
International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 117

Accelerating Information Retrieval using Natural Language

Processing
Vignesh Venkatesh
Software Engineer II

Verizon – India

ABSTRACT
A pivotal aspect that stimulates an artificial intelligence application more effectuate is having the ability to understand the

intent and presenting the relevant results which plays an imperative role in information retrieval. This paper shows various

effective approaches in every layer of Information Retrieval using Natural Language Processing inclined towards higher

accuracy and inference and a study of recent advancements in the field of Information Retrieval using Word Embeddings,

Machine Learning, Deep Learning and Neural Networks. These approaches apply to natural language understanding, natural

language generation, machine translation, feature extraction, image captioning and transfer learning.

Keywords :— Information Extraction, Information Retrieval, Natural Language Processing, Deep Learning, Artificial

Intelligence, Knowledge Representation, Machine Learning.

I. INTRODUCTION

Natural Language Processing is used for building systems

that can understand language and Machine Learning is used

for building systems that can learn from experience. In this

paper we explain the process involved in building these

systems that help solving the problems ranging from text

classification, sentiment analysis, auto summarisation,

cognitive search, machine translation, conference resolution,

question and answering, conversational agents to advanced

systems that are intersection of computer vision and natural

language processing like image captioning, visual question

and answering.

Recently, the approach to build such systems has gone far

beyond using information retrieval techniques to machine

learning and deep learning which are highly insightful than a

usual rule based model or binary retrieval model.

In order to build such systems, we need labelled data, which

consists of documents and their proportionate categories, tags

or topics.

Most of the NLP problems relate to classification except

dialog systems that use natural language interaction that are

built using modern neural network based sequence to

sequence approach.

The purpose of text classification is to assign documents that

contain unstructured data to one or multiple categories. Such

categories can be logs, reviews about a product or the

language in which the document was typed or any data that is

unstructured and need to be analysed.

Accuracy of these systems are proportionate to training data.

Here, we suggest approaches which apply to all layers starting

from automatic speech recognition, natural entity recognition,

natural language understanding, natural language generation

to most recent advancements such as question and answering

systems, text summarisation.

Fig. 1 Layers involved in Information Retrieval using Natural
Language Processing and Natural Language Understanding.

II. DATA PREPARATION

Data preparation covers an array of operations, data scientists

will use to get their data into a form more appropriate for what

they want to do with it.

Training data depends on the use case of the application and it

requires datasets that can be reused or custom datasets that has

to be prepared for specific type of applications such as

conversational agents for conference resolutions or processing

and clustering unstructured data into meaningful information

using classification.

If you need specialized, custom training data like

conversations with some unique specifics for training a chat

bot, you would need to create that yourself.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 118

For annotating/generating your own training data, a script to

expand the grammar file generated using JSGF can be used.

The Java Speech Grammar Format (JSGF) defines a platform-

independent, vendor-independent way of describing one type

of grammar, a rule grammar (also known as a command and

control grammar or regular grammar). It uses a textual

representation that is readable and editable by both developers

and computers, and can be included in source code.

A rule grammar specifies the types of utterances a user might

say (a spoken utterance is similar to a written sentence). For

example, a simple window control grammar might listen for

"open a file", "close the window", and similar commands.

What the user can say depends upon the context is the user

controlling an email application, reading a credit card number,

or selecting a font. Applications know the context, so

applications are responsible for providing a speech recognizer

with appropriate grammars.

The following is the specification for the java speech grammar

format. The grammar header declares the grammar name and

lists the imported rules and grammars.

The grammar body defines the rules of this grammar as

combinations of utterable text and references to other rules.

The examples of grammar declarations are provided below.

Fig. 2 Text generation using JSpeech Format

III. DATA PRE PROCESSING

Data Pre-processing is a technique that is used to convert the

raw data into a clean data set. In other words, whenever the

data is gathered from different sources it is collected in raw

format which is not feasible for the classification.

The dataset should be formatted in such a way that more than

one machine learning and deep learning algorithms are

executed in one data set, and best out of them can be chosen.

Most commonly used pre-processing techniques are data

cleaning, data annotation, data transformation, missing value

imputation, encoding categorical variables, scaling and

normalization.

A. Data Cleaning:

The process of cleaning the data involves removal of stop

words that have no meaningful information that can be used

for entity recognition and data classification.

B. Data Integration:

This process is applicable for information derived from

multiple data sources are utilised for classification. The main

purpose is to maintain consistency and remove redundant data

from being used for returning the results.

C. Data Transformation:

This process involves normalizing, aggregating and generalize

the data by converting the data by parsing, stemming and

lemmatization. The goal of both stemming and lemmatization

is to reduce inflectional forms and sometimes derivationally

related forms of a word to a common base form.

Parser is an algorithm for analysing the query in a grammar

structure and it establishes the relationship between the words.

Parsers play a vital role in many applications such as opinion

mining, information extraction, machine translation, question

answering. The dependencies derived from the parser can be

used to improve the grammar of the sentence.

A popular method for dependency parsing is transition-based

parsing and it derives a dependency parse tree by determining

a transition sequence from an initial configuration to some

terminal configuration. The most probable transition is chosen

at every step of parsing based on the current configuration

available to the parser.

Stanford Dependency Parser and spacy parser, the fastest and

accurate parsers available are transition-based which produce

typed dependency parses of natural language sentences. The

parsers are powered by a neural network which accepts word

embedding inputs from pre-trained models. An example of

parsing a sentence using a transition based parser is shown

below,

 Fig. 3 Transition based parsing

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 119

Missing Data is common in all research, and below are the

ways to impute the missing data,

Mean Value: Replace the missing value with the mean value

for the particular feature.

Regression Substitution: The missing value can be replaced

with the historical value from similar data.

