
International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 4, Jul - Aug 2018 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 109 

 

Detecting and preventing SQL Injection Attacks 
Amir Nasser [1], Reyad Daher [2]

 

Department of Computer and Control Engineering 

 University of Tishreen 

Latakia - Syria 

 

ABSTRACT 
     Web applications have opened wide horizons for economic and financial development, sparking hackers' appetites to attack 

these systems. Most of the attacks on applications and websites belong to the last layer of the OSI, the application layer. These 

types of attacks canôt be prevented by using packet-based firewalls, which examine the signatures and ports used, so it was 

important and necessary to devise techniques to detect and prevent these attacks, which SQLI attack is the most a dangerous . 

 The SQLI attack, according to the statistics of  information and networks security centers, is the most widespread attack on the 

application layer, where the distribution areas of this attack are distributed to different countries of the world, , And targets most 

of the sectors that rely on databases to accomplish  services. 

 The search provides a system to detect and prevent SQLI attacks, using a mechanism that relies on analysis and  parsing 

expression of queries sent to databases associated with applications, to verify the integrity of the query and  that it doesnôt  

contain an attempt to inject additional commands that can be used to obtain sensitive users information. 

The test of the system presented in the research gave effective results in the detection and prevention of attack, after the 

implementation of a set of tests, results were examined to know  the ability of the system to detect incorrect queries, and study 

the time delay resulting from the addition of the system provided. 

The proposed system was able to achieve 100% of detection and prevention in the tests that have been implemented. The 

addition of the proposed system to the system under testing led to a delay time, measured between 4 and 6% of the executing 

time without the system. 

Keywords :ð Web Applications C̪onfidentiality ̪Integrity A̪pplication Level  S̪QLI . 

 

  I.   INTRODUCTION  

The growing growth of the Internet has led to the 

emergence of many services, which have become an integral 

part of our daily life. Web applications are used to request 

bookings, pay bills, e-shopping, etc. With the progress and 

development of e-commerce and services based on Web 

applications It is necessary to transfer information in a safe 

and accurate manner. 

 Most Web applications contain security vulnerabilities that 

allow attackers to exploit and execute attacks, resulting  loss 

of confidentiality, integrity, and access to information. 

The methods and patterns of attacks vary, which requires a 

variety of protection methods because of the different tools 

used in the attack and the different level at which attacks are 

active, each level has it means and tools of protection that is 

useful to work within it without others. 

II.     RESEARCH PROBLEM  

With the increasing number of websites and applications 

hosted on them, the number of attacks targeting it increases. 

Perhaps the most dangerous of these attacks are attacks at the 

level of applications, specially injection attacks, which exploit 

the inputs to carry out the attack. 

The use of the specific input method means  entire depending 

on the developer of the application to implement  protection, 

which is very risky, while it is not possible to rely on the 

database management system DBMS (DataBase Mangement  

 

System) as a protection tool, because it does not contain the 

appropriate mechanism to face these attacks and  The reliance 

on firewalls to stop these attacks is not possible because these 

attacks use ports 80 and 443 that can not be closed by the 

firewall. Therefore, it was necessary to devise ways and 

techniques to limit, detect, and prevent such attacks. 

III.  THE  IMPORTANCE  OF RESEARCH AND 

ITS OBJECTIVES 

Web applications are an important part of the new e-

economy. These applications use bank information for their 

users from credit card numbers to social security numbers 

and bank account numbers. Web applications are part of our 

daily lives that are hard to dispense . Many of them deal with 

our personal information which may have specific privacy 

and sensitivity. These applications have started to be exposed 

to many types of attacks, so the impact of these attacks must 

be mitigated so that users can continue to benefit from the 

services of these applications securely. 

This research aims to design a system that improves the 

protection of web applications against one of the most 

dangerous types of attacks ñ   SQLInjection ñ attack by 

accomplishing the detection of attack, and then prevent 

possible attacks. 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 4, Jul - Aug 2018 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 110 

IV.  RESEARCH METHODS  AND 

MATERIALS  

The study was based on a statistical methodology, which 

examined the dangerous and spread of SQLI attacks based on 

studies of the most important information and networks 

security labs to verify the feasibility of the research. In the 

next stage, an analytical methodology was implemented. To 

achieve a full and deep understanding of these attacks. At the 

end of the research, the methodology was applied by 

constructing a system of detection and prevention of SQLI 

attacks based on the previous analytical study and then testing 

the system and studying the test results taking in perspective 

two parameters : 

1. The correct detection rate for non-standard queries. 

Three  type of attacks were carried out, 100 different attacks 

were repeated for each type , and verification of whether the 

proposed system could detect these attacks. 

