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ABSTRACT 

It is well known that (see, for example, [H. Render, Nonstandard topology on function spaces with applications to 

hyperspaces, Trans. Amer. Math. Soc. 336 (1) (1993) 101–119; M. Escardo, J. Lawson, A. Simpson, Comparing 

cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105–145; D.N. 

Georgiou, S.D. Iliadis, F. Mynard, in: Elliott Pearl (Ed.), Function Space Topologies, Open Problems in Topology, 

vol. 2, Elsevier, 2007, pp. 15–22]) the intersection of all admissible topologies on the set C(Y, Z) of all continuous 

maps of an arbitrary space Y into an arbitrary space Z, is always the greatest splitting topology. However, this 

intersection  maybe not admissible. In the case, where Y is a locally compact Hausdorff space the compact-open 

topology on the set C(Y, Z) is splitting and admissible (see [R.H. Fox, On topologies for function spaces, Bull. 

Amer. Math. Soc. 51 (1945) 429–432; R. Arens, A topology for spaces of transformations, Ann. of Math. 47 

(1946) 480–495; R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5–31]), which 

means that the intersection of all admissible topologies on C(Y, Z) is admissible. In [R. Arens, J. Dugundji, 

Topologies for function spaces, Pacific J. Math. 1 (1951) 5–31] an example of a non-locally compact Hausdorff 

space Y is given having the same property for the case, where Z =[0,1], that is on the set C(Y,[0,1]) the compact-

open topology is splitting and admissible. This space Y is the set [0,1] with a topology τ, whose semi-regular 

reduction coincides with the usual topology on [0,1]. Also, in [R. Arens, J. Dugundji, Topologies for function 

spaces, Pacific J. Math. 1 (1951) 5–31, Theorem 5.3] another example of a non-locally compact space Y is given 

such that the compact-open topology on the set C(Y,[0,1]) is distinct from the greatest splitting topology. 

In this paper first we construct non-locally compact Hausdorff spaces Y such that the intersection of all admissible 

topologies on the set C(Y, Z), where Z is an arbitrary regular space, is admissible. Furthermore, for a Hausdorff 

splitting topology t on C(Y, Z) we find sufficient conditions in order that t to be distinct from the greatest splitting 

topology. Using this result, we construct some concrete non-locally compact spaces Y such that the compact-open 

topology on C(Y, Z), where Z is a Hausdorff space, is distinct from the greatest splitting topology. Finally, we give 

some open problems. 

Keywords:- Splitting topology,Admissible topology,Greatest splitting topology,Semiregularity 

I. PRELIMINARIES 

Let Y and Z be two spaces. If t is a topology on 

the set C(Y , Z) of all continuous maps of Y into Z, 

then the corresponding space is denoted by Ct(Y , 

Z). A topology t on C(Y , Z) is called splitting if for 

every space X, the continuity of a map g : X × Y → 

Z implies that of the map g : X → Ct(Y , Z) defined 

by relation g(x)(y) = g(x, y: ) for every→ x ∈ X and 

y ∈ Y . A topology t on C(Y , Z) is called admissible 

if for every space X, the continuity of a map f X Ct(Y 

, Z) implies that of the map f : X × Y → Z defined by 

relation{ ∈} for every (x, y) ∈ X × Y (see 

[1,6,2]). 
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Let t be a topology on C(Y , Z). If a net fμ,μ M

 of C(Y , Z) converges topologically to an 

element f of C(Y , Z), then we write { fμ,μ ∈ M }−→tf 

. (If M is the set ω of all non-negative integers, then 

the net is called a sequence.) 

A net { fμ,μ ∈ M } of the set C(Y , Z) converges 

continuously to f ∈ C(Y , Z) (see [7] and [12]) if and 

only if for every y ∈ Y and for every open 

neighborhood W of f (y) in Z there exists an element 

μ0 ∈ M and an open neighborhood V of y in Y such 

that for every  . 

A subset B of a space X is called bounded (see, for 

example, [14]) if every open cover of X contains a 

finite subcover of B. A space X is called corecompact 

(see, for example, [10]) if for every open 

neighborhood U of a point x ∈ X there exists an open 

neighborhood V ⊆ U of x such that V is bounded in 

the space U. 

In 1972, D. Scott defined a topology on a 

partially ordered set L which is known as the Scott 

topology (see, for example, [10]). If L is the set O(Y ) 

of all open sets of the space Y partially ordered by 

inclusion, then the Scott topology coincides with a 

topology defined in 1970 by B.J. Day and G.M. 