Matching Imputation: Each missing value y can be substituted

with the value x by determining the similar values or co-

occurrence of the values in the data.

Maximum Likelihood is also used to find the missing data.

Deep learning models, work with missing data better than

other approaches.

D. Data Reduction:

This process involves tasks that tend to reduce the

dimensionality of the data and removing information that have

less influence on the classification, which results in the data

set to be a reduced form.

The size of the resultant dataset becomes smaller after pre-

processing thus, enhancing the precision of the data to draw

meaningful insights.

 Fig. 4 Phases involved in Data Pre-Processing

The structured data sets are high dimensional i.e. large rows

and columns. In a way, text expands the universe of data

manifolds. Hence, to avoid long training time, you should be

careful in algorithm that scales for text data analysis.

IV. DATA REPRESENTATION

Data Representation involves representing data in an

appropriate form for the machine learning algorithms.

Text cannot be used as an input to machine learning

algorithms, text must be tokenized and the words need to be

encoded as integers or floating point values for use as input to

a machine learning algorithm.

Modern machine learning algorithms represent words as

vectors, which can be used to find semantics and analogies of

the input query. The vectors can be binary, multinomial, or

continuous. This improves the performance of the text

classifiers. In text classification, each document is considered

as an “input” and a class label is the “output” of the algorithm.

Query Expansion plays a vital role in text classification and

similarity functions. Queries can be expanded by estimating

the distance between the word vectors and it expands the

query to more number of instances.

The following techniques have pre-trained vectors which aims

at enhancing the process of the understanding the query in

different context.

A. Bag of Words:

A simple and effective model for text documents in machine

learning is called the Bag-of-Words Model, or BoW. It

exhibits the order of information in the words and focuses on

the occurrence of words in a document.

This can be done by assigning each word a unique number.

Then any document can be encoded as a fixed-length vector

with the length of the vocabulary of known words. The value

in each position in the vector could be filled with a count or

frequency of each word in the encoded document.

This model is concerned with encoding schemes that represent

what words are present or the degree to which they are present

in encoded documents without any information about order.

There are many ways to extend this simple method, both by

better clarifying what a “word” is and in defining what to

encode about each word in the vector.

Things got much easier with recurrent neural networks and

recursive neural networks. With them, you can shift the focus

from representing entire sentences and paragraphs as vectors

and instead treat them by dealing with individual words

iteratively or recursively. You can use an actual tree of word

embeddings as a representation.

B. GloVe:

Global Vectors, is a model for distributed word representation.

The model is an unsupervised learning algorithm for obtaining

vector representations for words.

Training is performed on aggregated global word-word co-

occurrence statistics from a corpus, and the resulting

representations showcase interesting linear substructures of

the word vector space.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 120

Fig. 5 Co-occurrence probabilities for target words ice and steam with
selected context words from a 6 billion token corpus. Only in the ratio

does noise from non-discriminative words like water and fashion

(https://nlp.stanford.edu/)

C. fastText:

Fast text is a Library for efficient text classification and

representation learning of word embeddings created by

Facebook's AI Research (FAIR) lab.

The skipgram model learns to predict a target word thanks to a

nearby word. On the other hand, the c-bow model predicts the

target word according to its context and it is represented as a

bag of the words contained in a fixed size window around the

target word. The model is an unsupervised learning algorithm

for obtaining vector representations for words.

Facebook makes available pre-trained models for 294

languages.

The most important parameters of the model are its dimension

and the range of size for the sub-words. The dimension (dim)

controls the size of the vectors, the larger they are the more

information they can capture but requires more data to be

learned.

D. Word2Vec:

Word2vec is a computationally-efficient predictive model in

learning the meaning behind the words. It supports

Continuous Bag-of-Words model (CBOW) and the Skip-

Gram model.

Algorithmically, these models are similar, except that CBOW

predicts target words from source context words, while the

skip-gram does the inverse and predicts source context-words

from the target words. This inversion might seem like an

arbitrary choice, but statistically it has the effect that CBOW

over a lot of the distributional information (by treating an

entire context as one observation) [14].

For the most part, this turns out to be a useful thing for smaller

datasets. However, skip-gram treats each context-target pair as

a new observation, and this tends to do better when we have

larger datasets.

 Fig. 6Vectors Projected using PCA [14]

Word2vec word vector representations and t-SNE

dimensionality reduction can be used to provide a bird’s-eye

view of different text sources, including text summaries and

their source material. This enables users to explore a text

source like a geographical map [14].

For all unique non-frequent words, the vector representation

of words are collected from the word2vec model from the

gensim Python library. Each word is represented by an N-

dimensional vector [14].

Word2vec uses distributed representations of text to capture

similarities among concepts. For example, it understands that

Paris and France are related the same way Berlin and

Germany are (capital and country), and not the same way

Madrid and Italy are. This chart shows how well it can learn

the concept of capital cities, just by reading lots of news

articles -- with no human supervision [1].

This has a very broad range of potential applications:

knowledge representation and extraction; machine translation;

question answering, conversational systems, and many others.

E. Visualizing Embeddings:

Google AI Research has open sourced the tool for visualizing

the high dimensional data. The data needed to train machine

learning systems comes in a form that computers don't

immediately understand. To translate the things we understand

naturally (e.g. words, sounds, or videos) to a form that the

algorithms can process, we use embeddings, a mathematical

vector representation that captures different facets

(dimensions) of the data [1].

With the Embedding Projector, you can navigate through

views of data in either a 2D or a 3D mode, zooming, rotating,

and panning using natural click-and-drag gestures.