2. The delay time of the addition of the analyst (the 

proposed system) as a stage between the web application and 

the database. The longer, shorter and the average execution 

time was calculated by the presence of the system and its 

absence, and then comparing the obtained values to study the 

added delay. 

V.   APPLICATION  LAYER  ATTACKS  

Attacks on Web applications are attacks directed directly at 

the available Web applications. These attacks attempt to 

misuse APIs embedded in Web applications, that is, attacks 

occur within the scope of the application itself. An attacker 

can use these attacks to: 

1. Read, add, delete or modify data. 

2. Introducing a virus program that uses computers and 

software applications to copy viruses across the network. 

3- Enter a spy program to analyze your network and gain 

information that can eventually be used to disable or destroy 

the system and network. 

4 - disable operating systems abnormally. 

5. Disable other security controls to enable future attacks. 

 This type of attack is very popular, and is expected to 

remain so because most web applications and web services 

used are typically vulnerable to direct access. According to 

many statistics, the application layer attacks, specifically the 

SQLI attack, are ranked at the top in the number of attacks 

worldwide and compared to the rest of the attacks. 

Figure 1 shows according to a report by the European 

Union Agency for Network and Information Security (ENISA) 

released in the first month of 2018 that SQLI attacks 

accounted for 51% of attacks implemented at the application 

layer level,. 

  

 

 

 

Figure 1 Ratio of SQLI attacks according to ENISA 

statistics  [14]. 

 

  Application-level attacks vary and can be categorized as 

follows: 

1.code Injection.  

2. Broken Authentication and Session Management.  

3.Cross-Site Scripting.  

4. Insecure Direct Object References.  

5. Security Misconfiguration . 

6. Sensitive Data Exposure. 

7. Missing Function Level Access Control. 

8. Cross-Site Request Forgery . 

9. Using Components With Known Vulnerabilities . 

10. Unvalidated Redirects and Forwards . 

 

VI.  SQLI   ATTACK  

The SQLI attack is intended to exploit applications that use 

relational databases to get an answer to their requests. The 

applications create SQL commands and send them to the 

database. The SQLI attack exploits the fact that many of these 

applications integrate the fixed value string from SQL 

commands with user data, which form a where predicates 

formula or additional subqueries , and in this way SQL 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 4, Jul - Aug 2018 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 111 

commands are converted to malicious software, which may 

cause unauthorized access, data deletion or information theft. 

It is worth noting that most databases can be A target for 

SQLI attack,  SQLI attacks can be categorized in three main 

categories [2] as in Figure (2) are:  

 

1- order wise 

2. blinde 

3- against database 

These classifications differ in the classification criteria. 

 

 

Figure 2  SQLI attack classifications [15]  

 

VII.  THE  PROPOSED ALGORITHM  TO 

DETECT  AND PREVENT SQLI  

ATTACKS  

A web system consists of a user's web browser, where the 

user is connected to the web application through the Web as 

shown in Figure 3. 

 

 
 

Figure 3 A diagram of the phases of the web system[1] 

 

The vulnerabilities allow attackers to target these 

applications and obtain high-value or sensitive information. 

The attacker sends SQL requests to interact with the RDBMS 

server or modify existing SQL requests to restore 

unauthorized and unreachable information. 

Thus we can see that solving the problem lies in the analysis 

of the packet sent to the database in search of the 

injections .So in the research  a phase was added to the 

diagram in Figure (3) to achieve the required algorithm and 

the web system diagram became a as in Figure 4. 

 

Figure (4): The layout of the phases of the web system 

after the proposed algorithm 

 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 4, Jul - Aug 2018 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 112 

In view of Figure 5, a diagram of the components of this 

system can be developed to determine its component parts, its 

sequence of work and its association with each other . 

 

Figure 5: Detailed components of the proposed software 

system 

 

Thus, it can be seen that the system consists of: 

1. Pre-fetcher for queries, which is responsible for capturing 

queries, and calling the code analyzer instead of sending them 

directly to the database. 

The task of the Pre-fetcher is to prevent the application 

from sending the generated query automatically based on user 

input to the database directly, but send it to the code analyzer. 

As noted above, the application developer has a role in 

interacting with the system of software analysis, so it can be 

very easily Create the Pre-fetcher by adding simple 

instructions to the application or web page that performs the 

analyzer's calling  as shown in the diagram in Fig 6. 

