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ABSTRACT 
A pivotal aspect that stimulates an artificial intelligence application more effectuate is having the ability to understand the 

intent and presenting the relevant results which plays an imperative role in information retrieval. This paper shows various 

effective approaches in every layer of Information Retrieval using Natural Language Processing inclined towards higher 

accuracy and inference and a study of recent advancements in the field of Information Retrieval using Word Embeddings, 

Machine Learning, Deep Learning and Neural Networks. These approaches apply to natural language understanding, natural 

language generation, machine translation, feature extraction, image captioning and transfer learning. 
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I. INTRODUCTION 

 

Natural Language Processing is used for building systems 

that can understand language and Machine Learning is used 

for building systems that can learn from experience. In this 

paper we explain the process involved in building these 

systems that help solving the problems ranging from text 

classification, sentiment analysis, auto summarisation, 

cognitive search, machine translation, conference resolution, 

question and answering, conversational agents to advanced 

systems that are intersection of computer vision and natural 

language processing like image captioning, visual question 

and answering. 

 

Recently, the approach to build such systems has gone far 

beyond using information retrieval techniques to machine 

learning and deep learning which are highly insightful than a 

usual rule based model or binary retrieval model. 

 

In order to build such systems, we need labelled data, which 

consists of documents and their proportionate categories, tags 

or topics. 

 

Most of the NLP problems relate to classification except 

dialog systems that use natural language interaction that are 

built using modern neural network based sequence to 

sequence approach. 

 

The purpose of text classification is to assign documents that 

contain unstructured data to one or multiple categories. Such 

categories can be logs, reviews about a product or the 

language in which the document was typed or any data that is 

unstructured and need to be analysed. 

 

Accuracy of these systems are proportionate to training data. 

Here, we suggest approaches which apply to all layers starting 

from automatic speech recognition, natural entity recognition, 

natural language understanding, natural language generation 

to most recent advancements such as question and answering 

systems, text summarisation. 

 

 
 

Fig. 1 Layers involved in Information Retrieval using Natural      
Language Processing and Natural Language Understanding. 

 

II.   DATA PREPARATION 

 

Data preparation covers an array of operations, data scientists 

will use to get their data into a form more appropriate for what 

they want to do with it. 

 

Training data depends on the use case of the application and it 

requires datasets that can be reused or custom datasets that has 

to be prepared for specific type of applications such as 

conversational agents for conference resolutions or processing 

and clustering unstructured data into meaningful information 

using classification. 

 

If you need specialized, custom training data like 

conversations with some unique specifics for training a chat 

bot, you would need to create that yourself. 
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For annotating/generating your own training data, a script to 

expand the grammar file generated using JSGF can be used. 

The Java Speech Grammar Format (JSGF) defines a platform-

independent, vendor-independent way of describing one type 

of grammar, a rule grammar (also known as a command and 

control grammar or regular grammar). It uses a textual 

representation that is readable and editable by both developers 

and computers, and can be included in source code.  

 

A rule grammar specifies the types of utterances a user might 

say (a spoken utterance is similar to a written sentence). For 

example, a simple window control grammar might listen for 

"open a file", "close the window", and similar commands. 

 

What the user can say depends upon the context is the user 

controlling an email application, reading a credit card number, 

or selecting a font. Applications know the context, so 

applications are responsible for providing a speech recognizer 

with appropriate grammars. 

 

The following is the specification for the java speech grammar 

format. The grammar header declares the grammar name and 

lists the imported rules and grammars. 

 

The grammar body defines the rules of this grammar as 

combinations of utterable text and references to other rules. 

The examples of grammar declarations are provided below. 

 

 

Fig. 2 Text generation using JSpeech Format 

 

III. DATA PRE PROCESSING 

 

Data Pre-processing is a technique that is used to convert the 

raw data into a clean data set. In other words, whenever the 

data is gathered from different sources it is collected in raw 

format which is not feasible for the classification. 

 

The dataset should be formatted in such a way that more than 

one machine learning and deep learning algorithms are 

executed in one data set, and best out of them can be chosen. 

 

Most commonly used pre-processing techniques are data 

cleaning, data annotation, data transformation, missing value 

imputation, encoding categorical variables, scaling and 

normalization. 

 

A. Data Cleaning: 
 

The process of cleaning the data involves removal of stop 

words that have no meaningful information that can be used 

for entity recognition and data classification. 

 

B. Data Integration: 
 

This process is applicable for information derived from 

multiple data sources are utilised for classification. The main 

purpose is to maintain consistency and remove redundant data 

from being used for returning the results. 

 

C. Data Transformation:  

 

This process involves normalizing, aggregating and generalize 

the data by converting the data by parsing, stemming and 

lemmatization. The goal of both stemming and lemmatization 

is to reduce inflectional forms and sometimes derivationally 

related forms of a word to a common base form.  

 

Parser is an algorithm for analysing the query in a grammar 

structure and it establishes the relationship between the words. 

Parsers play a vital role in many applications such as opinion 

mining, information extraction, machine translation, question 

answering. The dependencies derived from the parser can be 

used to improve the grammar of the sentence.  

 

A popular method for dependency parsing is transition-based 

parsing and it derives a dependency parse tree by determining 

a transition sequence from an initial configuration to some 

terminal configuration. The most probable transition is chosen 

at every step of parsing based on the current configuration 

available to the parser. 

 

Stanford Dependency Parser and spacy parser, the fastest and 

accurate parsers available are transition-based which produce 

typed dependency parses of natural language sentences. The 

parsers are powered by a neural network which accepts word 

embedding inputs from pre-trained models. An example of 

parsing a sentence using a transition based parser is shown 

below, 

 
  Fig. 3 Transition based parsing 
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Missing Data is common in all research, and below are the 

ways to impute the missing data, 

 

Mean Value: Replace the missing value with the mean value 

for the particular feature.  