Kelly (see [3]): a subset H of O(Y ) is an element of 

this topology (that is, the Scott topology) if and only 

if: (α) the conditions U ∈ H, V ∈ O(Y ), and U ⊆ V 

imply V ∈ H, and (β) for every collection of open 

sets of Y , whose union belongs to H, there are 

finitely many elements of this collection whose 

union also belongs to H. 

The Isbell topology on C(Y , Z), denoted here by 

tIs, was defined by J.R. Isbell in 1975 (see 

[11,15,10]): a subbasis for tIs is the family of all sets 

of the form 

, 

where H is an element of the Scott topology on O(Y ) 

and U is an open subset of Z (see [13]). It is well 

known that: 

(1) A topology t on C(Y , Z) is splitting if and only if 

each net of elements of C(Y , Z) converging 

continuously to an element of C(Y , Z) converges 

also topologically to this element (see [2]). 

(2) On the set C(Y , Z) there exists the greatest 

splitting topology (see [2]). 

(3) The intersection of all admissible topologies 

coincides with the greatest splitting topology 

(see, for example, [17,5,8]). 

(4) The compact-open topology, denoted here by tco, 

is always splitting (see [1] and [6]) and, in 

general, does not coincide with the greatest 

splitting topology (see [2]). For a regular locally 

compact space Y the topology tco is always 

admissible and, therefore, coincides with the 

greatest splitting topology (see [6,1,2]). 

(5) The Isbell topology is always splitting (see, for 

example, [15,14,18]) and, in general, does not 

coincide with the greatest splitting topology (see 

[5] and [9]). For a corecompact space Y (see, for 

example, [10]) the topology tIs is always 

admissible and, therefore, coincides with the 

greatest splitting topology (see [14] and [18]). 

(6) If Z is a Hausdorff space, then the topologies tco 

and tIs are Hausdorff (see [4] and [15]). 

A space Y is called Z-harmonic if the compact-open 

topology coincides with the greatest splitting 

topology on C(Y , Z). If Y is Z-harmonic for every 

space Z, then Y is called harmonic (see [8]). 

A space Y is called Z-concordant if the Isbell 

topology coincides with the greatest splitting 

topology on C(Y , Z). If Y is Z-concordant for every 

space Z, then Y is called concordant (see [8]). Let (Y 

,τ) be a space. Consider the subset 

b of τ. The set b is a base for a 

topology on Y , denoted here by τsr. The space (Y ,τsr) 

is called semi-regular reduction of (Y ,τ). Obviously, 

τsr ⊆ τ. A topology τ is called semi-regular if τ = τsr. 

Therefore, a topology τ is semi-regular if and only if 

there exists a base for the topology τ such that U = 

Int(Cl(U)) for every element U of this base. It is easy 

to verify that: (α) τsr is a semi-regular topology and 

(β) any regular topology is semi-regular. We say that 

two spaces (Y ,τ0) and (Y ,τ1) have the same semi-

regular reduction if. 

 
 

In this paper first we construct non-locally 

compact Hausdorff spaces Y such that the 

intersection of all admissible topologies on the set 
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C(Y , Z), where Z is an arbitrary regular space, is 

admissible. Furthermore, for a Hausdorff splitting 

topology t on C(Y , Z) we find sufficient conditions 

in order that t to be distinct from the greatest splitting 

topology. Using this result, we construct some 

concrete non-locally compact spaces Y such that the 

compact-open topology on C(Y , Z), where Z is a 

Hausdorff space, is distinct from the greatest 

splitting topology. Finally, we give some open 

problems. 

 

II. THE GREATEST SPLITTING AND 

ADMISSIBLE TOPOLOGIES 

 

 The following proposition is easily proved. 

Proposition 2.1. Let (Y ,τ0), (Y ,τ1), and Z be spaces 

such that 

C  

72 and for every space X, 

C . 

Then, a topology t on C((Y ,τ0), Z) is splitting 

(respectively, admissible) if and only if t is splitting 

(respectively, admissible) on C((Y ,τ1), Z). 

Proposition 2.2. (See [16, p. 85].) Let (Y ,τ0), (Y ,τ1) 

be two spaces with the same semi-regular reduction 

and Z a regular space. Then, 

C and, therefore, for 

every space x, 

C . 

Propositions 2.1 and 2.2 imply the following 

consequence. 

Corollary 2.3. Let (Y ,τ0), (Y ,τ1) be two spaces with 

the same semi-regular reduction and Z a regular 

space. Then, a topology t on 

C((Y ,τ0), Z) is splitting (respectively, admissible) if 

and only if t is splitting (respectively, admissible) on 

C((Y ,τ1), Z). Therefore, the intersection of all 

admissible topologies on C((Y ,τ0), Z) is admissible 

if and only if the intersection of all admissible 

topologies on C((Y ,τ1), Z) is admissible. 