 
Figure 6: Introducing the analyst call to the application or 

web page 

 

2- A code analyzer consists of: 

1. Syntax Analyzer For the structure analyzer, we have 

defined the possible permutations in SQL statements , to 

determine the Syntax of each statement by setting the 

appropriate grammars  with the aim of finally reaching the 

terminal symbols. As such, when the statement is received, 

these rules are applied to determine the type of statement  And 

then determine its composition, including the identification of 

tokens in it 

2. lexical analyzer this is where terminal symbols or tokens 

is the defined , which can be considered as keywords for any 

statement in SQL language, that is, all the keywords that can 

be defined in the SQL statements are identified, in addition to 

specifying the symbols of spaces and moving to the line New 

or progress in the line ñwhite spacesò so that can be is ignored 

when parsing the statement . 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 4, Jul - Aug 2018 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 113 

VIII.  MECHANISM  OF THE  PROPOSED 

SYSTEM FOR DETECTION  AND 

PREVENTION  OF SQLI  ATTACKS  

The mechanism is how the web application developer 

interacts with our system, as well as the comparison and 

inspection mode. 

For the pattern of examination, there are two ways: 

 1- Static: 

      Static method means that the detection process depends 

on the construction of a static model of statements , stored in 

the code analyzer, and then the statement generated from the 

application is automatically compared with the statically 

stored statement in the code analyzer, and when the mismatch 

occurs, the declaration is denied. 

2. Dynamic 

     The language grammars  are applied to the query 

generated in a manner similar to the parsing  of the statement. 

Hence, depending on the machine learning or artificial 

intelligence, the attack is determined or not, rather than 

storing a static statement and compare it  with the statement 

generated as in the static method. 

In this research, we adopted an intermediate method 

between the two, where we built a system that analyzes the 

code based on the rules we presented to it. This is the dynamic 

part of the work mechanism. It compares it with a parameter 

that expresses the number of terminal symbols in the correct 

query to verify Query integrity which  is the static part of the 

mechanism. 

As for the interaction of the developer with the system, we 

have chosen to give the developer a role in the call of the 

system for the following reasons: 

1 - Giving the ability for the developer to call the program 

allows to make the possibility of integrating the system with 

pre - built applications easier, so it is just enough to add a call 

instruction  to the system. 

2. One of the main reasons for SQLInjection attacks is the 

weakness developers have  in the security aspects when 

writing their code. Therefore, to understand this point, they 

must be encouraged to observe the security aspect of their 

codes by making them a partner in the protection process, 

knowing that this requires, according to our proposed 

algorithm, very little knowledge of the concept of tokens and 

The basics of compilers . 

To illustrate the steps of the internal working algorithm of 

the proposed system, it is possible to use Figure (7), which 

represents the flow chart for the work of the procedure in a 

simplified manner. 

 

 

 
 
Figure (7): Flow chart of the internal algorithm of the 

analyst 

 

IX.  RESULTS AND DISCUSSION 

We have tested a variety of different types of attacks, so we 

divided the tests into each of them represents a pattern of 

attacks so we can figure out  the detection rate. 

Case 1:  "WHERE manipulation" 

Case 2: "Code injection"  

Case 3:  "Insert Exploit" 

 

The effectiveness of the proposed system was tested against 

the three attacks. In each case, 100 SQL queries were tested, 

each of which contained three different forms of attacks in 

different and random forms. The analyst was able to detect all 

these queries. 

 To estimate the delay that occurred because of the algorithm, 

we calculated the response time for 100 queries for each of the 

previous cases  separately, and then  determine the shortest 

response time in each case and the longest response time and 

the average response time for each case, when applying the 

algorithm, Table 1 shows the results obtained, where time is 

measured in milliseconds. 

 

 

 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) ς Volume 6 Issue 4, Jul - Aug 2018 

ISSN: 2347-8578                          www.ijcstjournal.org                                                  Page 114 

Table (1) The delay time resulting from applying  the 

algorithm measured in milliseconds 

 

Response 

time 

Average 

longest 

response 

time 

shortest 

response 

time 

 

895.5 900.1 725.6 
Without  

analyzer  WHERE 

manipulation 940.2 936.1 761.9 
With 

analyzer  

900.2 935.2 850.4 
Without 

analyzer Code 

injection 975.5   1010.6 909.9 
With 

analyzer 

825.3 870.4 .8750 Without 

analyzer Insert 

Exploit 885.4   913.92 795.8 
With 

analyzer 
 

It can be concluded from Table (1) that the percentage of 

added delay ranges from 4% to 8% and an average of 6%. 

