

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 69

 Graph Theory: Graph Based Feature Extraction of Different

Types of Graphs

Mr. Saptarshi Bhattacharyya [1], Mr. Abhijit Bera [2]

Research Associate [1], Guest Lecturer [1]Teacher [2]

West Bengal University of Technology (MAKAUT)

 WB – India

ABSTRACT
 In the domain of mathematics and computer science, graph theory is the study of graphs that concerns with the relationship

among edges and vertices. It is a popular subject having its applications in computer science, information technology,

biosciences, mathematics, and linguistics to name a few. Graph classification is an important data mining task for which many

methods are already implemented. Yet in this paper graph based features extracted and various relevant features are selected

using feature selection algorithms.

Keywords:- Graph, path, circuit, clustering, eccentricity, eigen value, trace, cello graph, protein graph.

I. INTRODUCTION

 What is a Graph?

Graph: A graph is a pair of sets (V, E), where V is the set of

vertices and E is the set of edges, connecting the pairs of

vertices. Take a look at the following graph:

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f

Fig. 1

Vertices: Vertices are also known as nodes, points and (in

social networks) as actors, agents or players.

Edges: Edges are also known as lines and (in social

networks) as ties or links. An edge e = (u,v) is defined by the

unordered pair of vertices that serve as its end points.

As an example, the graph depicted in Figure 1 has vertex

set V={a,b,c,d,e.f} and edge set E =

{(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}.

Adjacency: Two vertices u and v are adjacent if there exists

an edge (u,v) that connects them.

Incidence: An edge (u,v) is said to be incident upon nodes u

and v.

Loop: A loop is a special type of edge that connects a vertex

to itself. An edge that links a vertex to itself is known as a

self-loop or reflexive tie.

Fig. 2

Degree of a vertex: The degree of a vertex is the number of

edges meeting at that vertex. It is possible for a vertex to

have a degree of zero or larger.

Degree 0 Degree 1 Degree 2 Degree 3 Degree 4

Path: A path is a sequence of vertices using the edges.

Usually we are interested in a path between two vertices. For

example, a path from vertex A to vertex M is shown below. It

is one of many possible paths in this graph.

 Fig. 3

Circuit. A circuit is a path that begins and ends at the same

vertex. A circuit starting and ending at vertex A is shown

below.

 Fig. 4

Adjacency matrix: Every graph has associated with it an

adjacency matrix, which is a binary nn matrix A in which aij

= 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0

and aji = 0 otherwise. The natural graphical representation of

an adjacency matrix is a table, such as shown in Figure 2.

a b c d e f

a 0 1 0 0 0 0

A B C D

E F G H

J K L M

A B C D

E F G H

J
K

L
M

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 70

b 1 0 1 0 0 0

c 0 1 0 1 1 0

d 0 0 1 0 1 0

e 0 0 1 1 0 1

f 0 0 0 0 1 0

Fig. 5. Adjacency matrix for graph in Figure 1.

Subgraphs: A subgraph of a graph G is a graph whose

points and lines are contained in G. A complete subgraph of

G is a section of G that is complete (i.e., has density = 1).

Cliques: A clique is a maximal complete subgraph. A

maximal complete subgraph is a subgraph of G that is

complete and is maximal in the sense that no other node of G

could be added to the subgraph without losing the

completeness property. In Figure 1, the nodes {c,d,e}

together with the lines connecting them form a clique.

Cliques have been seen as a way to represent what social

scientists have called primary groups.

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f

g

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f

g

a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f
a b

c

d

e f

g

Fig. 6.

Component. A component of a graph is defined as a

maximal subgraph in which a path exists from every node to

every other (i.e., they are mutually reachable). The size of a

component is defined as the number of nodes it contains. A

connected graph has only one component.

Walk: A sequence of adjacent vertices v0,v1,…,vn is

known as a walk. In Figure 6, the sequence a,b,c,b,c,g is a

walk. A walk can also be seen as a sequence of incident

edges, where two edges are said to be incident if they share

exactly one vertex.