 

Regression Substitution: The missing value can be replaced 

with the historical value from similar data. 

 

Matching Imputation: Each missing value y can be substituted 

with the value x by determining the similar values or co-

occurrence of the values in the data. 

 

Maximum Likelihood is also used to find the missing data.  

Deep learning models, work with missing data better than 

other approaches. 

 

D. Data Reduction:  
 

This process involves tasks that tend to reduce the 

dimensionality of the data and removing information that have 

less influence on the classification, which results in the data 

set to be a reduced form. 

 

The size of the resultant dataset becomes smaller after pre-

processing thus, enhancing the precision of the data to draw 

meaningful insights. 

 

 
  Fig. 4 Phases involved in Data Pre-Processing 

 

The structured data sets are high dimensional i.e. large rows 

and columns. In a way, text expands the universe of data 

manifolds. Hence, to avoid long training time, you should be 

careful in algorithm that scales for text data analysis.  

 

IV. DATA REPRESENTATION 

 

Data Representation involves representing data in an 

appropriate form for the machine learning algorithms.  

 

Text cannot be used as an input to machine learning 

algorithms, text must be tokenized and the words need to be 

encoded as integers or floating point values for use as input to 

a machine learning algorithm.  

 

Modern machine learning algorithms represent words as 

vectors, which can be used to find semantics and analogies of 

the input query. The vectors can be binary, multinomial, or 

continuous. This improves the performance of the text 

classifiers. In text classification, each document is considered 

as an “input” and a class label is the “output” of the algorithm.  

 

Query Expansion plays a vital role in text classification and 

similarity functions. Queries can be expanded by estimating 

the distance between the word vectors and it expands the 

query to more number of instances. 

 

The following techniques have pre-trained vectors which aims 

at enhancing the process of the understanding the query in 

different context. 

 

A. Bag of Words: 

 

A simple and effective model for text documents in machine 

learning is called the Bag-of-Words Model, or BoW. It 

exhibits the order of information in the words and focuses on 

the occurrence of words in a document. 

 

This can be done by assigning each word a unique number. 

Then any document can be encoded as a fixed-length vector 

with the length of the vocabulary of known words. The value 

in each position in the vector could be filled with a count or 

frequency of each word in the encoded document. 

 

This model is concerned with encoding schemes that represent 

what words are present or the degree to which they are present 

in encoded documents without any information about order. 

 

There are many ways to extend this simple method, both by 

better clarifying what a “word” is and in defining what to 

encode about each word in the vector. 

 

Things got much easier with recurrent neural networks and 

recursive neural networks. With them, you can shift the focus 

from representing entire sentences and paragraphs as vectors 

and instead treat them by dealing with individual words 

iteratively or recursively. You can use an actual tree of word 

embeddings as a representation. 

 

B. GloVe: 

 

Global Vectors, is a model for distributed word representation. 

The model is an unsupervised learning algorithm for obtaining 

vector representations for words. 

 

Training is performed on aggregated global word-word co-

occurrence statistics from a corpus, and the resulting 

representations showcase interesting linear substructures of 

the word vector space. 
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Fig. 5 Co-occurrence probabilities for target words ice and steam with 
selected context words from a 6 billion token corpus. Only in the ratio 

does noise from non-discriminative words like water and fashion 

(https://nlp.stanford.edu/ )  
 

 

C. fastText: 

 

Fast text is a Library for efficient text classification and 

representation learning of word embeddings created by 

Facebook's AI Research (FAIR) lab. 

 

The skipgram model learns to predict a target word thanks to a 

nearby word. On the other hand, the c-bow model predicts the 

target word according to its context and it is represented as a 

bag of the words contained in a fixed size window around the 

target word. The model is an unsupervised learning algorithm 

for obtaining vector representations for words.  

Facebook makes available pre-trained models for 294 

languages. 

The most important parameters of the model are its dimension 

and the range of size for the sub-words. The dimension (dim) 

controls the size of the vectors, the larger they are the more 

information they can capture but requires more data to be 

learned. 

 

D. Word2Vec: 

 

Word2vec is a computationally-efficient predictive model in 

learning the meaning behind the words. It supports 

Continuous Bag-of-Words model (CBOW) and the Skip-

Gram model.  

 

Algorithmically, these models are similar, except that CBOW 

predicts target words from source context words, while the 

skip-gram does the inverse and predicts source context-words 

from the target words. This inversion might seem like an 

arbitrary choice, but statistically it has the effect that CBOW 

over a lot of the distributional information (by treating an 

entire context as one observation) [14]. 

 

For the most part, this turns out to be a useful thing for smaller 

datasets. However, skip-gram treats each context-target pair as 

a new observation, and this tends to do better when we have 

larger datasets. 

 

 
        Fig. 6Vectors Projected using PCA [14] 
 

Word2vec word vector representations and t-SNE 

dimensionality reduction can be used to provide a bird’s-eye 

view of different text sources, including text summaries and 

their source material. This enables users to explore a text 

source like a geographical map [14]. 

 

For all unique non-frequent words, the vector representation 

of words are collected from the word2vec model from the 

gensim Python library. Each word is represented by an N-

dimensional vector [14]. 

 

Word2vec uses distributed representations of text to capture 

similarities among concepts. For example, it understands that 

Paris and France are related the same way Berlin and 

Germany are (capital and country), and not the same way 

Madrid and Italy are. This chart shows how well it can learn 

the concept of capital cities, just by reading lots of news 

articles -- with no human supervision [1]. 

 

This has a very broad range of potential applications: 

knowledge representation and extraction; machine translation; 

question answering, conversational systems, and many others. 