PCA is effective at exploring the internal structure of the

embeddings, revealing the most influential dimensions in the

http://www.ijcstjournal.org/
https://nlp.stanford.edu/sentiment/treebank.html

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 121

data. t-SNE, on the other hand, is useful for exploring local

neighborhoods and finding clusters, allowing developers to

make sure that an embedding preserves the meaning in the

data (e.g. in the MNIST dataset, seeing that the same digits are

clustered together).

Custom linear projections can help discover meaningful

"directions" in data sets - such as the distinction between a

formal and casual tone in a language generation model which

would allow the design of more adaptable ML systems [1].

The words visualised are represented using the Vectors from

Word2Vec 10K dataset. The standalone projector provides the

option to visualize the word embedding using t-SNE, PCA. It

can also be customised to compare the vectors in a linear

projection. These embeddings can also be visualized by

projecting a 3-D text scatter plot using t-sne and textscatter.

The clusters can be visualized using a 2-D t-SNE data

coordinates.

WordCloud (MATLAB) function adds support for creating

word clouds directly from string arrays, and creating word

clouds from bag-of-words models and LDA topics.

Below is a figure showing the nearest points to the embedding

for a word after training a TensorFlow model using the

Word2Vec [1].

The below image represents the word embeddings and nearest

points to the word “Research” and clusters of words using

10000 points plotted in 200 dimensions in google’s standalone

word embedding projector (http://projector.tensorflow.org/).

 Fig. 7 Visualizing the word embeddings using PCA.

Fig. 8 Visualizing the word embeddings using t-SNE.

V. FEATURE EXTRACTION

Although there are number of NER systems available, MITIE

from MIT and spacy NER from explosion.ai work on vectors

and achieved higher accuracy for named entity recognition at

a large scale.

A. MITIE :

MITIE (https://github.com/mit-nlp/MITIE) uses Structural

SVM to perform named entity classification [13]. It is a C++

library that provides APIs in C, C++, Java, R and Python (2.7).

It is open-source and has been proven to be in par with

Stanford NLP on the Name Entity Recognition task using the

CoNLL 2003 corpus (testb). MITIE displayed an F1 score of

88.10% while Stanford NLP 86.31% (https://github.com/mit-

nlp/MITIE/wiki/Evaluation).

It is also fast in comparison to other models that attempt to

solve the task of named entity recognition. MITIE chunks

each sentence into entities and each entity is labelled by a

multi-class classifier. In order to classify each chunk, MITIE

creates 500K dimensional vector which is the input to the

multi-class classifier. The classifier learns one linear function

for each class plus one for the “not an entity class” [13].

The feature extraction source code can be found in the

ner__feature_extraction.cpp file (https://github.com/mit-

nlp/MITIE/blob/master/mitielib/src/ner_feature_extraction.cp

p). It uses the Dlib toolkit(https://dlib.net/) which is used in

C++ for machine learning[13].

http://www.ijcstjournal.org/
http://projector.tensorflow.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 122

Fig 9 Performance Comparison of various open source libraries

providing NER [13].

If one has defined N classes, the classifier has 500K*(N+1)

values to learn [13].

B. spaCy NER :

spaCy is a complete NLP toolkit written in Python (Cython)

(https://github.com/explosion/spaCy).

Many Independent Researchers have confirmed that spaCy is

the fastest in the industry.

spaCy is proficient in extracting information at a large scale

and scales extremely apex for applications such as search

engines, translation systems and applications on the conduct

of seq2seq approach.

spaCy features an extremely fast statistical entity recognition

system and it assigns labels to spans of tokens and has built in

visualizers for determining syntax and NER. Depending on

the scale of the application it has models for NER ranging

from small, medium and large.

The pre-trained models can be updated to support custom

representation of data. The models contain the pre trained

vector representation that enhance the entity recognition

process. It can recognise various types of named entities in a

document, by asking the model for a prediction.

spaCy v2.0 features new neural models for tagging, parsing

and entity recognition.

C. VW Learning2Search:

John Langford (Microsoft Research) and Hal Daume III

(University of Maryland) presented the Learning2Search [2]

approach in their tutorial in “Advances in Structured

Prediction” in ICML2015 (https://hunch.net/~l2s/merged.pdf).

Learning to search method for solving complex joint

prediction problems based on learning to search through a

problem-defined search space [2].

The major difference of the learning2search (L2S) to the rest

of models used in the state-of-the-art is on the way it

approaches the task of structured prediction [2].

The majority of the state-of-the-art approaches can be

characterised as “global models”, having the advantage that

they have clean underlying semantics and the disadvantage

that they are computationally costly and introduce difficulties

in the implementation. On the other hand, L2S treats the

problem as a sequential decision making process [2].

Sequential decision making approaches have been recently

used in dependency parsing.

The goal for Learning2Search was to create a model that has

the following characteristics:

1. Lower programming complexity.

2. Good prediction accuracy.

3. Efficiency in terms of both train and test speed.

The following graph displays a comparison in terms of lines

of code between Conditional Random Field approaches

(CRFSGD, CRF++) and Structured SVM (S-SVM) and

Learning2Search [2].

Fig. 10 Programming Complexity of L2S VS State-of-the-art [2]

The following graph displays a comparison in terms of

accuracy and training time between Conditional Random

Field approaches (CRFSGD, CRF++), Structured

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 123

Perceptron(https://en.wikipedia.org/wiki/Structured_predic

tion), Structured SVM (S-SVM) and Learning2Search [2].

Fig. 11 Training time and accuracy of L2S VS State-of-the-art [2]

Fig. 12 Training time and accuracy of L2S VS State-of-the-art [2]

From the above mentioned analysis, Learning2Search was the

best model. Structured SVM based MITIE also performed

better than the traditional methods for feature extraction and

classification.