Closed: A walk is closed if vo = vn.

Path: A walk in which no vertex occurs more than once is

known as a path. In Figure 6, the sequence a,b,c,d,e,f is a

path.

Trail: A walk in which no edge occurs more than once is

known as a trail. In Figure 6, the sequence a,b,c,e,d,c,g is a

trail but not a path. Every path is a trail, and every trail is a

walk.

Cycle: A cycle can be defined as a closed path in which n

>= 3. The sequence c,e,d in Figure 6 is a cycle.

Tree: A tree is a connected graph that contains no cycles.

In a tree, every pair of points is connected by a unique path.

That is, there is only one way to get from A to B.

Length: The length of a walk (and therefore a path or trail)

is defined as the number of edges it contains. For example, in

Figure 6, the path a,b,c,d,e has length 4.

Geodesic. A walk between two vertices whose length is as

short as any other walk connecting the same pair of vertices is

called a geodesic. Of course, all geodesics are paths.

Geodesics are not necessarily unique. From vertex a to vertex

f in Figure 6, there are two geodesics: a,b,c,d,e,f and

a,b,c,g,e,f.

Distance. The graph-theoretic distance (usually shortened

to just “distance”) between two vertices is defined as the

length of a geodesic that connects them. If we compute the

distance between every pair of vertices, we can construct a

distance matrix D such as depicted in Figure 7. The

maximum distance in a graph defines the graph’s diameter.

As shown in Figure 7, the diameter of the graph in Figure 1 is

4. If the graph is not connected, then there exist pairs of

vertices that are not mutually reachable so that the distance

between them is not defined and the diameter of such a graph

is also not defined.

a b c d e f g

a 0 1 2 3 3 4 3

b 1 0 1 2 2 3 2

c 2 1 0 1 1 2 1

d 3 2 1 0 1 2 2

e 3 2 1 1 0 1 1

f 4 3 2 2 1 0 2

g 3 2 1 2 1 2 0
Fig. 7. Distance matrix of graph in Fig. 6

Eccentricity. The eccentricity e(v) of a point v in a

connected graph G(V,E) is max d(u,v), for all u V. In other

words, a point’s eccentricity is equal to the distance from

itself to the point farthest away. The eccentricity of node b in

Figure 6 is 3.

Radius & Diameter. . The minimum eccentricity of all

points in a graph is called the radius r(G) of the graph, while

the maximum eccentricity is the diameter of the graph. In

Figure 6, the radius is 2 and the diameter is 4.

Center. A vertex that is least distant from all other vertices

(in the sense that its eccentricity equals the radius of the

graph) is a member of the center of the graph and is called a

central point. Every tree has a center consisting of either one

point or two adjacent points.

Degree. The number of vertices adjacent to a given vertex

is called the degree of the vertex and is denoted d(v). It can be

obtained from the adjacency matrix of a graph by simply

computing each row sum. For example, the degree of vertex c

in Figure 6 is 4.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 71

Average degree. The average degree, d , of all vertices

depicted in Figure 6 is 2.29. There is a direct relationship

between the average degree, d , of all vertices in a graph and

the graph’s density:

1

n

d
density

Isolates & pendants. A vertex with degree 0 is known as

an isolate (and constitutes a component of size 1), while a

vertex with degree 1 is a pendant.

Degree variance. Holding average degree constant, there

is a tendency for graphs that contain some nodes of high

degree (and therefore high variance in degree) to have shorter

distances than graphs with lower variance, with the high

degree nodes serving as “shortcuts” across the network.

II. DIRECTED GRAPHS

Definition. A digraph D(V,E) consists of a set of nodes V

and a set of ordered pairs of nodes E called arcs or directed

lines. The arc (u,v) points from u to v.

