
International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 81

Achieving Space-Efficiency And Access Isolation By Implementing

File Partition For Online Data
Ankita Bung [1], C.Sudha [2], Sravanthi Nanumasa [3]

Assistant professor

Dept of CSE,Mahatma Gandhi Institute of Technology

Hyderabad – India

ABSTRACT

Given a fixed of files that show a certain degree of similarity, we take into account a novel problem of performing statistics

redundancy elimination throughout a hard and fast of distributed nodes in a shared-not anything in-reminiscence big data analytic

system. The redundancy elimination scheme is designed in the following methods that is first space utilization: the total area

needed to keep the files is minimized and second access-isolation: data shuffling amongst server is likewise minimized. In this

paper work , we first analyze that locating an access-efficient and area most useful solution is an enhanced NP-Hard problem.

Following this, we present the Advanced file partitioning Algorithm that locate access utilization solutions in an incremental way

with minimal set of rules time complexity ie polynomial time. Our experimental techniques on more than one records units

confirms that the proposed record partitioning solution is able to acquire compression ratio close to the greatest compression

overall performance achieved with the aid of a centralized solution.

Keywords :– Big data,NP-Hard,File Partitioning Algorithm

I. INTRODUCTION
Big Data analytics is an umbrella term, that includes tactics and

technology, hardware and application program for collecting,

coping with and analyzing giant scale based and unstructured

data in real world data. Tremendous facts analytics works on

whole records as opposed to handiest pattern knowledge in

traditional expertise analytics schemes. Within the case of

small documents, analyses had been accomplished by way of

randomly making a choice on samples (partial data) which

have been regarded as consultant of the entire documents.

Because of evaluation of nice partial information, the know-

how extracted are erroneous and incomplete and hence the

choices made are sub-most reliable and the total performance

accomplished are terrible and sub top-quality. Particularly in

the case of actual community analysis and troubleshooting,

special and brief info are desired for providing actual solution,

which would nice be viable if whole/significant documents is

analyzed.In these days we're witnessing Jim gray’s perception

that “memory is the new disk[1] and

disk is the brand new tape becoming real. Extra and bigger

scale functions now depend on low cost reminiscence

(including random access memory RAM and nonvolatile

reminiscence akin to stable-state disk) in pc cluster to cache,

trade, retailer, and procedure information in both significant

and disbursed method. Chiefly within the massive-information

era, in-reminiscence information processing/analytic methods

comparable to Spark, Storm, Map curb online, Picoolo,

SINGA, Pregel and GraphLab, are becoming increasingly

widespread as consumers are annoying rapid and reactive data

analytics. With an remarkable expense at which the data

volumes are increasing, how do these in-memory methods

efficiently utilize the restricted memory in a allotted computer

cluster becomes an primary study situation. In this paper, we

primarily lift two design issues for the shared-nothing

disbursed in-reminiscence programs as follows. (a) what is the

mostspace-effective technique to distribute information

amongst servers? (b) how one can limit knowledge shuffling

among servers? For the reason that the traits of a memory

method (e.G., high I/O bandwidth, good reliability, moderately

confined size), a space-effective knowledge compression

scheme that minimizes data redundancy permits the server to

retailer as much know-how as possible within the memory of

each and every server.

space effiency is most often executed by way of the

method of De-duplication, which splits all of the records in the

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 82

system into chunks and maintains best a unique copy of every

chunk.De-duplication operates most often achieves 30% - 50%

compression in quite a lot of application data. Nonetheless,

most knowledge De-duplication options have fascinated about

reducing the distance-overhead within a single server. These

methods do not take into account the challenge of

information De-duplication in a allotted atmosphere on account

that of the high network access cost and knowledge

concurrency manipulate overhead in a disbursed

resolution.Without careful similarity evaluation for the set of

documents that must be processed via more than one servers,

precise data chunk may be stored in exceptional servers.

Recreating thelong-established knowledge could require a big

quantity of data shuffling operations among servers,which can

significantly slow down the procedure. An access-efficient

answer is competent of minimizing information shuffling via

storing the specified chunks which can be required to recreate a

file in the equal server. Given a set of files that show a

specified degree of similarity or redundancy, we recall the main

issue of assigning them to a collection of allotted servers

and gift options which can be both access isolated and space-

efficient.