 

E. Visualizing Embeddings: 

 

Google AI Research has open sourced the tool for visualizing 

the high dimensional data. The data needed to train machine 

learning systems comes in a form that computers don't 

immediately understand. To translate the things we understand 

naturally (e.g. words, sounds, or videos) to a form that the 

algorithms can process, we use embeddings, a mathematical 

vector representation that captures different facets 

(dimensions) of the data [1]. 

With the Embedding Projector, you can navigate through 

views of data in either a 2D or a 3D mode, zooming, rotating, 

and panning using natural click-and-drag gestures. 

 

PCA is effective at exploring the internal structure of the 

embeddings, revealing the most influential dimensions in the 
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data. t-SNE, on the other hand, is useful for exploring local 

neighborhoods and finding clusters, allowing developers to 

make sure that an embedding preserves the meaning in the 

data (e.g. in the MNIST dataset, seeing that the same digits are 

clustered together). 

 

Custom linear projections can help discover meaningful 

"directions" in data sets - such as the distinction between a 

formal and casual tone in a language generation model which 

would allow the design of more adaptable ML systems [1]. 

 

The words visualised are represented using the Vectors from 

Word2Vec 10K dataset. The standalone projector provides the 

option to visualize the word embedding using t-SNE, PCA. It 

can also be customised to compare the vectors in a linear 

projection. These embeddings can also be visualized by 

projecting a 3-D text scatter plot using t-sne and textscatter. 

The clusters can be visualized using a 2-D  t-SNE data 

coordinates. 

 

WordCloud (MATLAB) function adds support for creating 

word clouds directly from string arrays, and creating word 

clouds from bag-of-words models and LDA topics. 

Below is a figure showing the nearest points to the embedding 

for a word after training a TensorFlow model using the 

Word2Vec [1].  

 

 

The below image represents the word embeddings and nearest 

points to the word “Research”  and clusters of words using 

10000 points plotted in 200 dimensions in google’s standalone 

word embedding projector (http://projector.tensorflow.org/). 

 

 

 
 

 Fig. 7  Visualizing the word embeddings using PCA. 

 

Fig. 8  Visualizing the word embeddings using t-SNE. 

 

V. FEATURE EXTRACTION 

 

Although there are number of NER systems available, MITIE 

from MIT and spacy NER from explosion.ai work on vectors 

and achieved higher accuracy for named entity recognition at 

a large scale. 

 

A. MITIE : 

 

MITIE (https://github.com/mit-nlp/MITIE) uses Structural 

SVM to perform named entity classification [13]. It is a C++ 

library that provides APIs in C, C++, Java, R and Python (2.7). 

 

It is open-source and has been proven to be in par with 

Stanford NLP on the Name Entity Recognition task using the 

CoNLL 2003 corpus (testb). MITIE displayed an F1 score of 

88.10% while Stanford NLP 86.31% (https://github.com/mit-

nlp/MITIE/wiki/Evaluation). 

 

It is also fast in comparison to other models that attempt to 

solve the task of named entity recognition. MITIE chunks 

each sentence into entities and each entity is labelled by a 

multi-class classifier. In order to classify each chunk, MITIE 

creates 500K dimensional vector which is the input to the 

multi-class classifier. The classifier learns one linear function 

for each class plus one for the “not an entity class” [13]. 

 

The feature extraction source code can be found in the 

ner__feature_extraction.cpp file (https://github.com/mit-

nlp/MITIE/blob/master/mitielib/src/ner_feature_extraction.cp

p). It uses the Dlib toolkit(https://dlib.net/) which is used in 

C++ for machine learning[13]. 
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Fig 9 Performance Comparison of various open source libraries 

providing NER [13]. 

If one has defined N classes, the classifier has 500K*(N+1) 

values to learn [13]. 

 

B. spaCy NER : 

 

spaCy is a complete NLP toolkit written in Python (Cython)  

(https://github.com/explosion/spaCy).  

Many Independent Researchers have confirmed that spaCy is 

the fastest in the industry. 

 

spaCy is proficient in extracting information at a large scale 

and scales extremely apex for applications such as search 

engines, translation systems and applications on the conduct 

of seq2seq approach.  

 

spaCy features an extremely fast statistical entity recognition 

system and it assigns labels to spans of tokens and has built in 

visualizers for determining syntax and NER. Depending on 

the scale of the application it has models for NER ranging 

from small, medium and large. 

 

The pre-trained models can be updated to support custom 

representation of data. The models contain the pre trained 

vector representation that enhance the entity recognition 

process. It can recognise various types of named entities in a 

document, by asking the model for a prediction. 

 

spaCy v2.0 features new neural models for tagging, parsing 

and entity recognition. 

 

 

 

 

C. VW Learning2Search: 

 

John Langford (Microsoft Research) and Hal Daume III 

(University of Maryland) presented the Learning2Search [2] 

approach in their tutorial in “Advances in Structured 

Prediction” in ICML2015 (https://hunch.net/~l2s/merged.pdf). 

Learning to search method for solving complex joint 

prediction problems based on learning to search through a 

problem-defined search space [2]. 

 

The major difference of the learning2search (L2S) to the rest 

of models used in the state-of-the-art is on the way it 

approaches the task of structured prediction [2]. 

 

The majority of the state-of-the-art approaches can be 

characterised as “global models”, having the advantage that 

they have clean underlying semantics and the disadvantage 

that they are computationally costly and introduce difficulties 

in the implementation. On the other hand, L2S treats the 

problem as a sequential decision making process [2]. 

 

Sequential decision making approaches have been recently 

used in dependency parsing.  

 

The goal for Learning2Search was to create a model that has 

the following characteristics: 

 

1. Lower programming complexity. 

2. Good prediction accuracy. 

3. Efficiency in terms of both train and test speed. 

 

The following graph displays a comparison in terms of lines 

of code between Conditional Random Field approaches 

(CRFSGD, CRF++) and Structured SVM (S-SVM) and 

Learning2Search [2]. 

