of cardinality | X |  3. Unlike the algebraically determined 

topologies ZG = ZG = MG, the centralizer topology TG depends essentially on the position of the group G in the 

interval between the groups Sω(X) and S(X). In the extremal case G = S(X) the centralizer topology TG is close to 

being discrete, as shown by the following theorem, which generalizes Theorem 4.18 of [9] and answers 

affirmatively Question 4.19 of [9] and Question 8.17 of [14]. In this theorem by c we denote the cardinality of the 

continuum. 

Theorem 5.1. For a set X of cardinality | X |  3, the centralizer topology TG on the symmetric group G = S(X) is 

discrete if and only if | X | c. 

Proof. Since | X |  3, the group G = S(X) has trivial center, which implies that (G,TG) is a Hausdorff topological 

group; see [9, §4]. If X is finite, then the Hausdorff topological group (G,TG) is finite and hence the centralizer 

topology TG is discrete. 

So, we assume that the set X is infinite. If | X | > c, then the centralizer topology TG on the group G = S(X) is not 

discrete by Theorem 4.18(2) of [9]. If | X | = ω, then the centralizer topology TG is discrete by Theorem 4.18(1) of 

[9]. So, it remains to show that TG is discrete if ω < | X | c. By Proposition 4.17(c) of [9] the discreteness of TG will 

follows as soon as we construct a finitely generated group H containing continuum many subgroups Hα ⊂ H, α ∈ c, 

which are self-normalizing in the sense that for an element h ∈ H, the equality hHαh−1 = Hα holds if and only if h ∈ 

Hα. Such a group H will be constructed in the following lemma.  

Lemma 5.2. There is a finitely generated group H containing continuum many self-normalizing subgroups. 

Proof. Consider the free group FZ with countably many generators, identified with integers. Then the shift ϕ : Z → 

Z, ϕ : n → n + 1, extends to an automorphism Φ : FZ → FZ of the free group FZ. Let H  be the semi-direct 

product of the free group FZ and the additive group Z of integers. Elements of the group H are pairs (v,n) ∈ FZ × Z 

and the group operation is given by the formula 

. 

We shall identify FZ and Z with the subgroups FZ × {0} and {1} × Z, where 1 stands for the identity element of the 

free group FZ. Observe that the group H is finitely-generated: it is generated by two elements, (1,1) and (z,0), where 

z ∈ Z ⊂ FZ is one of the generators of the free group FZ. 

Following [26], we call subset A ⊂ Z thin if for each n ∈ Z \ {0} the intersection A ∩ (A + n) is finite. It is easy to 

check that the family A of all infinite thin subsets of Z has cardinality | A| = c. For each infinite thin set A ∈ A denote 

by F A the (free) subgroup generated by the set A ⊂ Z in the free group FZ = FZ × {0}⊂ H. It remains to prove that 

the subgroup F A is self-normalizing in H. 

Given any element h  H with hF Ah−1 = F A, we need to prove that h ∈ F A. First we show that 

n = 0. Assume for a contradiction that 0. Find a finite subset B ⊂ Z such that u ∈ FB and consider the set C = B ∪ 

(A + n). 

It follows from our assumption that the intersection A ∩ C = (A ∩ B) ∪ (A ∩ (A + n)) is finite and hence A ∩ C = A 

andF
C∩Taking into account thatA = F 

A
.h−1 = (Φ−n(u−1), −n), we see that for each word w ∈ F A ⊂ FZ ⊂ H 

hwh n C,hwhich 

implies that= (u,0) can be identified with the elementF A = hF Ah−1 ⊂ F A∩C ⊂ F A andu ∈ FFZA∩. Now it is easy 

to see that the equalityC = F A. This contradiction proves that n =hF0Aand hence the elementh−1 = F A implies that uF 

Au−1 = F A and hence h = u  
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By Theorem 5.1, for the symmetric group G = S(X) of an infinite set X of cardinality | X | c, the centralizer 

topology TG is discrete and hence does not coincide with the topology Tp = MG = ZG = ZG. For the group G = Sω(X) 

the situation is totally different. 