VI. CLASSIFICATION

Classification can be categorised as binary classification,

multi-class classification and multi-label classification or

clustering. Traditional classification methods were labelled

manually, or rule based or statistical based. These methods

had limitations of maintaining it and required high

computational resources for building these systems and the

process was expensive.

Accuracy of classification depends on the algorithm used to

train and build a model. Binary or Boolean models are

commonly used for exact matches and partial matches. They

work based on (AND, OR, NOT) operators for the given

query.

Vector space models can be used for extending it to semantic

searches. Vector based models project the query in n

dimensions, and similarity can be calculated based on the

distance between the vector representations, which increases

the performance of the classification.

Supervised Learning Unsupervised Learning

Logistic Regression Clustering

Naïve Bayes Hidden Markov Model

Stochastic Gradient

Descent

K-Nearest Neighbours

Decision Trees

Random Forest

Support Vector Machines

 Table. 1 Classification algorithms

The above table explains the classification algorithms

categorised as supervised and unsupervised and are explained

below,

A. Supervised Learning:

1. Logistic Regression:

Logistic Regression is part of a larger class of algorithms

known as Generalized Linear Model (glm) and it predicts a

binary outcome for a given set of independent variables using

probability of occurrence of an event by fitting data to a

logistic function.

The fundamental equation of generalized linear model is:

g(E(y)) = α + βx1 + γx2

In the above equation, g() is the link function, E(y) is the

expectation of target variable and α + βx1 + γx2 is the linear

predictor (α,β,γ to be predicted). The role of link function is

to ‘link’ the expectation of y to linear predictor.

For measuring the performance of a logistic regression model,

Akaike information criteria, residual deviance, confusion

matrix, ROC Curve, and likelihood function can be used.

2. Naïve Bayes:

Naïve Bayes represents a supervised learning method as well

as a statistical method for classification and is highly scalable.

It uses the Bayes Theorem. It predicts membership

probabilities for each class such as the probability that given

record or data point belongs to a particular class. The class

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 124

with the highest probability is considered as the most likely

class. This is also known as Maximum A Posteriori (MAP).

Types of Naïve Bayes Algorithms are,

Gaussian Naive Bayes:

When attribute values are continuous, an assumption is made

that the values associated with each class are distributed

according to Gaussian i.e., Normal Distribution.

Multinomial Naive Bayes:

Multinomial Naive Bayes is preferred to use on data that is

multinomially distributed. It is one of the standard classic

algorithms which is used in text classification. Each event in

text classification represents the occurrence of a word in a

document.

Bernoulli Naive Bayes:

Bernoulli Naive Bayes is used on the data that is distributed

according to multivariate Bernoulli distributions, multiple

features can be there, but each one is assumed to be a binary

valued (Bernoulli, boolean) variable. So, it requires features to

be binary valued.

3. Stochastic Gradient Descent:

Stochastic gradient descent is a simple and very efficient

approach to fit linear models. It is particularly useful when the

number of samples is very large. It supports different loss

functions and penalties for classification.

In gradient descent, a batch is the total number of examples

you use to calculate the gradient in a single iteration. So far,

we've assumed that the batch has been the entire data set. The

term "stochastic" indicates that the one example comprising

each batch is chosen at random.

4. K-Nearest Neighbours:

K-Nearest neighbours can be used for both classification and

regression tasks. It is a non-parametric. The model structure is

determined from the data and is suitable for distributed data.

The output of this classification algorithm is determined by

the number of data points or neighbours nearer to the data.

The Implementation of the algorithm involves the following

steps,

1. Load the input data.

2. Initialise the value of k.

3. Iterate from 1 to total number of training data points.

4. Calculate the distance between test data and each row

of training data using distance between the data

points and sort the calculated distances in ascending

order based on distance values.

5. Get top k rows from the sorted array.

6. Get the most frequent class of these rows.

7. Return the determined class.

5. Decision Trees:

It works for both categorical and continuous input and output

variables. In this technique. the sample is split into two or

more homogeneous sets based on most significant

differentiator in input variables.

Decision trees are also nonparametric because they do not

require assumptions about the distribution of the variables in

each class. Decision trees can be of two types,

Categorical Variable Decision Tree: Decision Tree which

has categorical target variable then it called as categorical

variable decision tree.

Continuous Variable Decision Tree: Decision Tree has

continuous target variable then it is called as Continuous

Variable Decision Tree.

The decision of making strategic splits heavily affects a tree’s

accuracy. gini Index, chi-square, information gain and

reduction in variance are the algorithms used in decision trees.

The following image describes the visualisation of

classification using decision trees.

 Fig. 13. Visualisation of Classification using decision trees

6. Random Forest:

Random Forest, an ensembled algorithm and versatile

machine learning method is capable of performing both

regression and classification tasks. Ensembled algorithms are

those which combines more than one algorithms of same or

different kind for classifying objects. For example, running

prediction over Naive Bayes, SVM and Decision Tree and

then taking vote for final consideration of class for test object.

The most important tuning parameters to be considered for

high performance are as follows,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 125

max_features: these are the maximum number of features

random forest is allowed to try in individual tree.

n_estimators: If you have built a decision tree before, you can

appreciate the importance of minimum sample leaf size. Leaf

is the end node of a decision tree. A smaller leaf makes the

model more prone to capturing noise in train data. Generally a

minimum leaf size of more than 50 is preffered. However,

multiple leaf sizes should be tried to find the most optimum.

n_jobs, random_state, oob_score are the other parameters to

be considered for tuning the performance of the model.

7. Support Vector Machines:

Support Vector Machine (SVM) is an algorithm defined by a

separating hyperplane. The algorithm outputs an optimal

hyperplane which categorizes new examples using the trained

labelled data. The Hyperplane is a line dividing the plane in a

two dimensional space. Kernel, Regularization, Gamma and

Margin are the tuning parameters and are described below.