 

 
 

Fig. 10 Programming Complexity of L2S VS State-of-the-art [2] 
 

The following graph displays a comparison in terms of 

accuracy and training time between Conditional Random 

Field approaches (CRFSGD, CRF++), Structured    
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Perceptron( https://en.wikipedia.org/wiki/Structured_predic

tion), Structured SVM (S-SVM) and Learning2Search [2]. 

 

 
Fig. 11 Training time and accuracy of L2S VS State-of-the-art [2] 
 

 
Fig. 12 Training time and accuracy of L2S VS State-of-the-art [2] 

 

From the above mentioned analysis, Learning2Search was the 

best model. Structured SVM based MITIE also performed 

better than the traditional methods for feature extraction and 

classification. 

VI. CLASSIFICATION 

 

Classification can be categorised as binary classification, 

multi-class classification and multi-label classification or  

clustering. Traditional classification methods were labelled 

manually, or rule based or statistical based. These methods 

had limitations of maintaining it and required high 

computational resources for building these systems and the 

process was expensive. 

 

Accuracy of classification depends on the algorithm used to 

train and build a model. Binary or Boolean models are 

commonly used for exact matches and partial matches. They 

work based on (AND, OR, NOT) operators for the given 

query. 

Vector space models can be used for extending it to semantic 

searches. Vector based models project the query in n 

dimensions, and similarity can be calculated based on the 

distance between the vector representations, which increases 

the performance of the classification. 

 

 

Supervised Learning  Unsupervised Learning 

Logistic Regression Clustering 

Naïve Bayes Hidden Markov Model 

Stochastic Gradient 

Descent 

 

K-Nearest Neighbours  

Decision Trees  

Random Forest  

Support Vector Machines  

     Table. 1 Classification algorithms 

 

The above table explains the classification algorithms 

categorised as supervised and unsupervised and are explained 

below, 

 

A. Supervised Learning: 

 

1. Logistic Regression:  

 

Logistic Regression is part of a larger class of algorithms 

known as Generalized Linear Model (glm) and it predicts a 

binary outcome for a given set of independent variables using 

probability of occurrence of an event by fitting data to a 

logistic function. 

 

The fundamental equation of generalized linear model is: 

 

g(E(y)) = α + βx1 + γx2 

 

In the above equation, g() is the link function, E(y) is the 

expectation of target variable and α + βx1 + γx2 is the linear 

predictor ( α,β,γ to be predicted). The role of link function is 

to ‘link’ the expectation of y to linear predictor. 

 

For measuring the performance of a logistic regression model,  

Akaike information criteria, residual deviance, confusion 

matrix,  ROC Curve, and likelihood function can be used. 

 

2. Naïve Bayes:  

 

Naïve Bayes represents a supervised learning method as well 

as a statistical method for classification and is highly scalable. 

It uses the Bayes Theorem. It predicts membership 

probabilities for each class such as the probability that given 

record or data point belongs to a particular class.  The class 
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with the highest probability is considered as the most likely 

class. This is also known as Maximum A Posteriori (MAP).  

Types of Naïve Bayes Algorithms are,  

 

Gaussian Naive Bayes:  

 

When attribute values are continuous, an assumption is made 

that the values associated with each class are distributed 

according to Gaussian i.e., Normal Distribution. 

 

Multinomial Naive Bayes:  

 

Multinomial Naive Bayes is preferred to use on data that is 

multinomially distributed. It is one of the standard classic 

algorithms which is used in text classification. Each event in 

text classification represents the occurrence of a word in a 

document. 

 

Bernoulli Naive Bayes:  

 

Bernoulli Naive Bayes is used on the data that is distributed 

according to multivariate Bernoulli distributions, multiple 

features can be there, but each one is assumed to be a binary 

valued (Bernoulli, boolean) variable. So, it requires features to 

be binary valued. 

  

3. Stochastic Gradient Descent:  

 

Stochastic gradient descent is a simple and very efficient 

approach to fit linear models. It is particularly useful when the 

number of samples is very large. It supports different loss 

functions and penalties for classification. 

 

In gradient descent, a batch is the total number of examples 

you use to calculate the gradient in a single iteration. So far, 

we've assumed that the batch has been the entire data set. The 

term "stochastic" indicates that the one example comprising 

each batch is chosen at random. 

 

4. K-Nearest Neighbours: 

 

K-Nearest neighbours can be used for both classification and 

regression tasks. It is a non-parametric. The model structure is 

determined from the data and is suitable for distributed data. 

The output of this classification algorithm is determined by 

the number of data points or neighbours nearer to the data. 

 

The Implementation of the algorithm involves the following 

steps, 

 

1. Load the input data. 

2. Initialise the value of k. 

3. Iterate from 1 to total number of training data points. 

4. Calculate the distance between test data and each row 

of training data using distance between the data 

points and sort the calculated distances in ascending 

order based on distance values. 

5. Get top k rows from the sorted array. 

6. Get the most frequent class of these rows. 

7. Return the determined class. 

 

5. Decision Trees: 

 

It works for both categorical and continuous input and output 

variables. In this technique. the sample is split into two or 

more homogeneous sets based on most significant 

differentiator in input variables.  

 

Decision trees are also nonparametric because they do not 

require assumptions about the distribution of the variables in 

each class. Decision trees can be of two types, 

 

Categorical Variable Decision Tree: Decision Tree which 

has categorical target variable then it called as categorical 

variable decision tree.  

 

Continuous Variable Decision Tree: Decision Tree has 

continuous target variable then it is called as Continuous 

Variable Decision Tree. 