Theorem 5.3. For a set X of cardinality | X |  3 and a subgroup G ⊃ Sω(X) of the symmetric group S(X), the equality 

Tp = TG holds if and only if G = Sω(X). 

Proof. To prove the “only if” part, assume that G = Sω(X) and find a permutation g ∈ G with infinite 

support. Assuming that TG, we conclude that the TG-open set cG(g) = { f ∈ G: f ◦ g = g ◦ f } is Tp-open. 

subset A such that G A ⊂ cG(g). Since the set supt(g) ⊂ X So, we can find a finite 

points x ∈ supt(g) \ A and y ∈ X \ (A ∪ { x, g(x)}). is infinite, there are 

Consider the transposition t x t x y X \ A and observe that t ◦ g = g ◦ t by Lemma 2.2. But this contradicts the 

inclusion t ∈ G 

To prove the “if” part, assume that G = Sω(X). In this case we shall show that TG = Tp. Denote by [ X ] 3 the 

family of all finite subsets A ⊂ X with | A |  3 and observe that the subgroups G , form a 

neighborhood basis of the topology Tp at 1G, while the centralizers cG(G(A)) of the finite subgroups G(A) = { g ∈ G: 

supt(g) ⊂ A } , A ∈ [ X ] 3, form a neighborhood basis of the centralizer topology TG at 1G. The following lemma 

implies that these neighborhoods bases coincide, so  

Lemma 5.4. Let G = Sω(X) be the group of finitely 

supported permutations of a set X. Then G(X \ A) = 

cG(G(A)) for each subset A ⊂ X of cardinality |

 | . 

Proof. The inclusion G(X \ A) ⊂ cG(G(A)) trivially 

follows from the fact that any two permutations with 

disjoint supports commute. To prove the reverse 

inclusion, fix any permutation f ∈ cG(G(A)). 

Assuming that f ∈/ G(X \ A), we can find a point a ∈ 

supt( f ) ∩ A. Since | A |  3, there is a point b ∈ A \ {a, 

f (a)} . Now consider the transposition t = ta,b ∈ Sω(X) 

= G with supt(t) = {a,b } and observe that f and t do 

not commute according to Lemma 2.2. On the other 

hand, f should commute with t as supt(t) ⊂ A and f 

 
Since the topologies ZG and TG are determined by 

the algebraic structure of a group G, Theorem 5.3 

implies the following algebraic fact (for which it 

would be interesting to find an algebraic proof). 

Corollary 5.5. For each set X, a subgroup G ⊃ Sω(X) 

of the group S(X) is isomorphic to Sω(X) if and only if 

G = Sω(X). 

The permutation groups Sω(X) belong to the class 

of groups with finite double centralizers. We shall 

say that a group G has finite double centralizers if for 

each finite subset F ⊂ G its double centralizer 

cG(cG(F)) is finite. This definition implies that each 

group with finite double centralizers is locally finite. 

Proposition 5.6. For each set X the permutation 

group G = Sω(X) has finite double centralizers. 

Proof. This proposition is trivial if X is finite. So, we 

assume that X is infinite. We need to show that for 

each finite subset 

F ⊂ G its double centralizer 

cG(cG(F)) in G is finite. Choose any 

finite subset A ⊃ X of cardinality | A |  

3, which contains the (finite) support supt( f ) of each 

permutation f ∈ F. The subgroup G(A)is finite and 

contains the finite subset F. By Lemma 5.4, G(X \ A) 

= cG(G(A)) ⊃ cG(F). Since | X \ A | 3, we can apply 

Lemma 5.4 once more and conclude 

that , 

which implies that the double centralizer cG(cG(F)) of 

F is finite. We are interested in groups with finite double 

centralizers because of the following their property. 

Proposition 5.7. For any infinite group G with finite 

double centralizers the centralizer topology TG is not 

discrete. 