Regularization:

The Regularization parameter tells the SVM optimization how

much you want to avoid misclassifying each training example.

For large values of parameter, the optimization will choose a

smaller margin hyperplane if that hyperplane does a better job

of getting all the training points classified correctly.

Conversely, a very small value of parameter will cause the

optimizer to look for a larger margin separating hyperplane,

even if that hyperplane misclassifies more points.

Kernel:

The learning of the hyperplane in linear SVM is done by

transforming the problem using linear algebra. This is where

the kernel plays role.

For linear kernel the equation for prediction for a new input

using the dot product between the input (x) and each support

vector (xi) is calculated as follows:

 f(x) = B(0) + sum(ai * (x,xi))

This is an equation that involves calculating the inner products

of a new input vector (x) with all support vectors in training

data. The coefficients B0 and ai (for each input) must be

estimated from the training data by the learning algorithm.

Gamma:

The gamma parameter defines how far the influence of a

single training example reaches, with low values meaning

‘far’ and high values meaning ‘close’. In other words, with

low gamma, points far away from plausible seperation line are

considered in calculation for the seperation line where as high

gamma means the points close to plausible line are considered

in calculation.

Margin:

A margin is a separation of line to the closest class points. A

good margin is one where this separation is larger for both the

classes. A good margin allows the points to be in their

respective classes without crossing to other class.

B. Unsupervised Learning :

In unsupervised learning, the model is not provided with the

correct results during the training. It can be used to cluster the

input data in classes on the basis of their statistical properties.

The labelling can be carried out even if the labels are only

available for a small number of objects representative of the

desired classes and it should be able to generalize and give the

correct results when new data are given in input without

knowing a prior the target.

The construction of a proper training, validation and test set is

crucial for increasing the performance of the algorithm.

1. Clustering:

K - means :

k-means clustering is a method of vector quantization,

originally derived from signal processing, that is popular for

cluster analysis in data mining.

It aims to partition n observations into k clusters in which

each observation belongs to the cluster with the nearest mean,

serving as a prototype of the cluster. It is easy to implement

and apply even on large data sets.

It has been successfully used in various topics, including

market segmentation, computer vision, astronomy and

agriculture. It often is used as a pre-processing step for other

algorithms [16].

A balance between two variables, the number of clusters and

the average variance of the clusters are determined. Learning

rate, neighbourhood, radius are some of the parameters to be

considered.

k-means and k-medoids clustering partitions data into k

number of mutually exclusive clusters. These techniques

assign each observation to a cluster by minimizing the

distance from the data point to the mean or median location of

its assigned cluster, respectively.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 126

The below image describes the visualization of data clusters

using k-means.

 Fig. 14 Clustering using k-means algorithm

Hierarchial Clustering:

Hierarchical clustering (also called hierarchical cluster

analysis or HCA) is a method of cluster analysis which seeks

to build a hierarchy of clusters. Strategies for hierarchical

clustering generally fall into two types,

Agglomerative: This is a "bottom up" approach, each

observation starts in its own cluster, and pairs of clusters are

merged as one moves up the hierarchy.

Divisive: This is a "top down" approach, all observations start

in one cluster, and splits are performed recursively as one

moves down the hierarchy [15].

The decision on which clusters to be combined or split is

determined by the distance between the sets of observations of

the data using dissimilarity functions. Commonly used

functions for distance metrics are euclidean distance, squared

euclidean distance, manhattan distance, maximum distance,

mahalanobis distance.

2. Hidden Markov Models:

Markov processes are examples of stochastic processes that

generate random sequences of outcomes or states according to

certain probabilities. Markov processes are distinguished by

their next state depends only on their current state. Hidden

Markov Models (HMM) seek to recover the sequence of states

that generated a given set of observed data.

C. Similarity :

People would be surprised by the time that actually takes

working in a machine learning project doing the actual core

machine learning.

Process like collecting data, integration of data, cleaning data

and pre-processing the data consumes a significant amount of

time and it forecasts the amount of trial and error that have

been involved in the feature design.

Also, machine learning is not considered to be a one step

process of preparing a data set and running a machine learning

algorithm on the data set. It is considered as an iterative

process which involves reviewing the results, altering the data,

and re-iterating it. Learning takes less amount of time in this

process as re-iteration makes it well versed.

Feature engineering is more difficult because it’s domain-

specific, while learners can be largely general-purpose.

However, there is no sharp frontier between the two, and this

is another reason the most useful learners are those that

facilitate incorporating knowledge. Of course, one of the holy

grails of machine learning is to automate more and more of

the feature engineering process.

One way this is often done today is by automatically

generating large numbers of candidate features and selecting

the best by (say) their information gain with respect to the

class. But bear in mind that features that look irrelevant in

isolation may be relevant in combination.

For example, if the class is an XOR of k input features, each

of them by itself carries no information about the class. (If you

want to annoy machine learners, bring up XOR.) On the other

hand, running a learner with a very large number of features to

find out which ones are useful in combination may be too

time-consuming, or cause overfitting. So there is ultimately no

replacement for the smarts you put into feature engineering.

Below is the list of popular feature engineering methods used:

1. n-grams: In a given document, a word that occurs solely

like (Person’s name, Place name) is 1 gram and likewise can

contain (Person’s name and Description, Place name and

Description) a bi-gram. The idea behind this technique is to

explore the chances that when one or two or more words

occurs together gives more information to the model.