 

The decision of making strategic splits heavily affects a tree’s 

accuracy. gini Index, chi-square, information gain and 

reduction in variance are the algorithms used in decision trees. 

 

The following image describes the visualisation of 

classification using decision trees. 

 

 
 Fig. 13. Visualisation of Classification using decision trees 

 

 

6. Random Forest:  

 
Random Forest, an ensembled algorithm and versatile 

machine learning method is capable of performing both 

regression and classification tasks. Ensembled algorithms are 

those which combines more than one algorithms of same or 

different kind for classifying objects. For example, running 

prediction over Naive Bayes, SVM and Decision Tree and 

then taking vote for final consideration of class for test object.  

The most important tuning parameters to be considered for 

high performance are as follows, 
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max_features: these are the maximum number of features 

random forest is allowed to try in individual tree. 

 

n_estimators: If you have built a decision tree before, you can 

appreciate the importance of minimum sample leaf size. Leaf 

is the end node of a decision tree. A smaller leaf makes the 

model more prone to capturing noise in train data. Generally a 

minimum leaf size of more than 50 is preffered. However, 

multiple leaf sizes should be tried to find the most optimum. 

 

n_jobs, random_state, oob_score are the other parameters to 

be considered for tuning the performance of the model. 

 

7. Support Vector Machines: 

 

Support Vector Machine (SVM) is an algorithm defined by a 

separating hyperplane. The algorithm outputs an optimal 

hyperplane which categorizes new examples using the trained 

labelled data.  The Hyperplane is a line dividing the plane in a 

two dimensional space. Kernel, Regularization, Gamma and 

Margin are the tuning parameters and are described below. 

 

Regularization: 

 

The Regularization parameter tells the SVM optimization how 

much you want to avoid misclassifying each training example. 

 

For large values of parameter, the optimization will choose a 

smaller margin hyperplane if that hyperplane does a better job 

of getting all the training points classified correctly. 

Conversely, a very small value of parameter will cause the 

optimizer to look for a larger margin separating hyperplane, 

even if that hyperplane misclassifies more points. 

 

Kernel: 

 

The learning of the hyperplane in linear SVM is done by 

transforming the problem using linear algebra. This is where 

the kernel plays role.  

 

For linear kernel the equation for prediction for a new input 

using the dot product between the input (x) and each support 

vector (xi) is calculated as follows: 

 

         f(x) = B(0) + sum(ai * (x,xi)) 

 

This is an equation that involves calculating the inner products 

of a new input vector (x) with all support vectors in training 

data. The coefficients B0 and ai (for each input) must be 

estimated from the training data by the learning algorithm. 

 

Gamma: 

 

The gamma parameter defines how far the influence of a 

single training example reaches, with low values meaning 

‘far’ and high values meaning ‘close’. In other words, with 

low gamma, points far away from plausible seperation line are 

considered in calculation for the seperation line where as high 

gamma means the points close to plausible line are considered 

in calculation. 

 

Margin: 

 

A margin is a separation of line to the closest class points. A 

good margin is one where this separation is larger for both the 

classes. A good margin allows the points to be in their 

respective classes without crossing to other class. 

 

B. Unsupervised Learning : 

 

In unsupervised learning, the model is not provided with the 

correct results during the training. It can be used to cluster the 

input data in classes on the basis of their statistical properties. 

 

The labelling can be carried out even if the labels are only 

available for a small number of objects representative of the 

desired classes and it should be able to generalize and give the 

correct results when new data are given in input without 

knowing a prior the target.  

 

The construction of a proper training, validation and test set is 

crucial for increasing the performance of the algorithm. 

 

1. Clustering: 

 

K - means :  

 

k-means clustering is a method of vector quantization, 

originally derived from signal processing, that is popular for 

cluster analysis in data mining. 

 

It aims to partition n observations into k clusters in which 

each observation belongs to the cluster with the nearest mean, 

serving as a prototype of the cluster. It is easy to implement 

and apply even on large data sets.  

 

It has been successfully used in various topics, including 

market segmentation, computer vision, astronomy and 

agriculture. It often is used as a pre-processing step for other 

algorithms [16]. 

 

A balance between two variables, the number of clusters and 

the average variance of the clusters are determined. Learning 

rate, neighbourhood, radius are some of the parameters to be 

considered. 

 

k-means and k-medoids clustering partitions data into k 

number of mutually exclusive clusters. These techniques 

assign each observation to a cluster by minimizing the 

distance from the data point to the mean or median location of 

its assigned cluster, respectively. 
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The below image describes the visualization of data clusters 

using k-means.   

 

 
 
           Fig. 14 Clustering using k-means algorithm 

 

Hierarchial Clustering: 

 

Hierarchical clustering (also called hierarchical cluster 

analysis or HCA) is a method of cluster analysis which seeks 

to build a hierarchy of clusters. Strategies for hierarchical 

clustering generally fall into two types,  

 

Agglomerative: This is a "bottom up" approach, each 

observation starts in its own cluster, and pairs of clusters are 

merged as one moves up the hierarchy. 

 

Divisive: This is a "top down" approach, all observations start 

in one cluster, and splits are performed recursively as one 

moves down the hierarchy [15].  

 

The decision on which clusters to be combined or split is 

determined by the distance between the sets of observations of 

the data using dissimilarity functions. Commonly used 

functions for distance metrics are euclidean distance, squared 

euclidean distance, manhattan distance, maximum distance, 

mahalanobis distance. 

 

2. Hidden Markov Models:  

 

Markov processes are examples of stochastic processes that 

generate random sequences of outcomes or states according to 

certain probabilities. Markov processes are distinguished by 

their next state depends only on their current state. Hidden 

Markov Models (HMM) seek to recover the sequence of states 

that generated a given set of observed data. 

 

C. Similarity : 

 

People would be surprised by the time that actually takes 

working in a machine learning project doing the actual core 

machine learning. 