Proposition 2.4. Let Y be a space whose semi-

regular reduction coincides with the semi-regular 

reduction of a regular locally compact space and Z 

an arbitrary regular space. Then, the intersection of 

all admissible topologies on C(Y , Z) is admissible 

and, therefore, the greatest splitting topology is 

admissible. 

Proof. It suffices to find a topology on C(Y , Z) 

which is simultaneously splitting and admissible. 

Let Y rlc be the regular locally compact space whose 

semi-regular reduction coincides with the semi-

regular reduction of Y . By Proposition 2.2 we have 

C(Y rlc, Z) = C(Y , Z). On the set C(Y rlc, Z) the 

compact-open topology tco is splitting (since the 

compact-open topology is always splitting) and 

admissible (since Y rlc is a regular locally compact 

space). By Corollary 2.3 the compact-open 

topology on C(Y , Z) is also splitting and admissible 

proving the proposition.  The following proposition 

is a generalization of Proposition 2.4. 

Proposition 2.5. Let Y be a space whose semi-

regular reduction coincides with the semi-regular 

reduction of a core compact space and Z an 

arbitrary regular space. Then, the intersection of all 

admissible topologies on C(Y , Z) is admissible and, 

therefore, the greatest splitting topology is 

admissible. 

Proof. As in the proof of the preceding proposition, 

it suffices to find a topology on C(Y , Z) which is 

simultaneously splitting and admissible. Let Y cs be 

the core compact space whose semi-regular 

reduction coincides with the semi-regular reduction 

of Y . By Proposition 2.2 we have C(Y cs, Z) = C(Y , 

Z). On the set C(Y cs, Z) the Isbell topology is 

splitting (since the Isbell topology is always 

splitting) and admissible (since Y cs is a corecompact 

space). By Corollary 2.3 the Isbell topology on C(Y 

, Z) is also splitting and admissible proving the 

proposition.  

Similarly to the above two propositions we can 

prove the following propositions. 

Proposition 2.6. Let Y be a space whose semi-

regular reduction coincides with the semi-regular 

reduction of a harmonic space Y h and Z an 

arbitrary regular space (and, therefore, C(Y , Z) = 
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C(Y h, Z)). Then, the greatest splitting topology on 

C(Y , Z) is the compact open topology on  

C(Y h, Z). 

Proposition 2.7. Let Y be a space whose semi-

regular reduction coincides with the semi-regular 

reduction of a concordant space Y con and Z an 

arbitrary regular space (and, therefore, C(Y , Z) = 

C(Y con, Z)). Then, the greatest splitting topology on 

C(Y , Z) is the Isbell topology on C(Y con, Z). 

Example 2.8. 

(1) Let [ 0,1] be the closed interval of the real line 

and let M = {1/n: n ∈ ω } . Denote by Y the 

closed interval [ 0,1] with the topology τ1 for 

which the family τ0 ∪ { Y \ M }, where τ0 is the 

usual topology of [ 0,1] , compose a subbase. 

Obviously, the semi-regular reduction of the 

space ([0,1] ,τ1) is the space (regular compact 

space) ([0,1] ,τ0). By Proposition 2.4, the 

greatest splitting topology on the set C(Y , [0,1] ) 

is admissible (see also Theorem 6.21 of [2]). 

(2) Let (Y ,τ0) be an arbitrary space and M a subset 

of Y with the property that Cl(Y \ M) = Y . On the 

set Y we consider the topology τ1 for which the 

family τ0 ∪ { Y \ M } compose a subbase. It is 

easy to see that the spaces (Y ,τ0) and (Y ,τ1) have 

the same semi-regular reduction. By Proposition 

2.5, for every corecompact space (Y ,τ0) and an 

arbitrary regular space Z, the greatest splitting 

topology on the set C((Y ,τ1), Z) is admissible. 

We note that the semi-regular reduction (X,τsr) of 

a corecompact space (X,τ) in general does not 

coincide with (X,τ). 

III. ON THE SPLITTING 

TOPOLOGIES 

Definition 3.1. We say that a net { fμ: μ ∈ M } in C(Y 

, Z) has f ∈ C(Y , Z) as continuous cluster point if for 

each y ∈ Y and each neighborhood W of f (y) in Z 

there is a neighborhood V of y in Y such that for each 

μ ∈ M there is μ0 ∈ M with  such that fμ0(V ) ⊆ 

W . 

Of course, if { fμ: μ ∈ M } continuously converges 

to f , then f is a continuous cluster point of  

{ fμ: μ ∈ M } . 