Proof. If the centralizer topology TG is discrete, then 

the trivial subgroup {1G } of G is TG-open, which 

means that {1G } = cG(F) for some finite subset F ⊂ 

G. In this case the double centralizer cG(cG(F)) = 

cG(1G) = G is infinite, which is a desired 

contradiction.  
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VI. HAUSDORFF SHIFT-INVARIANT 

TOPOLOGIES ON THE GROUPS 

SΩ(X) 
 

In this section we establish some common 

properties of Hausdorff shift-invariant topologies on 

permutation groups G = Sω(X). By Proposition 

4.1(2), each Hausdorff shift-invariant topology on G 

contains the restricted Zariski topology ZG. Our main 

result concerning this topology is: 

Theorem 6.1. Let X be a set of cardinality | X |  3 and 

G = Sω(X). Then for every n ∈ ω 

(1) the subset Sn  is closed 

in ; 

(2) the subspace S=n(X) = { g ∈ G: | supt(g)| = n } of

 , is discrete. 

Proof. By Lemma 2.3, the topology ZG on the group 

G satisfies the separation axiom T1. If the set X is 

finite, then the topology ZG is discrete, being a T1-

topology on the finite group G = Sω(X). So, we 

assume that X is infinite. 

Lemma 6.2. For every x ∈ X the set U 

 is relatively ZG-open in 

Sn(X). 

Proof. Fix any permutation g ∈ U. It follows that 

g(x) = x ∈ supt(g). Since X is infinite and | supt(g)|  n, 

we can choose a subset A ⊂ X \ supt(g) of cardinality 

| A | = n + 1. For each point a ∈ A consider the 

transposition tx,a with supt(tx,a) = { x,a } and observe 

that tx,a ◦ g = g ◦ tx,a by Lemma 2.2. Then 

 O g : f ◦ t ◦ = 

is a ZG-open neighborhood of g. We claim O g 

 U. This inclusion will follow as soon as 

for each permutation f ∈ O g  we show that x 

∈ supt( f ). Assume conversely that x ∈/ supt( f ). 

Since | | | A | , there is a pointa ∈ A \ 

supt( f ). Then the support supt( f ) is disjoint with the 

support { x,a } of the transposition tx,a, which implies 

that f commutes with tx,a. But this contradicts the 

choice of f Now we can finish the proof of 

Theorem 6.1. 

(1) To show that the subset Sn -closed, fix 

any permutation g ∈ Sω(X) \ Sn(X). We need to find a 

neighborhood O g ∈ ZG of g with O g  = ∅ . 

Consider the support A = supt(g), which is a finite set 

of cardinality | A | > n. The infinity of the set X 

allows us to chose an injective map α : A × {0,...,n } 

→ X \ A. Now for each point a ∈ A and k ∈ {0,1,...,n 

} consider the transposition t = ta,α(a,k) with supt(t) = 

{a,α(a,k)} and observe that g ◦ t = t ◦ g by Lemma 

2.2.So,nO g : f ◦ ta,α(a,k) ◦ f −1 = 

ta, i=0a∈Ais a ZG-open neighborhood of 

. Assume for a 

contradiction that this intersection contains some 

permutation f . Since |  | , 

we can choose a point a ∈ A \ supt( f ) and then 

choose a number 

k ∈ {0,...,n } such that α(a,k) ∈/ supt( f ). Now 

consider the transposition t = ta,α(a,k) and observe that t 

commutes with f as supt(t) = {a,α(a,k)} is disjoint 

with supt( f ). But this contradicts the choice of f ∈ O 

g. 

(2) To show that the subspace S=n(X) of the T1-

space  is discrete, fix any permutation g ∈ 

S=n(X) with finite support A = supt(g) of cardinality | 

A | = n. Lemma 6.2 implies that the set 

U  

is relatively ZG-open in S=n(X) and is finite, being a 

subset of the finite subgroup G(A). So, g has finite 

neighborhood U ⊂G(A) in S=n(X) and hence g is an 

isolated point of the space S=n(X), which means that 

the space S=n(X) is discrete.  

