
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 1, Jan - Feb 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 49

Application Based Smart Chess Board Using
Interative GUI Design

Kunal Khoche, Siddhesh Gurav, Rahul Pundir, Shyam Chrotiya, Dr.Preeti Narooka

Terna Engineering College

India

ABSTRACT
This project implements a Chess game with user-friendly GUI. The Chess game follows the all rules of chess, and all the

pieces only move according to player's movement. Proposed system implementation of Chess is for two players (i.e.no use

concepts of AI). It is played on a 8x8 squares board, with a dull square in each player's low proposed system left corner.

Initially developing a text based version, they then used .NET forms to implement it in a GUI. Players will be play on their

own PCs, by connecting the

Keywords:— Chess, GUI, C++, Players, USB cable, inheritance, hierarchy

I. INTRODUCTION

The overall purpose of doing this is to simulate the

movements being done on the chessboard, on the PC screen

in real time. And to point out the illegal movement during

the chess game. The tracking of the keys as proposed system

as the moves can be done in this chess game. The chess

game also indicates the best moves. This also allows a non-

chess player to play chess efficiently. It allows every player

to play this game without any guidance of a third party. The

moves can be made on the chess board and it will get

reflected onto the PC.

 This project implements a chess game using C++ and

an interactive GUI. The Chess game follows the all rules of

chess, and all the chess pieces only move according to valid

moves for that piece. Pass the information from PC to PC by

using some protocols through cable. They have tried to

reduce some important problems from this project, for

example: - Individuals with disabilities unable to play due to

disability, etc.

II. BACKGROUND OVERVIEW

A.Existing System:
Here they need to play the game manually. Where two

people play the chess game on the normal chess board. Here

there is only the players who have to take care of the wrong

movements. And to live telecast the games played they need

to record the game.

B. Drawbacks of Existing System:
Because of this traditional way of playing chess in manual,

there is no automatic correct move detection can be done.

Moves can't be recorded for future reference. It can't be

communicated through Internet.

C. Proposed System:
Proposed system will give a new and bright future to the

Chess game. The followings will be the procedure for the

system…

 The PC programming will naturally plot the

graphical portrayal of the genuine chess board, for

all intents and purposes.

 This information will be sent to the PC to PC using

protocols through cable.

 The software will check all the movements done by

the player on PC & also suggest valid/best moves

for good understanding about game.

 Every protocols does different tasks.

D. Previous research:
Much previous research has been conducted in Chess

artificial intelligence and creating a more realistic/intelligent

Chess match. Although they proposed system unable to

design working artificial intelligence for the chess game in

the time allow proposed system, they researched the past

implementations. In [1], Russell presented the min-max

algorithm and the game tree developed by it. Russell

discussed applying an evaluation function to the leaves of

the tree that judges the value of certain moves from a given

position. Another method he mentioned is to cut-off the

search by setting a limit to its depth. Russell evaluated a

particular technique called alpha-beta pruning to remove

branches of a tree that will not influence the final decision.

Although they did not use this advanced of a method, they

stored the possible moves for a piece one level down. Back

[2] discusses the method of chess players to “chunk”

together familiar chess patterns, and using this to reduce the

complexity for AI when considering position. How proposed

system laver, this technique is in its early stages, and

requires that multiple assumptions and a complicated

detection process. Berliner [3] recognized that two similar

positions can be very different, and sought to present a

taxonomy of positions in chess that require special

knowledge. How proposed system laver, this kind of

research is essentially never complete.

III. METODOLOGY

 In this section they describe proposed system approach to

the problem. They discuss the heritage hierarchy for

proposed system chess game, and review the text-based

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 1, Jan - Feb 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 50

version of the chess game. Then they clarify how they

structured the GUI for the Chess game from the text-based

version. They also decide which protocols are used for

communication between proposed system PCs through

cable. They also discuss the problems encountered.

1. GUI USING .NET FORMS:

A.Inheritance Design:

They started by planning the hierarchy of proposed system

chess game, and constructing a UML of the inheritance. The

structure of the Chess game is displayed in the UML below.

The different types of chess pieces naturally form an “is-a”

relationship with the abstract class Piece. The derived classes

are Pawn, Knight, Bishop, Rook, Queen, King, and Blank.