II. LITERATURE SURVEY

A Study of Practical De-duplication

We collected file system content data from 857

desktop computers at Microsoft over a span of 4 weeks. We

analyzed the data to determine the relative efficacy of data de-

duplication, particularly considering whole-file versus block-

level elimination of redundancy. We found that whole-file de-

duplication achieves about three quarters of the space savings

of the most aggressive block-level de-duplication for storage of

live file systems, and 87% of the savings for backup

images[10]. We also studied file fragmentation finding that it is

not prevalent, and updated prior file system metadata studies,

finding that the distribution of file sizes continues to skew

toward very large unstructured files. We studied file system

data, metadata, and layout on nearly one thousand Windows

file systems in a commercial environment. This new dataset

contains metadata records of interest to file system designers;

data content findings that will help create space efficiency

techniques and data layout information useful in the evaluation

and optimization of storage systems. We find that whole-file

de-duplication together with sparseness is a highly efficient

means of lowering storage consumption, even in a backup

scenario. It approaches the effectiveness of conventional de-

duplication at a much lower cost in performance and

complexity. The environment we studied, despite being

homogeneous, shows a large diversity in file system and file

sizes.These challenges, the increase in unstructured files and an

ever-deepening and more populated namespace pose significant

challenge for future file system designs. However, at least one

problem – that of file fragmentation, appears to be solved,

provided that a machine has periods of inactivity in which

defragmentation can be run.

Decentralized De-duplication in SAN Cluster File

Systems

File systems hosting virtual machines typically

contain many duplicated blocks of data resulting in wasted

storage space and increased storage array cache footprint.De-

duplication addresses these problems by storing a single

instance of each unique data block and sharing it between all

original sources of that data. While De-duplication is well

understood for file systems with a centralized component, we

investigate it in a decentralized cluster file system, specifically

in the context of VM storage. We propose DEDE, a block-level

De-duplication system for live cluster file systems that does not

require any central coordination, tolerates host failures, and

takes advantage of the block layout policies of an existing

cluster file system. In DEDE, hosts keep summaries of their

own writes to the cluster file system in shared on-disk logs[11].

Each host periodically and independently processes the

summaries of its locked files, merges them with a shared index

of blocks, and reclaims any duplicate blocks. DEDE

manipulates metadata using general file system interfaces

without knowledge of the file system implementation. We

present the design, implementation, and evaluation of our

techniques in the context of VMware ESX Server. Our results

show an 80% reduction in space with minor performance

overhead for realistic workloads. In this paper, we studied De-

duplication in the context of decentralized cluster file systems.

We have described a novel software system, DEDE, which

provides block level De-duplication of a live, shared file

system without any central coordination. Furthermore, DEDE

builds atop an existing file system without violating the file

system’s abstractions, allowing it to take advantage of regular

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 83

file system block layout policies and in-place updates to unique

data. Using our prototype implementation, we demonstrated

that this approach can achieve up to 80% space reduction with

minor performance overhead on realistic workloads. We

believe our techniques are applicable beyond virtual machine

storage and plan to examine DEDE in other settings in the

future. We also plan to explore alternate indexing schemes that

allow for greater control of De-duplication policy. For

example, high-frequency De-duplication could prevent

temporary file system bloat during operations that produce

large amounts of duplicate data (e.g., mass software updates),

and deferral of merge operations could help reduce file system

fragmentation.

III. ARCHITECTURE

 The system architecture where all the objects

areconnected to the core which is the Big data analytics system

and the operations performed by the user are file partitioning

and deduplication

IV. SYSTEM WORK

Initial File Partition

In the initial file partition it groups similar files

together can effectively reduce the amount of unique data

chunks that have to be sent to the underneath distributed

storage and to be loaded into the memory.

 Enhanced Initial file partitioning Algorithm:

Algorithm for Similarity-aware-partitioning Algorithm

1: Input: Set of files f = {f1,f2, . . . fn} and capacity C

2: Construct G(f)

3: Construct T upon G(f)

4: for every node i do

5: for every subtree τj rooted at the neighbor j do

6: Execute Flood(τj, P(Δ(Ai)) − wi,j)

7: end for

8: end for

9: while size of T is larger than C do

10: Select a new worker node

11: Execute TreeP art(T,C)

12: end while

13: Assign remaining T to a worker node

14: for each worker node do

15: Perform data compression independently

16: end for

Flooding Subroutine Flood(τi,Δγ)

17: Input: Tree τi and message value Δγ

18: Node i sends Δγ to all of its neighbors in τi

19: for each node j that receives Δγ from node k do

20: Update γj(k) = γj(k) + Δγ

21: Forward the message to neighbor nodes in τi except

node k

22: end for

Tree Partitioning Subroutine TreeP art(N, CR)

23: Input: Node set N and residual capacity CR

24: if Successfully locate a node i in N that fulfills (1) then

25: Assign components of τi including the largest component

to worker nodes greedily

26: Prune off the assigned components

27: Reattach the disconnected components to T

28: Update γ using the Flooding Subroutine

29: Update CR = CR − (size of the pruned components)

30: Recursively execute TreeP art(N, CR) on the unassigned

components of τi

31: end if

Incremental File Partition

An incremental file partition that further removes

redundant data from the newly

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 84

added data can potentially save the precious memory

space

Incremental File partition Algorithm:

1: Input new Set of files f = {f1,f2, . . . fn}

2: set value of j to null

3: for every node i

4: get the chunk size in integer data type

5: read the value of chunk size

6: obtain the file pointer

7: set flag value as false

8: for every k

9: find the string similarity value

10: obtain the value of compare

11: if compare > 0.90 set flag to true

12: if not, then

13: get path and the length

14:close and increment j by 1

V. EXPERIMENTAL RESULTS

The above fig shows the graph before and after

deduplication along with the units on the Y-axis which

constitutes the memory size of the data set.