Digraphs are usually represented visually like graphs,

except that arrowheads are placed on lines to indicate

direction (see Figure 5). When both arcs (u,v) and (v,u) are

present in a digraph, they may be represented by a

double-headed arrow (as in Figure 8a), or two separate

arrows (as shown in Figure 8b).

a b

c

d

e

f

Fig. 8(a)

a b

c

d

e

f

Fig. 8(b)

Directed Walk: In a digraph, a walk is a sequence of nodes

vo,v1,…vn in which each pair of nodes vi, vi+1 is linked by an

arc (vi,vi+1). In other words, it is a traversal of the graph in

which the flow of movement follows the direction of the arcs,

like a car moving from place to place via one-way streets. A

path in a digraph is a walk in which all points are distinct.

Semiwalk: A semiwalk is a sequence of nodes vo,v1,…vn

in which each pair of nodes vi, vi+1 is linked by either the arc

(vi,vi+1) or the arc (vi+1,vi). In other words, in a semiwalk,

the traversal need not respect the direction of arcs, like a car

that freely goes the wrong way on one-way streets. By

analogy, we can also define a semipath, semitrail, and

semicycle.

Underlying graph: Another way to think of semi-walks is

as walks on the underlying graph, where the underlying

graph is the graph G(V,E) that is formed from the digraph

D(V,E’) such that (u,v) E if and only if (u,v) E’ or (v,u)

E’. Thus, the underlying graph of a digraph is basically the

graph formed by ignoring directionality.

Strongly connected: A digraph is strongly connected if

there exists a path (not a semipath) from every point to every

other. Note that the path from u to v need not involve the

same intermediaries as the path from v to u.

Unilaterally connected: A digraph is unilaterally

connected if for every pair of points there is a path from one

to the other (but not necessarily the other way around).

Weakly connected: A digraph is weakly connected if

every pair of points is mutually reachable via a semipath (i.e.,

if the underlying graph is connected).

Strong component: A strong component of a digraph is a

maximal strongly connected subgraph. In other words, it is a

subgraph that is strongly connected and which is as large as

possible (there is no node outside the subgraph that is

strongly connected to all the nodes in the subgraph). A weak

component is a maximal weakly connected subgraph.

Outdegree: The number of arcs originating from a node v

(i.e., outgoing arcs) is called the outdegree of v, denoted

od(v).

Indegree: The number of arcs pointing to a node v (i.e.,

incoming arcs) is called the indegree of v, denoted id(v). In a

graph representing friendship feelings among a set of

persons, outdegree can be seen as indicating gregariousness,

while indegree corresponds to popularity. The average

outdegree of a digraph is necessarily equal to the average

indegree.

Directed adjacency: The adjacency matrix A of a digraph

is an n × n matrix in which aij = 1 if (vi,vj) E and aij = 0

otherwise. Unlike the adjacency matrix of an undirected

graph, the adjacency matrix of a directed graph is not

constrained to be symmetric, so that the top right half need

not equal the bottom left half (i.e., aij <> aji). If a digraph is

acyclic, then it is possible to order the points of D so that the

adjacency matrix upper triangular (i.e., all positive entries are

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 72

above the main diagonal).

III. ATTRIBUTES FOR CLASSIFICATION

OF GRAPHS

Brief description of graph attributes contained in

feature vector for classification:

1. Average Degree: It is defined as the average value of

degree of all nodes in the graph i.e d(G)=∑ nid(ui)/n,

where d(ui) denotes the degree of node ui.

2. Average clustering coefficient: It is actually the ratio of

the number of actual edges between neighbors of u to

the number of possible edges between them,

represented as c(u)=λ(u)/τ(u), where λ(u) is the

number of triangles of a node u and

τ(u)=(d(u)2-d(u))/2;the number of triples a node u has.

The clustering coefficient C(G) of a graph is the

average clustering coefficient of nodes in the graph

represented as C(G)= 1/n(∑ ni=1c(ui))

3. Average effective eccentricity: The eccentricity for a

node assume for node u is defined by maximum

distance of the shortest path from u to v denoted as

e(u)=max{d(u,v): v∈V},where d(u,v) is the length of

the shortest path from u to v .For effectiveness we

consider the maximum length of the shortest path

from node u. With the average of effective

eccentricity over all nodes in the graph we get the

effective eccentricity.