The Blank class is the placeholder for a square on the chess

board that is blank. The pieces hold a pointer to the square

they are on. The Square class was used for communication

between proposed system all of the pieces and the board as a

whole. Gameplay drove the creation of all the necessary

objects (e.g. the squares, moves, pieces, and players) and

monitored critical game events, such as checkmate. The

abstract class Player produces two sub-classes: Human and

Computer. Though AI has not been used in system, these

two derived classes allow for an easy integration of an AI in

the future.

B.Template:
Proposed system chess implementation uses templates to

implement a vector that has bounds checking. They designed

a template class named Safe-vector that publicly inherited

from the Vector class. If the index goes beyond the limits, a

specific error is outputted to the screen, and an error message

is shown. This class was extremely helpful in debugging

proposed system text-based version of chess, since they

could more easily identified what caused most errors in the

code.

C.Text-Based Chess Game:

The text-based game (fig. 1) used upper and low proposed

system case letters for the chess pieces for players 1 and 2

(resp.) The blank pieces are indicated with a ’-’ and there is a

number grid provided for easier input of the coordinates of

squares. The player is asked to input the coordinates of the

piece to move pieces. They decided that because chess is a

game with so many rules, they would unable to implement

all its functionality. So, they can't implement some

movement, such as castling or en passant .Starting with

testing the less complex functions and continuously working

up to playing chess matches, they tested the text-based

version for functionality. Designing and debugging the text-

based version was difficult, but because they are familiar

with C++ there proposed system not very many problems.

An example of a problem encountered was that they had

circular include statements because of the set-up of proposed

system inherited classes. Once they discover that it is easy to

fix it. After they had a working text-based version of the

Chess game, they created a GUI chess board with buttons

and added the functionality of the text-based chess game.

Figure 1: Text-based version of proposed system chess

game.

D.Graphical User Interface:

For the Graphical User Interface (GUI) they decided to use

.NET Forms. [5]This .NET forms program easy to use to

design the interface including buttons for the squares of the

chess board and pop-up message box. The message box is

used to tell whose game's turn is used. All buttons functions

and properties made it a very logical choice for an

implementation of chess. A few instances of the supportive

properties are background color and foreground image. They

allow proposed system for easy specification of square color

and served as a container for the piece bitmaps. Functions

such as set Image () allow proposed system for modification

of these properties and proposed system precious. Using

buttons was the most logical choice for the user interface, as

the majority of chess GUIs use clickable zones for input.

One of the biggest challenges was integrating the text-based

game code with the GUI. Once everything compiled, they

had issues with move and other functions that worked in the

text-based version, but that didn’t make a perfect transition

to forms. Some changes in implementation proposed system

required because of proposed system lack of experience with

designing for GUIs. For example, they had to change SQR to

a pointer to SQUARE, which meant all changes in every cpp

file. They had to do important debugging before the buttons

would produce a change in the board. Some of the errors

they encountered proposed system circular includes, the

board calling every move invalid, or the board saying that it

was always the other player’s turn and not allowing a move.

After this issue was resolved, the button code was not

difficult. It drew upon functions defined for the text based

game, sending the button procedures that connected the GUI

to the chess game logic. Instead of copying and pasting the

same logic in each button, a function named handle Button

Press has been made so that functional coding is easy for

buttons. Despite a lot of difficulty, the GUI version of the

chess game is complete.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 1, Jan - Feb 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 51

Figure 2: Chess board Graphical User Interface

E.Playing Chess:

After the GUI window appears upon execution, the first

player (white chess pieces) clicks on the piece that (s) he

would like to move pieces according to the correct way

shown on the UI. Invalid moves are not allow proposed

system. A player is also not allow proposed system to move

opponent’s pieces. The message box tells the player when (s)

he is in check, and the player must move the King to get out

of check. They do not currently have the logic such that the

player in check may move another piece to get out of check.

They played many games of Chess, and in a few examples,

an exception occurred. Many of the time, how proposed

system layer, proposed system Chess game worked proposed

system. Figure 3 below is a screen shot of the Chess game

after several different moves and captures have taken place

on the board.

Figure 3: Several moves into a Chess match.

2. COMMUNICATION

BETPROPOSED SYSTEMEN PCS

USING PROTOCOLS:

CHESS software interfaces with the user computer and

expect that it is capable of use TCP connections.