Process like collecting data, integration of data, cleaning data 

and pre-processing the data consumes a significant amount of 

time and it forecasts the amount of trial and error that have 

been involved in the feature design. 

 

Also, machine learning is not considered to be a one step 

process of preparing a data set and running a machine learning 

algorithm on the data set. It is considered as an iterative 

process which involves reviewing the results, altering the data, 

and re-iterating it. Learning takes less amount of time in this 

process as re-iteration makes it well versed. 

 

Feature engineering is more difficult because it’s domain-

specific, while learners can be largely general-purpose. 

However, there is no sharp frontier between the two, and this 

is another reason the most useful learners are those that 

facilitate incorporating knowledge. Of course, one of the holy 

grails of machine learning is to automate more and more of 

the feature engineering process. 

 

One way this is often done today is by automatically 

generating large numbers of candidate features and selecting 

the best by (say) their information gain with respect to the 

class. But bear in mind that features that look irrelevant in 

isolation may be relevant in combination. 

 

For example, if the class is an XOR of k input features, each 

of them by itself carries no information about the class. (If you 

want to annoy machine learners, bring up XOR.) On the other 

hand, running a learner with a very large number of features to 

find out which ones are useful in combination may be too 

time-consuming, or cause overfitting. So there is ultimately no 

replacement for the smarts you put into feature engineering. 

 

Below is the list of popular feature engineering methods used: 

 

1. n-grams: In a given document, a word that occurs solely 

like (Person’s name, Place name) is 1 gram and likewise can 

contain (Person’s name and Description, Place name and 

Description) a bi-gram. The idea behind this technique is to 

explore the chances that when one or two or more words 

occurs together gives more information to the model. 

 

2. TF – IDF: It is also known as Term Frequency - Inverse 

Document Frequency. This technique believes that, from a 

document corpus, a learning algorithm gets more information 

from the rarely occurring terms than frequently occurring 

terms.  Using a weighted scheme, this technique helps to score 

the importance of terms. The terms occurring frequently are 

weighted lower and the terms occurring rarely get weighted 

higher. * TF is be calculated as: frequency of a term in a 

document / all the terms in the document. * IDF is calculated 

as: ratio of log (total documents in the corpus / number of 

documents with the 'term' in the corpus) * Finally, TF-IDF is 

calculated as: TF X IDF.  
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3. Cosine Similarity: This measure helps to find similar 

documents. It's one of the commonly used distance metric 

used in text analysis. For a given 2 vectors A and B of length 

n each, cosine similarity can be calculated as a dot product of 

two unit vectors. 

 

4. Jaccard Similarity: This is another distance metric used 

in text analysis. For a given two vectors (A and B), it can be 

calculated as ratio of (terms which are available in both 

vectors / terms which are available in either of the vectors). 

It's formula is: (A ∩ B)/(A U B). To create features using 

distance metrics, first we'll create cluster of similar documents 

and assign a unique label to each document in a new column. 

 

5. Levenshtein Distance: It creates a new feature based on 

distance between two strings. It finds the shorter string in 

longer texts and returns the maximum value as 1 if both the 

shorter string is found. For example: Calculating levenshtein 

distance for string "Mountain View 41" and "1st Block, 

Mountain View 41" will result in 1. 

 

6. Feature Hashing: This technique implements the 

'hashing trick' which helps in reducing the dimension of 

document matrix (lesser columns). It doesn't use the actual 

data, instead it uses the indexes[i,j] of the data, thus it 

processes data only when needed. And, that's why it takes 

lesser memory in computation. 

 

7. Vector Space Model: This model converts the document 

or query to a vector in an ‘n’ dimensional space. Every 

dimension represents the tf-idf for the particular term. It 

outperforms in identifying semantically similar information in 

the documents using word2vec, which has the vectors 

projected for words to calculate similarity between documents. 

 

VII. ADVANCEMENTS IN INFORMATION      

RETRIEVAL 

 

Natural Language Processing employs computational 

techniques for the purpose of learning, understanding, and 

producing human language content.  

 

Early computational approaches to language research focused 

on automating the analysis of the linguistic structure of 

language and developing basic technologies such as machine 

translation, speech recognition, and speech synthesis. 

 

Researchers refine and make use of such tools in real-world 

applications, creating spoken dialogue systems and speech-to-

speech translation engines, mining social media for 

information about health or finance, and identifying sentiment 

and emotion toward products and services. 

 

This paper discusses successes and challenges in this rapidly 

advancing area. 

 

1. Computational Graph: 

 

Wolfram Alpha is a computational knowledge 

engine or answer engine developed by Wolfram Alpha LLC, a 

subsidiary of Wolfram Research. It is an online service that 

answers factual queries directly by computing the answer 

from externally sourced "curated data" rather than providing a 

list of documents or web pages that might contain the answer 

as a search engine might. 

 

On the data front, Wolfram Alpha uses a very large set of data 

sources which are verified, tested, and highly structured. The 

company takes all that data and ensures that it's structured 

again in such a way that it can be "computable," which leads 

to the real power of Wolfram Alpha and explains why it's not 

simply a search engine or a more reliable version of 

Wikipedia. 

 

Wolfram Alpha doesn't just return information, it analyses and 

does computation on your inputs and on its own data to 

provide "reports" instead of just "answers." 

 

Users will also be able to use images as inputs. 

Once an image is uploaded, the engine will provide interactive 

reports with histograms, EXIF data, lists of colours with the 

HTML identifiers, edge detection, optical character 

recognition for text, a few image filters and effects, and a bit 

more [9]. 

 

A key feature is the ability to upload many common file types 

and data including raw tabular data, images, audio, XML, and 

dozens of specialized scientific, medical, and mathematical 

formats for automatic analysis [9]. 