4. Maximum effective eccentricity: It provides

maximum value of eccentricity over all nodes in the

graph. It is actually the diameter of the graph.

diam(G) =max{e(u)|u∈V}=max{d(u,v)|u,v∈V}.

For maximum effective eccentricity it gives effective

diameter

5. Minimum effective eccentricity: It provides minimum

value of eccentricity over all nodes in the graph. It is

actually the radius of the graph, So

rad(G)=min{e(u)|u∈V}=min{d(u,v)|u,v∈V}.Foe

maximum effective eccentricity it gives effective

radius.

6. Average path length (Closeness centrality): the

closeness centrality is defined by the reciprocal of the

averaged total path length between node u and every

other node that is reachable from node u, where u∈V.

With the calculation of average of closeness centrality

of all nodes considered as a global feature for a graph,

i.e. close(u)=(n-1)/ ∑v∈V,v≠d(u,v).

7. Percentage of total central point: It is computed by the

ratio of total number of central points to the total

number of points in the graph where each cenral point

with respect to a node can be found where eccentricity

of that node equal to effective radius of the graph

means effective_rad(G)=e(u) where u∈V

8. Percentage of end points: If the end node is denoted as

degree of one in graph then this type feature is

calculated as a ratio of the number of end points to the

total number of nodes in the entire graph.

9. Number of nodes: Simply it evaluates the total number

of nodes the entire graph.

10. Number of edges: It counts the total number of edges.

11. Spectral radius: It is computed by the largest

magnitude Eigen value of the adjacency matrix of the

graph.if|λ1|>|λ2|>….>| λn| where λ1, λ2, λ3… λn are

distinct Eigen values of the adjacency matrix A of the

graph, and sorted by their magnitude. if ρ(G)

represents the magnitude then ρ(G)=| λ1|

12. Percentage of isolated points: If the isolated point of

a node is denoted as degree of one in graph then this

type feature is calculated as a ratio of the number of

isolated points to the total number of nodes in the

entire graph.

13. Second largest Eigenvalue: It is calculated by taking

second largest Eigen value of the adjacency matrix A,

i.e.,| λ2|.

14. Trace: This feature is obtained by calculating the sum

of all eigenvalue from a adjacency matrix A with

respect to a graph, So that Tr(A)= ∑ ni=1|λi|.It is

helpful for a graph having so many loops. The loop

free graph has trace that is equal to 0.

15. Energy: It is evaluated by sum of all square of Eigen

values of the adjacency matrix A with respect to a

graph G. So that it can be expressed as E(G)= ∑

ni=1|λi|2

16. Number of eigenvalue: If there are n Eigen values in

an adjacency matrix A with respect to a graph G and

among them s are distinct Eigen values. Every eigen

values will be distinct is not always true.

17. Label entropy: If in a graph G has n different labels

then label entropy can be measured as sum of the

product of probability of a particular label and

logarithm of probability of that label, if graph G has n

different labels l1…..ln, then the label entropy is

represented as H(G)=- ∑ ni=1p(li)log(li).

18. Neighborhood Impurity: Suppose L(u) is the label of

a graph G and N(u) is the neighborhood of node u or

N(u) contains the nodes which is adjacent to u, then

degree of impurity will be zero when every node in

neighborhood of u has same node label. So that,

Impurity Deg(u)=|L(v):v∈N(u),L(u)≠L(v)|

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 73

19. Link Impurity: When L(u) ≠ L(v) then edge

connecting node u and node v or edge e(u,v) is said to

be impure, For the entire graph G the impurity can be

measured by {|(u,v)∈E:L(u)≠L(v)|}/m, where m is

the number of total edges in graph G.

IV. GRAPH IMAGES FOR TEST

Images of the thirty one graphs (Protein and Cell graph) are

given below.