Communication between proposed systems the clients is

facilitated by common network protocols using TCP/IP.

A. Connection:
I. User opens program and connects to an opponent's IP

address.

II. Once there is a successful connection a new game is

started.

III. The players argue over color.

IV. Every player sees the diversion board from the fitting

point of view.

V. The game starts with the white player as the active player.

Figure 4: Connection

B.Move:
Precondition: During the Play Game state

Main Flow:

The active player clicks a piece to select it. The game

displays the positions it can move to. The player selects the

new destination by clicking. The piece is moved there if it is

a valid move. Their opponent becomes the active player.

Alternate Flow:

 The active player may decide to select a different

piece by clicking one of their own.

 If there are no valid moves and the active player is

not in check the game ends as a stalemate.

 If there are no valid moves and the active player is

in check the inactive player wins.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 1, Jan - Feb 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 52

Figure 5: Moves

C.Save Log :

Precondition: During play game state.

Main Flow:

(i) At any time either player may save a copy of the move

log. (ii) They are asked for a file location. (iii) The move log

is then saved using algebraic notation.

Sub Flows:

I. User attempts to save.

II. The user is asked to specify a file name and location.

III. The log is saved at the specified location using algebraic

location.

Figure 6: Save Log

IV. SCOPE & APPLICATIONS

Only the imagination can limit the applications of the

above proposed system. Though the following are some

examples…

  Animation

In Animation, the Mechanical movement in real world

can transferred to electrical signal through the

Simulation technique used in this project. This signal

can be further used, stored, manipulated according to

requirements and used to show motion of objects and

animation.

  Robotics

 In [4]Robotics, the computer electrical signals can be

transferred to mechanical objects to perform some

action, motion using the principle of Simulation.

 For control purposes

In Industries this principle can be applied to various

instrumentation machines. This will make work easy, as

the machines could be controlled by means computer

signals or mechanical movement of operator that will be

captured and sent to machines after processing through

PC.

 For live chess matches

 As the moves played on the electronic chess board can

be vieproposed systemd in real time on the screen, LCD

projector can be used to view the game by the

vieproposed systems.

V. CONCLUSION

 By the realization of the above theyone can learn many

aspects of .net and network programming. This will give the

complete knowledge of designing simple chess game

without applying AI concept. Theywill also learn the

software development strategies and various programming

techniques for PC based applications.

VI. ENHANCEMENTS

A. Limitations:
 As generally all systems have some limitation, here are

some listed for the proposed system…

 Due to wired connection, 2 PCs must be closer to each

other (i.e. atleast both PCs are in same room)

 Baud rate is less, so the processing speed is slow.

 Cable which is used for transferring data should be small

in length.

B. Future Modifications:
In future versions of the Chess game, they would implement

logic for a simple Artificial Intelligence. In addition, they

would make certain there proposed systems no errors

through rigorous testing and improve the user interface.

They would try to connect two PCs without cable (i.e.

Wireless connection)

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 1, Jan - Feb 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 53

REFERENCES

[1] S. Russell and P. Norvig, Artificial Intelligence: A

Modern Approach. Upper Saddle River, New Jersey

07458: Prentice Hall, 1995.

[2] Bratko,P. Tancig, and S. Tancig, “Detection of positional

patterns in chess,” in Advances in Computer Chess

4.New York, NY: Pergamon Press, Apr. 1984, pp. 113–

126.

[3] H. Berliner, D. Kopec, and E. Northam, “A taxonomy of

concepts for evaluating chess strength,” in Proceedings

of the 1990 ACM/IEEE Conference on Supercomputing.

Washington, DC: IEEE Computer Society, Nov. 1990,

pp. 336–343.

[4] M. Newborn, "Beyond Deep Blue: Chess in the

 Stratosphere", Springer, 2011.

[5] C. Matuszek, B. Mayton, R. Aimi, M. P. Deisenroth, L.

 Bo, R. Chu, M. Kung, L. LeGrand, J. R. Smith and D.

 Fox, "Gambit: An Autonomous Chess-Playing Robotic

 System", 2011 IEEE International Conference on

 Robotics and Automation (ICRA), 2011.

http://www.ijcstjournal.org/