Let us remind that a topological space (X,τ) is 

called σ -discrete if X can be written as a countable 

union X n of discrete subspaces of X. 

According to this definition, each countable 

topological space is σ -discrete. Since Sω(X) = 

, Theorem 6.1(2) and Proposition 4.1(1) 

imply: 

Corollary 6.3. For any set X, the group G = Sω(X) is 

σ -discrete in the restricted Zariski topology ZG, and 

consequently G is σ -discrete in each Hausdorff shift-

invariant topology on G. 

Remark 6.4. Corollary 6.3 answers a problem posed 

in [19]. In [2] this corollary is generalized to so-

called perfectly supportable semigroups. 
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7. The topologies Tα and Tβ on the symmetric 

group S(X) 

It is well known that each infinite discrete 

topological space X has two natural 

compactifications: the Aleksandrov (onepoint) 

compactification αX = X ∪ {∞} and the Stone–Cech 

compactificationˇ β X. The compactifications αX and 

β X are the smallest and the largest compactifications 

of X, respectively (see [15, §3.5]). 

Each permutation f : X → X uniquely extends to 

homeomorphisms fα : αX → αX and fβ : β X → β X. 

Conversely, each homeomorphism f of the 

compactification αX or β X determines a permutation 

f | X of the set X. So, the symmetric group S(X) of X 

is algebraically isomorphic to the homeomorphism 

groups H(αX) and H(β X) of the compactifications αX 

and β X. 

It is well known that for each compact Hausdorff 

space K its homeomorphism group H(K) endowed 

with the compactopen topology is a topological 

group. If the compact space K is zero-dimensional, 

then the compact-open topology on H(K) is generated 

by the base consisting of the sets 

N( f ,U)  f  

where f ∈ H(K) and U runs over finite disjoint open 

covers of K.The identification of S(X) with the 

homeomorphism groups H(αX) and H(β X) yields 

two Hausdorff group topologies on S(X) denoted by 

Tα and Tβ, respectively.Taking into account that 

each disjoint open cover of the Aleksandrov 

compactification αX can be refined by a cover {αX \ 

F }∪{{ x}: x ∈ F } for some finite subset F ⊂ X, we 

see that the topology Tα on S(X) = H(αX) coincides 

with the topology of pointwise convergence Tp. The 

topology Tβ on the symmetric group S(X) = H(β X) is 

strictly stronger thanTp = Tα. Its neighborhood base 

at the neutral element 1 of S(X) consists of the sets 

, where U runs 

over all finite disjoint covers of X. 

Theorem 7.1. The normal subgroup Sω(X) is closed 

and nowhere dense in the topological group 

(S(X),Tβ). 

Proof. Given any permutation f ∈ S(X) \ Sω(X) with 

infinite support supt( f ), we can find an infinite 

subset U ⊂ X such that f (U) ∩ U = ∅ . This set 

determines the cover U = { U, X \ U } and the Tβ-

open neighborhood N( f ,U) = { g ∈ S(X): g(U) = f 

(U)} of f which is disjoint with the subgroup Sω(X) 

because each permutation g ∈ N( f ,U) has infinite 

support supt(g) ⊃ U. So, the subgroup Sω(X) is closed 

in (S(X),Tβ). 

To see that Sω(X) is nowhere dense in (S(X),Tβ), 

choose any finite cover U of X and consider the basic 

neighborhood 

N(1,U)  of the 

identity element 1. Since X is infinite, some set U ∈ 

U is also infinite. 