2. TF – IDF: It is also known as Term Frequency - Inverse

Document Frequency. This technique believes that, from a

document corpus, a learning algorithm gets more information

from the rarely occurring terms than frequently occurring

terms. Using a weighted scheme, this technique helps to score

the importance of terms. The terms occurring frequently are

weighted lower and the terms occurring rarely get weighted

higher. * TF is be calculated as: frequency of a term in a

document / all the terms in the document. * IDF is calculated

as: ratio of log (total documents in the corpus / number of

documents with the 'term' in the corpus) * Finally, TF-IDF is

calculated as: TF X IDF.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 127

3. Cosine Similarity: This measure helps to find similar

documents. It's one of the commonly used distance metric

used in text analysis. For a given 2 vectors A and B of length

n each, cosine similarity can be calculated as a dot product of

two unit vectors.

4. Jaccard Similarity: This is another distance metric used

in text analysis. For a given two vectors (A and B), it can be

calculated as ratio of (terms which are available in both

vectors / terms which are available in either of the vectors).

It's formula is: (A ∩ B)/(A U B). To create features using

distance metrics, first we'll create cluster of similar documents

and assign a unique label to each document in a new column.

5. Levenshtein Distance: It creates a new feature based on

distance between two strings. It finds the shorter string in

longer texts and returns the maximum value as 1 if both the

shorter string is found. For example: Calculating levenshtein

distance for string "Mountain View 41" and "1st Block,

Mountain View 41" will result in 1.

6. Feature Hashing: This technique implements the

'hashing trick' which helps in reducing the dimension of

document matrix (lesser columns). It doesn't use the actual

data, instead it uses the indexes[i,j] of the data, thus it

processes data only when needed. And, that's why it takes

lesser memory in computation.

7. Vector Space Model: This model converts the document

or query to a vector in an ‘n’ dimensional space. Every

dimension represents the tf-idf for the particular term. It

outperforms in identifying semantically similar information in

the documents using word2vec, which has the vectors

projected for words to calculate similarity between documents.

VII. ADVANCEMENTS IN INFORMATION

RETRIEVAL

Natural Language Processing employs computational

techniques for the purpose of learning, understanding, and

producing human language content.

Early computational approaches to language research focused

on automating the analysis of the linguistic structure of

language and developing basic technologies such as machine

translation, speech recognition, and speech synthesis.

Researchers refine and make use of such tools in real-world

applications, creating spoken dialogue systems and speech-to-

speech translation engines, mining social media for

information about health or finance, and identifying sentiment

and emotion toward products and services.

This paper discusses successes and challenges in this rapidly

advancing area.

1. Computational Graph:

Wolfram Alpha is a computational knowledge

engine or answer engine developed by Wolfram Alpha LLC, a

subsidiary of Wolfram Research. It is an online service that

answers factual queries directly by computing the answer

from externally sourced "curated data" rather than providing a

list of documents or web pages that might contain the answer

as a search engine might.

On the data front, Wolfram Alpha uses a very large set of data

sources which are verified, tested, and highly structured. The

company takes all that data and ensures that it's structured

again in such a way that it can be "computable," which leads

to the real power of Wolfram Alpha and explains why it's not

simply a search engine or a more reliable version of

Wikipedia.

Wolfram Alpha doesn't just return information, it analyses and

does computation on your inputs and on its own data to

provide "reports" instead of just "answers."

Users will also be able to use images as inputs.

Once an image is uploaded, the engine will provide interactive

reports with histograms, EXIF data, lists of colours with the

HTML identifiers, edge detection, optical character

recognition for text, a few image filters and effects, and a bit

more [9].

A key feature is the ability to upload many common file types

and data including raw tabular data, images, audio, XML, and

dozens of specialized scientific, medical, and mathematical

formats for automatic analysis [9].

Other features include an extended keyboard, interactivity

with CDF, data downloads, in-depth step by step solution, the

ability to customize and save graphical and tabular results and

extra computation time [9].

2. Knowledge Graph:

The Knowledge Graph enables you to search for things,

people or places that Google knows about—landmarks,

celebrities, cities, sports teams, buildings, geographical

features, movies, celestial objects, works of art and more and

instantly get information that’s relevant to your query [10].

It’s Google’s systematic way of putting facts, people and

places together, to create interconnected search results that are

more accurate and relevant [10].

More specifically, the “knowledge graph” is a database that

collects millions of pieces of data about keywords people

frequently search for on the World Wide Web and the intent

behind those keywords, based on the already available content.

http://www.ijcstjournal.org/
https://en.wikipedia.org/wiki/Answer_engine
https://en.wikipedia.org/wiki/Wolfram_Research
https://en.wikipedia.org/wiki/Search_engine

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 128

With the knowledge graph, users can get information about

people, facts and places that are interconnected in one way or

the other as shown in the image below [10].

To make your learning easier, just go to Google and search for

“what is the knowledge graph?” The answer is displayed right

there – and that’s also what the Knowledge Graph does [10].

Fig. 15 Search Results using Knowledge Graph

Some of the potential applications include: semantic search,

automated fraud detection, intelligent chat bots, advanced

drug discovery, dynamic risk analysis, content-based

recommendation engines and knowledge management

systems [10].

3. Deep Learning:

In previous years, Natural Language Processing was

considered extinct from other fields in terms of adopting deep

learning for applications.

Text does not have a spatial feature space suitable for

convolutional nets, nor is it entirely unstructured as it is

already encoded via commonly understood vocabulary, syntax

and grammar rules and other conventions. However, this has

changed over the last few years, thanks to the use of RNNs,

specifically LSTMs, as well as word embeddings.

Deep learning models often require significant amounts of

computational resources, memory and power to train and run,

which presents an obstacle if you want them to perform well

on mobile. Learn2Compress enables custom on-device deep

learning models in Tensor Flow Lite that run efficiently on

mobile devices, without developers having to worry about

optimizing for memory and speed [1].