Cello Graph Images:

 Cell (G1) Cell (G2)

 Cell (G3) Cell (G4)

 Cell (G5) Cell (G6)

 Cell (G7) Cell (G8)

 Cell (G9) Cell (G10)

 Cell (G11) Cell (G12)

 Cell (G13) Cell (G14) Cell (G15)

Protein graph images:

 Protein (G1) Protein (G2)

 Protein (G3) Protein (G4)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 74

Protein (G5) Protein (G6) Protein (G7)

 Protein (G8) Protein (G9)

 Protein (G10) Protein (G11)

 Protein (G12) Protein (G13)

 Protein (G14) Protein (G15)

Protein (G16)

V. FEATURED RESULT EXTRACTION OF GRAPHS BASED ON SOME CHARACTERISTICS:

Table 1 consumes 10 features and Table 2 consumes 9 features of the above mentioned 31 graphs i.e. 15 cello graphs and 16

protein graphs.

Graph Average

degree

Average

Clustering

Coefficient

Average

Effective

Eccentricit

y

Max.

Effective

Eccentricit

y

Min.

Effective

Eccentricit

y

Closeness

centrality

% of

Central

points

% of

isolated

points

% of

end

points

Numbe

r of

nodes

Cell (G1) 3.5 0.206667 4.3 5 3 0.3946 15 0 0 20

Cell (G2) 5 0.483333 2.5 3 2 0.6332 50 0 0 12

Cell (G3) 3.55556 0.696296 2.4444 3 2 0.6343 55.556 0 0 9

Cell (G4) 5 0.55 2 2 2 0.6964 100 0 0 10

Cell (G5) 3.73333 0.4344 5.0667 6 4 0.3468 26.667 0 0 30

Cell (G6) 6 0.8 2 2 2 0.875 100 0 0 8

Cell (G7) 3.42857 0 4 4 4 0.4643 100 0 0 9

Cell (G8) 9 0.554762 2.5 3 2 0.5999 50 0 0 9

Cell (G9) 6 0.8 2 2 2 0.875 100 0 0 8

Cell

(G10)

6.58333 0.379861 2.7083 3 2 0.5259 29.167 0 0 8

Cell

(G11)

6 0.8 2 2 2 0.875 100 0 0 8

Cell

(G12)

3.07407 0.055556 9.2407 11 7 0.2064 11.11 0 0 9

Cell

(G13)

6 0.8 2 2 2 0.875 100 0 0 8

Protein

(G1)

4.2 0.6667 2.6 3 2 0.6193 40 0 0 10

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 75

Protein

(G2)

2.7 0.1 4.75 7 0 0.3775 5 5 10 20

Protein

(G3)

3.8 0.289524 3.85 5 3 0.4251 30 0 0 20

Protein

(G4)

2.1818 0 4.8182 6 3 0.3773 9.091 0 18.18 11

Protein

(G5)

5 1 1 1 1 1 100 0 0 6

Protein

(G6)

2.67 0.8277 1.8333 2 1 0.7024 16.67 0 0 6

Protein

(G7)

1.67 0 1.8333 2 1 0.6296 16.67 0 83 6

Protein

(G8)

2 0.2166 4.8 6 3 0.3759 10 0 30 10

Protein

(G9)

2 0 3.3 4 2 0.4586 10 0 60 10

Protein

(G10)

3.875 0 4 4 4 0.4653 100 0 0 16

Protein

(G11)

4 0 4 4 4 0.4688 100 0 0 16

Protein

(G12)

3.875 0 4 4 4 0.4653 100 0 0 16

Protein

(G13)

3 0 5 5 5 0.38 100 0 0 20

Protein

(G14)

4.33 0.694 3.3333 4 2 0.4953 16.667 0 0 12

Protein

(G15)