This is a very acceptable result  because the test was 

performed on one local device and comparing to the real 

world where response time vary from milliseconds And tens 

of seconds according to the nature of the application and its 

work. 

X. CONCLUSIONS AND 

RECOMMENDATIONS  

In view of previous results and operating conditions, it is 

clear that we can say: we have reached our goal of detecting 

and preventing this type of attack where 100% injections were 

detected in the tests carried out on the following methods of 

attacks: 

 1 - manipulation of where 

  2 - injected code 

  3 - exploitation of insert. 

Note that the time delay problem caused by the addition of 

the system as a phase has occurred, as we have resulted in a 

time increase of between 4-8% of the original execution time 

without the system. 

In terms of compatibility, it is easy to add the code analyzer  

we built to any current web system working  within the 

Windows environment , since it works as a thirdparty 

application and therefore there is no  need to include its 

sourcecode or include it as an additional library in the code of 

the target application protected. 

In addition, when considering the complexity of the algorithm 

provided for the proposed system, and back to Figure (4-5), it 

is given in relation to 2N + 20, and therefore it is the class O 

(N) where N is the number of tokens in the SQL query under 

analysis, It can be classified as a low complication factor 

compared to complex systems O (N2) or O (N3) in general. 

The weakness lies in the application developer who 

integrates the application. As mentioned earlier, he must have 

some knowledge of the basic concepts of parsers  and 

compilers. In our view, knowledge of such information has 

more benefits so The developers may also contribute to 

mitigating the risk of these attacks. 

 At the end of the research, the following suggestions can 

be presented: 

1 - rewriting the code using JAVA or Python to ensure 

compatibility with applications that rely on Linux servers. 

2. Develop the working mode to become fully dynamic. 

3 - Conduct more tests against other methods of attacks, in 

order to increase confidence in performance before being put 

in a real work environment. 

ACKNOWLEDGMENT  

      The research that has led to this work has been 

supported in part first by the Tishreen University Enterprise .  

REFERENCES 

[1] SPI Dynamics. Web Application Security Assessment. 

SPI Dynamics Whitepaper 2̪003. 

[2] Peter A. Carter . Expert Scripting and Automation for 

SQL Server DBAs 1st ed .Apress. July 28 2̪016 

[3] Mohammad Qbea'h M̪ohammad Alshraideh K̪hair 

Eddin Sabri. Detecting and Preventing SQL Injection 

Attacks: A Formal Approach. Cybersecurity and 

Cyberforensics Conference (CCC) 2̪016 

[4] Navdeep Kaur P̪arminder Kaur. Modeling a SQL 

injection attack. Computing for Sustainable Global 

Development (INDIACom) 2̪016 3rd International 

Conference.2016 

[5] Kuisheng Wang̪ Yan Hou. Detection method of SQL 

injection attack in cloud computing environment. 

Advanced Information Management C̪ommunicates ̪
Electronic and Automation Control Conference 

(IMCEC). 2016 

[6]  Jai Puneet Singh. Analysis of SQL Injection Detection 

Techniques. CIISE C̪oncordia University M̪ontreal Q̪u 

´ ebec C̪anada.2017 

[7] Arianit Maraj ̪ Ermir Rogova ̪ Genc Jakupi ̪ Xheladin 

Grajqevci. Testing techniques and analysis of SQL 

injection attacks. Knowledge Engineering and 

Applications (ICKEA)̪ 2nd International Conference. 

2017 

[8] Maksy Sendiang  A̪nritsu Polii  ̪Jusuf Mappadang. 

Minimization of SQL injection in scheduling application 

development. IEEE .2017 

[9] Qais Temeiza  M̪ohammad Temeiza  ̪Jamil Itmazi . 

Enhanced Approach to Detection of SQL Injection 

Attack . IEEE . 2017 

[10] Qais Temeiza  M̪ohammad Temeiza  ̪Jamil Itmazi . A 

novel method for preventing SQL injection using SHA-1 

algorithm and syntax-awareness. IEEE . 2017. 

[11] Piyush A. Sonewar ̪ Sonali D. Thosar . Detection of 

SQL injection and XSS attacks in three tier web 

applications . IEEE . 2017 

[12] Chen Ping  W̪ang Jinshuang  P̪an Lin  Y̪u Han . 

Research and implementation of SQL injection 

prevention method based on ISR . IEEE . 2017 

[13] McAfee Labs Threat Report , December 2017. 

http://www.ijcstjournal.org/