Fig. 16 Standard machine learning process and deep learning based
process in Natural Language Processing [11].

A. Neural Networks

1. LSTM (Long Short Term Memory):

Two commonly-used variants of the basic LSTM architecture

are the Bidirectional LSTM and the Multilayer LSTM (also

known as the stacked or deep LSTM) [3]. The mechanism

followed in extending LSTM’s are as follows,

1. Adding a forgetting mechanism. If a scene ends, for

example, the model should forget the current scene location,

the time of day, and reset any scene-specific information;

however, if a character dies in the scene, it should continue

remembering that he's no longer alive. Thus, we want the

model to learn a separate forgetting/remembering mechanism:

when new inputs come in, it needs to know which beliefs to

keep or throw away [5].

2. Adding a saving mechanism. When the model sees a new

image, it needs to learn whether any information about the

image is worth using and saving [5].

3. When a new input comes in, the model first forgets any

long-term information it decides it no longer needs. Then it

learns which parts of the new input are worth using, and saves

them into its long-term memory [5].

4. Focusing long-term memory into working memory.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 129

Finally, the model needs to learn which parts of its long-term

memory are immediately useful. For example, Bob's age may

be a useful piece of information to keep in the long term

(children are more likely to be crawling, adults are more likely

to be working), but is probably irrelevant if he's not in the

current scene. So instead of using the full long-term memory

all the time, it learns which parts to focus on instead [5].

This, then, is a long short-term memory network. Whereas an

RNN can overwrite its memory at each time step in a fairly

uncontrolled fashion, an LSTM transforms its memory in a

very precise way: by using specific learning mechanisms for

which pieces of information to remember, which to update,

and which to pay attention to. This helps it keep track of

information over longer periods of time [5].

Fig. 17 Recursive neural networks applied on a sentence for

sentiment classification at every node of a parse tree and capturing

the negation and its scope in this sentence [4].

2. seq2seq:

It is a general end-to-end approach used in conversational

applications to sequence learning that makes minimal

assumptions on the sequence structure. The method uses a

multilayered Long Short-Term Memory (LSTM) to map the

input sequence to a vector of a fixed dimensionality, and

then another deep LSTM to decode the target sequence from

the vector.

Fig. 18 Seq2Seq Learning and Neural Conversational Model

B. Deep Neural Networks:

In this section, we review recent research on achieving this

goal with variational auto encoders (VAEs) and generative

adversarial networks (GANs) [6]. Standard sentence auto

encoders, as in the last section, do not impose any constraint

on the latent space, as a result, they fail when generating

realistic sentences from arbitrary latent representations [6].

The representations of these sentences may often occupy a

small region in the hidden space and most of regions in the

hidden space do not necessarily map to a realistic sentence [6].

They cannot be used to assign probabilities to sentences or to

sample novel sentences. The VAE imposes a prior distribution

on the hidden code space which makes it possible to draw

proper samples from the model [6].

It modifies the auto encoder architecture by replacing the

deterministic encoder function with a learned posterior.

Fig. 19 RNN-based VAE for sentence generation
(Figure source: Bowman et al. [6]).

Smart Compose, a neural network based model for

composing email is a new feature in Gmail that uses machine

learning to interactively offer sentence completion

suggestions as you type, allowing you to draft emails faster

[1].

Building upon technology developed for Smart Reply, Smart

Compose offers a new way to help you compose messages —

whether you are responding to an incoming email or drafting

a new one from scratch [1].

It uses a combination a BoW model with an RNN-LM, which

is faster than the seq2seq models with only a slight sacrifice

to model prediction quality. In this hybrid approach, we

encode the subject and previous email by averaging the word

embeddings in each field [1].

It is then joined with averaged embeddings, and feeded to the

target sequence RNN-LM at every decoding step, as the

model diagram below shows [1].

 Fig 20 RNN-LM model architecture [1]

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 130

Subject and previous email message are encoded by

averaging the word embeddings in each field. The averaged

embeddings are then fed to the RNN-LM at each decoding

step [1].

C. Transfer Learning:

Transfer Learning, a process of re-using the existing or pre-

trained information for a current research is very popular in the

field of Deep Learning. It can be used to train deep neural

networks with comparatively less amount of data. This is very

useful since most real-world problems typically do not have

millions of labelled data points to train such complex models.

Recently, deep neural networks are emerging as the prevailing

technical solution to almost every field in NLP. Although

capable of learning highly nonlinear features, deep neural

networks are very prone to overfitting, compared with

traditional methods and therefore becomes even more

important. Fortunately, neural networks can be trained in a

transferable way by their incremental learning nature.

We can directly use trained (tuned) parameters from a source

task to initialize the network in the target task. Alternatively,

we may also train two tasks simultaneously with some

parameters shared.

As neural networks are usually trained incrementally with

gradient descent (or variants), it is steadfast to use gradient

information in both source and target domains for

optimization so as to accomplish knowledge transfer [7].

Fig. 21 Transfer model T-A: used for cross-domain transfer where label
mapping is possible.: “Char NN” denotes character-level neural networks,

“Word NN” denotes word-level neural networks, “Char Emb” and “Word

Emb” refer to character embeddings and word embeddings respectively. [8]

Depending on how samples in source and target domains are

scheduled, there are two main approaches to neural network-

based transfer learning, MULT (Multi-task learning) and INIT.

But their performance depends on the below factors.

Whether a neural network is transferable in NLP depends

largely on how semantically similar the tasks are, which is

different from the consensus in image processing [7].

The output layer is mainly specific to the dataset and not

transferable. Word embeddings are likely to be transferable to

semantically different tasks [7].