 

Other features include an extended keyboard, interactivity 

with CDF, data downloads, in-depth step by step solution, the 

ability to customize and save graphical and tabular results and 

extra computation time [9]. 

 

2. Knowledge Graph: 

 

The Knowledge Graph enables you to search for things, 

people or places that Google knows about—landmarks, 

celebrities, cities, sports teams, buildings, geographical 

features, movies, celestial objects, works of art and more and 

instantly get information that’s relevant to your query [10]. 

 

It’s Google’s systematic way of putting facts, people and 

places together, to create interconnected search results that are 

more accurate and relevant [10]. 

 

More specifically, the “knowledge graph” is a database that 

collects millions of pieces of data about keywords people 

frequently search for on the World Wide Web and the intent 

behind those keywords, based on the already available content. 
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With the knowledge graph, users can get information about 

people, facts and places that are interconnected in one way or 

the other as shown in the image below [10]. 

 

To make your learning easier, just go to Google and search for 

“what is the knowledge graph?” The answer is displayed right 

there – and that’s also what the Knowledge Graph does [10]. 

 

 

Fig. 15 Search Results using Knowledge Graph 

 

Some of the potential applications include: semantic search, 

automated fraud detection, intelligent chat bots, advanced 

drug discovery, dynamic risk analysis, content-based 

recommendation engines and knowledge management 

systems [10]. 
 

3. Deep Learning: 

In previous years, Natural Language Processing was 

considered extinct from other fields in terms of adopting deep 

learning for applications. 

Text does not have a spatial feature space suitable for 

convolutional nets, nor is it entirely unstructured as it is 

already encoded via commonly understood vocabulary, syntax 

and grammar rules and other conventions. However, this has 

changed over the last few years, thanks to the use of RNNs, 

specifically LSTMs, as well as word embeddings. 

Deep learning models often require significant amounts of 

computational resources, memory and power to train and run, 

which presents an obstacle if you want them to perform well 

on mobile. Learn2Compress enables custom on-device deep 

learning models in Tensor Flow Lite that run efficiently on 

mobile devices, without developers having to worry about 

optimizing for memory and speed [1].  

 

 

Fig. 16 Standard machine learning process and deep learning based 
process in Natural Language Processing [11]. 

 

A. Neural Networks 

 

1. LSTM (Long Short Term Memory): 
 

Two commonly-used variants of the basic LSTM architecture 

are the Bidirectional LSTM and the Multilayer LSTM (also 

known as the stacked or deep LSTM) [3]. The mechanism 

followed in extending LSTM’s are as follows, 

 

1. Adding a forgetting mechanism. If a scene ends, for 

example, the model should forget the current scene location, 

the time of day, and reset any scene-specific information; 

however, if a character dies in the scene, it should continue 

remembering that he's no longer alive. Thus, we want the 

model to learn a separate forgetting/remembering mechanism: 

when new inputs come in, it needs to know which beliefs to 

keep or throw away [5]. 

 

2. Adding a saving mechanism. When the model sees a new 

image, it needs to learn whether any information about the 

image is worth using and saving [5]. 

 

3. When a new input comes in, the model first forgets any 

long-term information it decides it no longer needs. Then it 

learns which parts of the new input are worth using, and saves 

them into its long-term memory [5]. 

 

4. Focusing long-term memory into working memory. 
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Finally, the model needs to learn which parts of its long-term 

memory are immediately useful. For example, Bob's age may 

be a useful piece of information to keep in the long term 

(children are more likely to be crawling, adults are more likely 

to be working), but is probably irrelevant if he's not in the 

current scene. So instead of using the full long-term memory 

all the time, it learns which parts to focus on instead [5]. 

 

This, then, is a long short-term memory network. Whereas an 

RNN can overwrite its memory at each time step in a fairly 

uncontrolled fashion, an LSTM transforms its memory in a 

very precise way: by using specific learning mechanisms for 

which pieces of information to remember, which to update, 

and which to pay attention to. This helps it keep track of 

information over longer periods of time [5]. 

 

 
 

Fig. 17 Recursive neural networks applied on a sentence for 

sentiment classification at every node of a parse tree and capturing 

the negation and its scope in this sentence [4]. 

 

2. seq2seq: 

 

It is a general end-to-end approach used in conversational   

applications to sequence learning that makes minimal 

assumptions on the sequence structure. The method uses a 

multilayered Long Short-Term Memory (LSTM) to map the 

input sequence to a vector of a fixed dimensionality, and 

then another deep LSTM to decode the target sequence from 

the vector. 

   
Fig. 18 Seq2Seq Learning and Neural Conversational Model 

 

 

 

B. Deep Neural Networks: 

 

In this section, we review recent research on achieving this 

goal with variational auto encoders (VAEs) and generative 

adversarial networks (GANs) [6]. Standard sentence auto 

encoders, as in the last section, do not impose any constraint 

on the latent space, as a result, they fail when generating 

realistic sentences from arbitrary latent representations [6]. 

 

The representations of these sentences may often occupy a 

small region in the hidden space and most of regions in the 

hidden space do not necessarily map to a realistic sentence [6]. 

 

They cannot be used to assign probabilities to sentences or to 

sample novel sentences. The VAE imposes a prior distribution 

on the hidden code space which makes it possible to draw 

proper samples from the model [6]. 

 

It modifies the auto encoder architecture by replacing the 

deterministic encoder function with a learned posterior. 

 

 
 

Fig. 19  RNN-based VAE for sentence generation  
(Figure source: Bowman et al. [6]). 

 

 

Smart Compose, a neural network based model for 

composing email is a new feature in Gmail that uses machine   

learning to interactively offer sentence completion 

suggestions as you type, allowing you to draft emails faster 

[1].  