3.23 0.6465 4 5 3 0.4505 15.385 0 7.692 13

Table 1

Graph Number

of edges

Spectral

radius

Second

largest

Eigenvalue

Trace Energy Number of

Eigenvalue

Label

Entropy

Neighbourhood

Impurity

Link

Impurity

Cell (G1) 35 3.8607 2.8159 32 70 20 5.1293 2 0.54286

Cell (G2) 30 5.2361 2.618 21 60 11 4.9069 2 0.4

Cell (G3) 16 4 2 14 32 8 4.25 2.6667 0.75

Cell (G4) 25 5.2361 2 18 50 9 4.6439 2 0.4

Cell (G5) 58 4.4581 3.4199 52 118 30 5.8074 2.6667 0.7143

Cell (G6) 24 6 2 12 48 8 4.585 0 0

Cell (G7) 24 3.4641 2 19 48 13 4.585 3.4286 1

Cell (G8) 20 9.1231 5.3223 56 216 23 6.7682 4 0.4444

Cell (G9) 24 6 2 12 48 8 4.585 0 0

Cell (G10) 20 6.7538 4.2345 50 158 24 6.3038 3.25 0.4937

Cell (G11) 24 6 2 12 48 8 4.396 0 0

Cell (G12) 36 3.6533 3.1789 82 166 54 6.375 0.9259 0.3012

Cell (G13) 24 6 2 12 48 8 4.585 0 0

Protein (G1) 21 4.4751 2.6747 16 42 10 4.3923 4 0.9524

Protein (G2) 27 3.3932 2.6887 28 54 20 4.7548 2.1 0.7778

Protein (G3) 38 4.2275 3.3864 33 76 20 5.2479 3.4 0.8947

Protein (G4) 12 2.4035 2.2739 13 24 11 3.5849 1.4545 0.6667

Protein (G5) 15 5 1 10 30 6 3.9068 0 0

Protein (G6) 8 2.9474 1.8208 8.2 16 6 3 2.3333 0.875

Protein (G7) 5 2.2361 2.2361 4.5 10 4 2.3219 1.6667 1

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 76

Protein (G8) 10 2.4401 2.1171 12 20 10 3.3219 1.8 0.9

Protein (G9) 10 2.6131 1.4142 10 20 10 3.3219 1.6 0.8

Protein (G10) 31 3.9049 2.1742 24 62 15 4.9542 0.75 0.1935

Protein (G11) 32 4 2 24 64 12 5 0 0

Protein (G12) 31 3.9049 2.1742 24 62 16 4.9542 0.75 0.1935

Protein (G13) 30 3 2 32 60 16 4.9069 0 0

Protein (G14) 26 5.0911 3.233 20 52 11 4.7 2.667 0.6154

Protein (G15) 21 3.7117 3.1325 18 42 13 4.3923 2.6154 0.8095

Table 2

VI. FUTURE SCOPE

By applying the concept of this characteristics of different

graphs I am planning to design a relevant feature selection

algorithm based on neural network

BIOGRAPHY

Saptarshi Bhattacharyya is a Research Assistant in the

Department Of Computer Science, at University Of Calcutta.

He has immense interest in research, and has contributed

considerably in research endeavors. His major research

interest areas are Biomedical Image Processing, Data

Structure, Visual Cryptography, Data Hiding, Image

Processing, Green Computing, various computer languages

etc.

REFERENCES

[1] Kernels for Graph Classification by Hisashi Kashima

and Akihiro Inokuchi

[2] IBM Research, Tokyo Research Laboratory 1623-14,

Shimotsuruma, Yamato-shi,Kanagawa 242-8502, Japan

fhkashima, Inokouchig@jp.ibm.com

[3] Saptarshi Bhattacharyya “Complexity Analysis of a

Lossless Data Compression Algorithm using Fibonacci

Sequence” International Journal of Information

Technology (IJIT) – Volume 3 Issue 3, May - Jun 2017

[4] Journal-K.M Borgwardt and H.P Krigel Shortest path

kernels on graphs. In 5th IEEE International Conference

on data mining,pages 74-81,Wastington,DC,USA,2005.

[5] Managing And Mining Graph Data Edited by CHARU

C. AGGARWAL , IBM T. J. Watson Research Center,

Yorktown Heights

http://www.ijcstjournal.org/