Proposition 3.2. Let t be a splitting Hausdorff 

topology on C(Y , Z), where Y and Z are arbitrary 

spaces. If t is the greatest splitting topology, then 

every sequence { fi: i ∈ ω } in C(Y , Z) which 

topologically converges to f∞ ∈ C(Y , Z), has f∞ as a 

continuous cluster point. 

Proof. Suppose that there exist a sequence { fi: i ∈ ω 

} of elements of C(Y , Z) and an element f∞ of C(Y , 

Z) such that: 

(a) { fi: i ∈ ω } −→t f∞ and 

(b) neighborhoodf∞ is not a continuous cluster point 

of the sequenceW0 of f∞(y0) in Z such that for 

every open neighborhood{ fi: i ∈ ω } , that is there 

exist a pointU of y0 in Y there existsy0 
i of Y and 

an openfor which 

fi  for every i . 

To prove the proposition it suffices to show that t is 

not the greatest splitting topology. 

We note that the set F = { fi: i ∈ ω } is infinite. 

Indeed, in the opposite case, there exists k ∈ ω such 

that fi = fk for all elements i of an infinite subset 

. Since t is a Hausdorff topology and 

 f∞ we have that f∞ = fi for every i ∈ ω

 . This fact contradicts the above condition 

(b). Therefore, the set F is infinite and, without loss of generality, 

we can suppose that f∞  for every i ∈ ω. 

We put b = t ∪{ U ∩ G: U ∈ t } , where G = C(Y , Z) \ 

F. It is easy to see that the intersection of two 

elements of b is an element of = b. Let t+∈be the 

topology on C(Y , Z) for which the set b is a base. 

Clearly, t ⊆ t+. Since {+fi, the set: i ∈ ω }−F→t is closed 
f∞ and inf∞Ct+(fYi ,for everyZ). Therefore,i ω, the sett  

= t+. F is not closed in Ct(Y , Z). On the other 

hand, by the definition of t 

To prove that t is not the greatest splitting 

topology it suffices to show that the topology t+ is 

splitting. Let { gμ,μ ∈ M } be a net in C(Y , Z) 

converging continuously to an element g of C(Y , Z). 

We need to prove that { gμ,μ ∈ M } −−t+→ g, that is 

for every open neighborhood V of g in the space Ct+(Y 

, Z) there exists an element M such that gμ ∈ V for 

every . Note that, since t is splitting, { gμ,μ ∈ M 

} −→t g. 

First, we consider the case gf such that gμ ∈ V t 

for every . Therefore, we can suppose that∞. 
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Let V ∈ b be an neighborhood ofV = 

gVin∩CGt+,where(Y,Z).IfVV∈∈t. In this case,t, then 

there existsg ∈/ F ∪{ f∞M} . 

Since { fi: i ∈ ω } −→ f∞ and the space Ct(Y , Z) is 

Hausdorff there exists an open neighborhood V g of g 

such that V g ∩ (F ∪ { f∞ }) = ∅ and, therefore, V g ⊆ 

G. Then, 

. 

Therefore, there exists  M such that  

V for all  proving that { gμ,μ ∈ M }−−t+→ g. 

Now, we consider the case g = f∞. Suppose that the net { 

gμ,μ ∈ M } does not converge to g in the space Ct+(Y , 

Z). Then, there exists V ∈ b such that g ∈ V and for 

every  M there exists  with gμ ∈/ V . This 

fact implies that V is not an element of t and, 

therefore, V = V ∩ G where V ∈ t. Without loss 

of generality, we can suppose that gμ ∈/ V and gμ ∈ V

 for every μ ∈ M, which means that { gμ: μ ∈ 

M } ⊆ C(Y , Z) \ G = F. 

Therefore, there is a map σ : M → ω such that gμ = 

fσ(μ), μ ∈ M. 

Let W0 be the open neighborhood of f∞(y0) 

considered in the above condition (b). Since the net { 

gμ,μ ∈ M } continuously converges to f∞ there exist 

an open neighborhood U0 of y0 in Y and an element 

μ0 ∈ M such that gμ(U0) ⊆ W0 for every . On 

the other hand, by condition (b), for the set U0 there 

exists i(U0) = i0 ∈ ω such that fi  for every i  

i0. This fact implies that σ(μ) < i0 for every . 

Let V0 be an open neighborhood of f∞ in Ct(Y , Z) 

such that fi ∈/ V0 for every i < i0. Then, gμ = fσ(μ) ∈/ V0 

for every  and, therefore, the net  

does not converge to f∞ = g in the space Ct(Y , Z) 

which is a contradiction 

proving that the net { gμ,μ ∈ M } converges to g in the 

space Ct+(Y , Z). 