 

Building upon technology developed for Smart Reply, Smart 

Compose offers a new way to help you compose messages — 

whether you are responding to an incoming email or drafting 

a new one from scratch [1]. 

 

It uses a combination a BoW model with an RNN-LM, which 

is faster than the seq2seq models with only a slight sacrifice 

to model prediction quality. In this hybrid approach, we 

encode the subject and previous email by averaging the word 

embeddings in each field [1]. 

 

It is then joined with averaged embeddings, and feeded to the 

target sequence RNN-LM at every decoding step, as the 

model diagram below shows [1]. 

 
  Fig 20  RNN-LM model architecture [1] 
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Subject and previous email message are encoded by 

averaging the word embeddings in each field. The averaged 

embeddings are then fed to the RNN-LM at each decoding 

step [1]. 
 

C. Transfer Learning: 

 

Transfer Learning, a process of re-using the existing or pre-

trained information for a current research is very popular in the 

field of Deep Learning. It can be used to train deep neural 

networks with comparatively less amount of data. This is very 

useful since most real-world problems typically do not have 

millions of labelled data points to train such complex models.  

 

Recently, deep neural networks are emerging as the prevailing 

technical solution to almost every field in NLP. Although 

capable of learning highly nonlinear features, deep neural 

networks are very prone to overfitting, compared with 

traditional methods and therefore becomes even more 

important. Fortunately, neural networks can be trained in a 

transferable way by their incremental learning nature. 

 

We can directly use trained (tuned) parameters from a source 

task to initialize the network in the target task. Alternatively, 

we may also train two tasks simultaneously with some 

parameters shared. 

 

As neural networks are usually trained incrementally with 

gradient descent (or variants), it is steadfast to use gradient 

information in both source and target domains for 

optimization so as to accomplish knowledge transfer [7]. 

 

 

 
 

Fig. 21 Transfer model T-A: used for cross-domain transfer where label 
mapping is possible.: “Char NN” denotes character-level neural networks, 

“Word NN” denotes word-level neural networks, “Char Emb” and “Word 

Emb” refer to character embeddings and word embeddings respectively. [8] 

Depending on how samples in source and target domains are 

scheduled, there are two main approaches to neural network-

based transfer learning, MULT (Multi-task learning) and INIT. 

But their performance depends on the below factors.  

 

Whether a neural network is transferable in NLP depends 

largely on how semantically similar the tasks are, which is 

different from the consensus in image processing [7]. 

 

The output layer is mainly specific to the dataset and not 

transferable. Word embeddings are likely to be transferable to 

semantically different tasks [7].  

 

Transfer Learning is used widely in computer vision because 

training the systems is in-evident 

 

VIII. TRAINING 

 

The goal of the training is to minimize the total loss of model, 

but for evaluating model performance, we only look the loss 

of the main output. 
 

 
         Fig. 22 Process involved in attaining a accurate model 

 

 

It’s crucial to train the model the with configurable parameters 

like number of training data to be considered and number of 

epochs, the model is trained in epochs, where the model sees 

all the input data at least once to determine the probability of 

the class of the query. 

The number of epochs varies depending on the quality of 

dataset and has to be experimented number of times to finalise 

a model. 

 

The steps involved in modelling, however, vary greatly, 

depending on the nature of the task you have defined for 

yourself. Essentially, the goal of designing a good model of 

the phenomenon (task) is that this is where you start for 

designing the features that go into your learning algorithm. 

The better the features, the better the performance of the 

algorithm. 
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To determine how well a natural language processing system 

performs, you also need labelled data. So the annotated texts 

are usually divided into 3 subsets: 

 

A. Training Set: 

 

 Data used to train the ML algorithm. The developer may 

also look at this data to help design the system. This is 

usually the largest subset. 

 

B. Tuning Set: 

 

Data set aside to assess how well the program performs on 

unseen data and/or to set parameters. Helps to minimize 

overfitting. 

 

C. Test Set: 

 

 Data set aside to perform a final evaluation of how well 

the program performs on new data. The developer should 

never look at these data. 

 

          Fig. 23  Parameters to be considered for computing accuracy 

 
 

Annotated Training: 

  

Machine Learning Models can be improvised and attained 

using interactive mode of building it. Prodigy provides you 

with an interface to do it with ease. Public research datasets 

used for benchmarking the performance of natural language 

processing and computer vision algorithms are labelled by 

visually training it using an interface. This makes the process 

of training the model using unstructured data more insightful. 

  

Although most of the services for conversational agents 

offered by cloud providers have the interface for training and 

defining the models and entities respectively, Open source 

tools don’t extend a visual interface to train the models. The 

below tool allows the data engineers to annotate data using an 

interface. 

 

 

Prodigy: 

 

Prodigy is an annotation tool so efficient that data scientists 

can do the annotation themselves, enabling a new level of 

rapid iteration. Whether you're working on entity recognition, 

intent detection or image classification, Prodigy can help you 

train and evaluate your models faster. Stream in your own 

examples or real-world data from live APIs, update your 

model in real-time and chain models together to build more 

complex systems. (https://prodi.gy/) [12]. 

 

It can be used to extend the pre-trained models and also helps 

in annotating the data from image segmentation and object 

detection. The trained model can be exported as a versioned 

python package for deployment in production. 

 

Prodigy fabricates the model building and testing process less 

enervated using reinforcement learning. 

 

An example of training a model using prodigy can be found in 

(https://prodi.gy/demo?view_id=ner). 

 

IX. CONCLUSION 

 

This paper evinces approaches experimented in the industry 

for tasks involved in information retrieval from parsing to part 

of the speech tagging, classification, machine translation, 

transfer learning, question and answering systems and auto 

summarisation using natural language processing and deep 

learning. It also explains recent advancements in the research 

areas of information retrieval. 
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