Then we can choose a permutation f : X → X with 

infinite support supt( f ) = U. This permutation 

belongs to the neighborhood N(1,U) and witnesses 

that the closed subgroup Sω(X) is nowhere dense in 

the topological group  

Remark 7.2. Theorem 7.1 implies that the quotient 

group S(X)/Sω(X) admits a non-discrete Hausdorff 

group topology. This answers negatively Question 

5.27 posed in [9]. Observe that the quotient group 

S(X)/Sω(X) of the topological group (S(X),Tβ) = H(β 

X) can be naturally embedded in the homeomorphism 

group H(β X \ X) of the remainder β X \ X of 

theStone–Cech compactification ofˇ X. The question 

if the groups S(Z)/Sω(Z) and H(βZ \ Z) are equal is 

non-trivial and cannot be resolved in ZFC; see [37]. 

Remark 7.3. Since for an infinite set X the topology 

Tβ on the symmetric group S(X) is strictly stronger 

than the topology Tα = Tp, the homeomorphism 

group H(β X) = (S(X),Tβ) is not minimal, in contrast 

to the homeomorphism group H(αX) = (S(X),Tp) 

which is minimal according to [17]. This resembles 

the situation with the homeomorphism groups H(In) 

and H(μn) of the cubes n and the Menger 

cubes μn of finite dimension n. By a result of 

Gamarnik [16], the homeomorphism group H(I ) is 

minimal if and only if n  1. By a recent result of van 

Mill [29], the homeomorphism group H(μn) is 

minimal if and only if n = 0. Let us observe that the 

zero-dimensional Menger cube μ0 is the standard 

ternary Cantor set, homeomorphic to the Cantor cube 

{0,1} ω. The minimality of the homeomorphism 
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group H({0,1} ω) was proved by Gamarnik [16]. The 

problem of minimality of the homeomorphism group 

H([0,1] ω) of the Hilbert cube [ 0,1] ω is still open (cf. 

[1, VI.8], [6, 3.3.3(b)], [36]). 

 

VIII. SOME OPEN PROBLEMS 
 

It is known [21,23,32] that for a countable set X 

the topology of pointwise convergence Tp = Tα on 

the permutation group S(X) is a unique ω-bounded 

Hausdorff group topology on S(X). Let us recall [18] 

that a topological group G is ωbounded if for each 

non-empty open set U ⊂ G there is a countable 

subset F ⊂ G with F · U = G. So, the topology Tp = 

Tα is simultaneously minimal and maximal in the 

class of ω-bounded groups topologies on S(Z). 

Problem 8.1. Has the topology Tβ on the symmetric 

group S(Z) some extremal properties? In particular, is 

the quotient topology on the quotient group 

S(Z)/Sω(Z) of the topological group (S(Z),Tβ) 

minimal? Is it a unique non-discrete Hausdorff group 

topology on S(Z)/Sω(Z)? 

Theorem 5.3 motivates the following problem. 

Problem 8.2. Find a characterization of groups G 

such that ZG = ZG = MG = TG. 

By Proposition 5.7, for each infinite group G with 

finite double centralizers the centralizer topology TG 

is not discrete. By Proposition 5.6 and Theorem 5.3, 

for each infinite set X the permutation group G = 

Sω(X) has finite double centralizers and satisfies the 

equality MG = TG. This motivates the following 

problem. 

Problem 8.3. Is MG = TG for each (countable) group 

G with trivial center and finite double centralizers? 

By the classical result of Markov [27], a countable 

group G admits a non-discrete Hausdorff group 

topology if and only if its Zariski topology ZG is not 

discrete. So, for the non-topologizable groups 

constructed in [30,24] the Zariski topology ZG is 

discrete. On the other hand, by [38,39], each infinite 

group G admits a non-discrete Hausdorff topology 

turning it into a quasi-topological group, which 

implies that the restricted Zariski topology ZG never is 

discrete. 

Problem 8.4. Is the restricted Zariski topology ZG 

discrete for some infinite group G?An affirmative 

answer to this problem implies a negative answer to 

the following related problem. 

Problem 8.5. Does each (countable) group G admit a 

non-discrete Hausdorff topology turning G into a 

[quasi]-topological group? A [semi]-topological 

group? 
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