Transfer Learning is used widely in computer vision because

training the systems is in-evident

VIII. TRAINING

The goal of the training is to minimize the total loss of model,

but for evaluating model performance, we only look the loss

of the main output.

 Fig. 22 Process involved in attaining a accurate model

It’s crucial to train the model the with configurable parameters

like number of training data to be considered and number of

epochs, the model is trained in epochs, where the model sees

all the input data at least once to determine the probability of

the class of the query.

The number of epochs varies depending on the quality of

dataset and has to be experimented number of times to finalise

a model.

The steps involved in modelling, however, vary greatly,

depending on the nature of the task you have defined for

yourself. Essentially, the goal of designing a good model of

the phenomenon (task) is that this is where you start for

designing the features that go into your learning algorithm.

The better the features, the better the performance of the

algorithm.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 131

To determine how well a natural language processing system

performs, you also need labelled data. So the annotated texts

are usually divided into 3 subsets:

A. Training Set:

 Data used to train the ML algorithm. The developer may

also look at this data to help design the system. This is

usually the largest subset.

B. Tuning Set:

Data set aside to assess how well the program performs on

unseen data and/or to set parameters. Helps to minimize

overfitting.

C. Test Set:

 Data set aside to perform a final evaluation of how well

the program performs on new data. The developer should

never look at these data.

 Fig. 23 Parameters to be considered for computing accuracy

Annotated Training:

Machine Learning Models can be improvised and attained

using interactive mode of building it. Prodigy provides you

with an interface to do it with ease. Public research datasets

used for benchmarking the performance of natural language

processing and computer vision algorithms are labelled by

visually training it using an interface. This makes the process

of training the model using unstructured data more insightful.

Although most of the services for conversational agents

offered by cloud providers have the interface for training and

defining the models and entities respectively, Open source

tools don’t extend a visual interface to train the models. The

below tool allows the data engineers to annotate data using an

interface.

Prodigy:

Prodigy is an annotation tool so efficient that data scientists

can do the annotation themselves, enabling a new level of

rapid iteration. Whether you're working on entity recognition,

intent detection or image classification, Prodigy can help you

train and evaluate your models faster. Stream in your own

examples or real-world data from live APIs, update your

model in real-time and chain models together to build more

complex systems. (https://prodi.gy/) [12].

It can be used to extend the pre-trained models and also helps

in annotating the data from image segmentation and object

detection. The trained model can be exported as a versioned

python package for deployment in production.

Prodigy fabricates the model building and testing process less

enervated using reinforcement learning.

An example of training a model using prodigy can be found in

(https://prodi.gy/demo?view_id=ner).

IX. CONCLUSION

This paper evinces approaches experimented in the industry

for tasks involved in information retrieval from parsing to part

of the speech tagging, classification, machine translation,

transfer learning, question and answering systems and auto

summarisation using natural language processing and deep

learning. It also explains recent advancements in the research

areas of information retrieval.

REFERENCES

[1] Google AI Research Blog

https://ai.googleblog.com

[2] Elman, J. L. Finding structure in time. Cognitive

science 14, 2 (1990), 179–211.

[3] K. S. Tai, R. Socher, and C. D. Manning, “Improved

semantic representations from tree-structured long

short-term memory networks,”

arXiv preprint arXiv:1503.00075, 2015.

[4] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D.

Manning, A. Y. Ng, C. Potts et al., “Recursive deep

models for semantic compositionality over a

sentiment treebank,” in Proceedings of the

conference on empirical methods in natural language

processing (EMNLP), vol. 1631, 2013, p. 1642.

[5] Edwin Chen’s Blog :

http://blog.echen.me/2017/05/30/exploring-lstms/

http://www.ijcstjournal.org/
http://blog.echen.me/
http://blog.echen.me/2017/05/30/exploring-lstms/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 6 Issue 3, May - June 2018

ISSN: 2347-8578 www.ijcstjournal.org Page 132

[6] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R.

Jozefowicz, and S. Bengio, “Generating sentences

from a continuous space,”

arXiv preprint arXiv:1511.06349, 2015.

[7] Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu

Zhang, Zhi Jin.

“How Transferable are Neural Networks in NLP

Applications.”

[8] Zhilin Yang, Ruslan Salakhutdinov & William W.

Cohen “Transfer Learning for sequence tagging with

hierarchial recurrent networks”

http://www.cs.cmu.edu/~wcohen/postscript/iclr-

2017-transfer.pdf

[9] Wolfram Alpha:

http://www.technologyreview.com/featuredstory/414

017/search-me/

[10] Google Knowledge Graph :

https://www.google.com/intl/bn/insidesearch/features

/search/knowledge.html

[11] Deep Learning for Natural Language Processing

And Machine Translation :

https://pdfs.semanticscholar.org/presentation/297b/29

7951be2dde56bd0526f6fd1665fe3ada37.pdf

[12] Radically efficient machine teaching,

An annotation tool powered by active learning.

https://prodi.gy/

[13] https://booking.ai/named-entity-classification-

d14d857cb0d5

[14] https://opensource.googleblog.com/2013/08/learning-

meaning-behind-words.html

[15] Rokach, Lior, and Oded Maimon. "Clustering
methods." Data mining and knowledge discovery
handbook. Springer US, 2005. 321-352.

[16] Honarkhah, M; Caers, J (2010). "Stochastic

Simulation of Patterns Using Distance-Based Pattern

Modeling". Mathematical Geosciences. 42 (5): 487–

517. doi:10.1007/s11004-010-9276-7.

http://www.ijcstjournal.org/
https://arxiv.org/find/cs/1/au:+Mou_L/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Meng_Z/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Yan_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Li_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Xu_Y/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zhang_L/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zhang_L/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Jin_Z/0/1/0/all/0/1