VII. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of storing

a set of files A that exhibit certain degree of similarity

among distributed worker nodes in a shared-nothing in-

memory big-data analytic system. We successfully

propose Enhanced file partitioning algorithm that

achieves both space-efficiency and access-

isolation.Theoretical performance bounds of the proposed

algorithm is presented and the experimental results

confirm the insights we obtained. In the future we wish to

consider the morel cases of fault tolerance.load-balance

and multiple-server communication to explore new trade-

offs.

REFERRENCES

[1] Online Data Deduplication for In-Memory Big-data

analytic systems,IEEE 2017.

[2] S. Robbins, “Ram is the new disk,” in InfoQ News,

2008.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauly, M. J.Franklin,S. Shenker, and I.

Stoica, “Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster

computing,” in Presented as part of the 9th

USENIXSymposium on Networked Systems Design

and Implementation (NSDI 12), pp.15–28,

USENIX, 2012.

[4] BackType and Twitter,“Storm:Distributed and fault-

tolerant realtime computation.” [Online] Available:

http://storm.apache.org/.

[5] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,

K. Elmeleegy, and R. Sears,“Mapreduce online,” in

Proceedings of the 7th USENIX Conference on

Networked Systems Design and

Implementation,NSDI’10,(Berkeley, CA, USA), pp.

21–21,USENIX Association, 2010.

[6] R. Power and J. Li, “Piccolo: Building fast,

distributed programs with partitioned tables,” in

Proceedings of the 9th USENIX Conference on

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 2, Mar - Apr 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 85

Operating Systems Design and Implementation,

OSDI’10, (Berkeley,CA, USA), pp. 1–14, USENIX

Association, 2010.

[7] S. TEAM, “Singa: A distributed training platform for

deep learning models.”[Online] Available:

http://www.comp.nus.edu.sg/∼dbsystem/singa/.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser,and G. Czajkowski, “Pregel: A

system for large-scale graph processing,”in

Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data,

SIGMOD ’10, (New York, NY, USA), pp. 135–146,

ACM, 2010.

[9] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A.

Kyrola, and J. M.Hellerstein, “Distributed graphlab:

A framework for machine learning and data mining

in the cloud,” Proc. VLDB Endow., vol. 5, pp. 716–

727,Apr. 2012.

[10] D. T. Meyer and W. J. Bolosky, “A study of

practical deduplication,”Trans.Storage, vol. 7, pp.

14:1–14:20, Feb. 2012.

[11] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li,

“Decentralized deduplication in san cluster file

systems,” in Proceedings of the 2009 conference on

USENIX Annual technical conference,

USENIX’09,(Berkeley, CA, USA), pp. 8–8,

USENIX Association, 2009.

[12] U. Manber, “Finding similar files in a large file

system,” in Proceedings of the USENIX Winter

1994 Technical Conference on USENIX

Winter1994 Technical Conference, WTEC’94,

(Berkeley, CA, USA), pp. 2–2,USENIX

Association, 1994. 35

[13] B. S. Baker, “On finding duplication and near-

duplication in large software systems,” in

Proceedings of the Second Working Conference on

Reverse Engineering, WCRE ’95, (Washington, DC,

USA), pp. 86–,IEEE Computer Society, 1995.

[14] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding

similar files in large document repositories,” in

Proceedings of the eleventh ACM SIGKDD

international conference on Knowledge discovery in

data mining, KDD ’05, (New York, NY, USA), pp.

394–400, ACM, 2005.

[15] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon,

and M. Theimer,“Reclaiming Space from Duplicate

Files in a Serverless Distributed File System,” in

Proceedings of the 22nd International Conference on

Distributed Computing Systems (ICDCS ’02),

(Vienna, Austria),pp. 617–624, July 2002.

[16] S. Quinlan and S. Dorward, “Venti: A new approach

to archival data storage,” in Proceedings of the 1st

USENIX Conference on File and Storage

Technologies, FAST ’02, (Berkeley, CA, USA),

USENIX Association, 2002.load-balance and

multiple-server communication to explore new trade

offs.

http://www.ijcstjournal.org/