 

Thus, the topology t+ is splitting completing the 

proof of the proposition.74 

Corollary 3.3. Let Y be an arbitrary space. If there 

exist a Hausdorff space Z and a sequence { fi: i ∈ ω 

} of elements of Ctco(Y , Z) which converges to f∞ ∈ 

Ctco (Y , Z) such that f∞ is not a continuous cluster 

point, then Y is not harmonic. 

Corollary 3.4. Let Y be an arbitrary space. If there 

exist a Hausdorff space Z and a sequence { fi: i ∈ ω 

} of elements of CtIs (Y , Z) which converges to f∞ ∈ 

CtIs (Y , Z) such that f∞ is not a continuous cluster point, 

then Y is not concordant. 

The following example gives a method of 

construction of nonharmonic spaces. 

Example 3.5. Let Yi, i ∈ ω, be a family of mutually 

disjoin Hausdorff spaces. Suppose that for every i ∈ 

ω there exists a filter Fi of non-empty open sets of 

Yi with the property that Yi \ K ∈ Fi for every 

compact subset K of Yi. On the set 

Y , 

where ∞ is a symbol, we consider a topology for 

which a subset V of Y is open if and only if: 

(α) V ∩ Yi is open in Yi for all i ∈ ω, and 

(β) in the case where ∞ ∈ V , there exists a finite subset s of ω such that V ∩ Yi ∈ Fi for all i ∈ ω \ s. 

We note that the space Y has the properties: 

(1) Yi is simultaneously open and closed subspace 

of Y . 

(2) If K is a compact subset of Y , then there exists a 

finite subset s of ω such that K ⊆ ∪{ Yi: i 

∈ s } ∪ {∞} . 

We shall prove that Y is not harmonic. Let Z be an 

arbitrary Hausdorff space containing two distinct 

points a and b. 

Consider the sequence { fi, i ∈ ω } of maps of Y into 

Z for which fi(y) = b if y ∈ Yi and fi(y) = a if y ∈ Y \ 

Yi. Let also f∞ be the element of C(Y , Z) defined by 

condition f∞(y) = a for all y ∈ Y . Using the above 

properties (1) and (2) one can prove tha                        

t the maps fi are elements of C(Y , Z) and the 

sequence { fi, i ∈ ω } converges to f∞ in the 

compact-open topology. By Corollary 3.3 it suffices 

to prove that f∞ is not a continuous cluster point of 

the sequence { fi, i ∈ ω } . Let W0 be an open 

neighborhood of a which does not contain the point 

b. Consider an arbitrary open neighborhood  

in Y . Then, there exists a finite subset s of ω such 

that U ∩ Yi  = ∅ for every i ∈ ω \ s. Setting 

i  we have that f  for 
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every i  i  proving that f∞ is not a continuous 

cluster point. 

Remark 3.6. The above example can be considered 

as a generalization of the space Y considered in 

Theorem 5.3 of [2]. 

 

IV. SOME OPEN PROBLEMS 
 

Problem 4.1. Let P be a class of spaces Y having 

the same semi-regular reduction and Z a regular 

space. By Proposition 2.2 and Corollary 2.3 the set 

C(Y , Z) and the greatest splitting topology on this 

set are independent of the elements Y of P. 

(1) Is the compact-open topology on C(Y , Z) 

independent of the elements Y of P? 

(2) Is the Isbell topology on C(Y , Z) independent of 

the elements Y of P? 

(3) Suppose that P contains an element which is Z-

harmonic (respectively, harmonic). Is any 

element of P Z-harmonic (respectively, 

harmonic)? 

(4) Suppose that P contains an element which is Z-

concordant (respectively, concordant). Is any 

element of P Zconcordant (respectively, 

concordant)? 

Problem 4.2. It is known that the compact-open 

topology does not coincide with the greatest 

splitting topology on the set C(Nω, N) (see [5]), as 

well as, on the set C(Rω, R) (see [9]), where N is the 

set of natural numbers with the discrete topology 

and R is the set of real numbers with the usual 

topology. 

(1) Suppose that the space Z is the space N or the 

space R. Can we find a sequence { fi: i ∈ ω } of 

elements of C converges in the compact-

open topology to an element f∞ ∈ C(Zω, Z) such 

that f∞ is not a continuous cluster point? 

(2) Let Y and Z be two spaces such that the 

compact-open (respectively, the Isbell) topology 

on C(Y , Z) is not the greatest splitting topology. 

Under what (internal) conditions on Y and Z are 

the conditions of Corollary 3.3 (respectively, 

Corollary 3.4) satisfied? 
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