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ABSTRACT 
This paper reveals with four wireless sensor network operating systems which are compared in terms of reduced 

energy consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS 

v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair 

evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a 

Wireless Sensor Network performs. The results show the instant and average current consumption of the devices 

during the execution of these applications. The experimental measurements provide a good insight into the power 

mode in which the device components are running at every moment, and they can be used to compare the performance 

of different operating systems executing the same tasks. 
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I. INTRODUCTION  

Wireless sensor networks (WSNs) have emerged as a key 

technology for a broad spectrum of applications, Wireless 

Sensor Networks (WSNs) are a very promising technology on 

which many researchers have focused on their attention .This 

technology has become a reality thanks to the development of 

wireless transceivers and microcontrollers with very low 

power consumption.A wireless transceiver in conjunction 

with a low power microcontroller, some 

MicroElectroMechanical Systems (MEMS) to measure 

physical or chemical variables and a battery are the basic 

elements that are integrated in the nodes of the network. Due 

to their small size, low cost and easy deployment, the nodes 

of the network are usually called motes.Motes are small, 

compact and autonomous devices destined to become 

ubiquitous.  WSN is a technology with an enormous potential 

that can be used in a high number of heterogeneous 

applications of interest to society such as environmental 

monitoring, traffic control, structural monitoring of bridges 

and buildings, tracking of people and objects, assisted living, 

etc. The software that runs on the motes plays a fundamental 

role in the development of WSNs. It controls the mote 

operation, implements the network protocols and manages the 

hardware power consumption. Various specific operating 

systems and programming languages have been proposed to 

facilitate and speed up the development of new applications. 

Currently, the most important and widely  adopted 

operating systems for WSN are TinyOS, Contiki and Mantis. 

The main goals of all of them are to provide a robust and 

reliable  

 

 

operation and to maintain the mote in the deepest low power 

mode compatible with the requirements needed at that 

moment. Low power operation extends the battery lifetime of 

the motes and it is probably the most important requirement in 

this type of systems. 

A WSN can be considered as an embedded system with 

severe constraints in terms of memory, computational 

capacity and power consumption. Traditionally, the 

development of software for embedded systems with very 

limited resources has been based on event-driven 

programming models. TinyOS follows the event-driven 

model and achieves efficient low power consumption 

operation and low memory footprint by means of a very 

simple execution model, similar to the way the hardware 

works. Contiki is the second operating system being taken 

into account in this analysis. Contiki, together with TinyOS, 

are nowadays the most important operating systems for WSN. 

Both of them support IPv6 in their communications stacks, a 

key feature for an increasing number of companies and 

research institutions that are pursuing a seamless 

connection of WSNs to Internet. Contiki can also be 

considered an event-driven operating system, but it 

incorporates programming abstractions to manage the 

synchronization of concurrent tasks that facilitate the 

programming of high level sequences of actions. 

Finally, unlike the first two cases, Mantis is an example 

of multithreading operating system. The main features 
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of Mantis are the integration of a multithreading 

scheduler and the programming abstractions that deal 

with concurrent threads. 

II. OBJECTIVE OF THE STUDY 

The aim of this study is to analyze and compare the low-level 

current consumption of the mote during the execution of an 

application running on different operating systems. These 

measurements reveal the power state of the hardware and the 

current drawn by the mote during the program execution. 

Another effect that is evaluated is the noise that the operating 

system can generate on the supply voltage of the mote due to 

continuous changes in the hardware power state.This is the 

case, for example, of a multi-threading scheduler with no task 

ready to be run. The mote wakes up when the scheduler timer 

overflows, however since there is no task ready to be 

executed, the mote immediately goes back to a power down 

state. This process produces quick transitions in the mote 

current consumption and fluctuations in its supply voltage. 

The inconvenience of having this noise affecting the supply 

voltage is the risk of interfering with sensitive parts of the 

mote, such as analog sensors.During the reduced energy 

consumption assessment, a benchmark composed of four 

applications covering the following operations has been used: 

scheduling of timed events, data sampling from integrated 

sensors, data processing and wireless communications. 

III. RELATED WORKS 

In the bibliography there are a large number of articles 

concerning new protocols, algorithms and operating systems 

for WSNs. For example, in Table 1, a list of operating 

systems proposed in this area is shown. This is a large list 

considering that TinyOS, which can be considered the pioneer 

of this type of systems, only dates from the beginning of the 

last decade. Each one of these operating systems has been 

developed pursuing different objectives and they present 

different features. Thus, choosing the most appropriate 

operating system for one specific application is not an easy 

matter, because there are a lot of proposals and very few 

papers with practical evaluations and comparisons between 

them. In particular, power management can be considered as 

the most important restriction that developers usually face 

when they are trying to deploy a real WSN. Consequently, 

the results that are provided in this article try to 

compare the real power consumption of the most 

important operating systems running on typical motes, 

with the intention of helping developers in their choice. 

OS Model ROM RAM Type of 

Memory Memory Processes 

TinyOS v1 Events 3.4 kbytes 336 Bytes Tasks, 

commands and 

event handlers 

TinyOS v2 Events 3.4 kbytes 336 Bytes Tasks, 

commands and 

event handlers 

Contiki Events 3.8 kbytes 230 Bytes Proto threads 

MantisOS Multithreading 14kbytes 500 Bytes Threads 

Nano-RK Multithreading 10kbytes 

2,000 Bytes 

Tasks with 

priority 

t-kernel Multithreading 28.8 kbytes 2,000 Bytes Threads 

Bertha Multithreading 10kbytes 1,500 Bytes Process 

fragments 

CORMO Events 5.5 kbytes 130 Bytes Tasks and 

event handlers 

SOS Events 20kbytes 1,163 

Bytes 

Tasks defined 

as modules 

SenOS State Machines Not 

specified 

Not 

specified 

Processes 

Table 1.Operating Systems for Wireless Sensor Networks. 

Until now, there are very few published articles that include 

assessments and comparisons between different operating 

systems in terms of power consumption. The first one is a 

paper in which a comparison between TinyOS and MantisOS 

is provided [1].The main contribution of that paper is the 

evaluation of the performance of event-driven vs. multi-

threaded systems in terms of power consumption and 

execution time, but the evaluation does not take into account 

the interaction between hardware and software and how the 

operating systems manages the different parts of the mote 

using power adjustment handlers. On the other hand, article 

[2] gives an assessment of the battery life of the mote running 

some applications on different operating systems, but it does 

not give any information about the instant current drained and 

its relation with the power state of the mote. Finally, in [3] its 

authors identify and measure the cost of elementary 

operations with respect to the overall power consumption, but 

they do not relate this information with real operating 

systems. Apart from measuring the average and instant 

current consumption, in that article, the noise that the 

operating system can introduce in the power supply of the 

mote during its operation is taken into account. This is an 

important matter because the noise can affect the data 

acquired from the mote’s analog sensors and it has not been 

considered before in this context. Other authors have 

confirmed this risk [4] and its effect over sensors has been 

studied in [5]. 

IV. OPERATING SYSTEMS 

This section provides a summary of the most important 

operating systems for wireless sensor networks. The attention 

has been focused on four of them, basing this selection on 

certain parameters, such as: the number of publications about 
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them or the activity of the communities that support them. 

Concerning the number of publications, the percentage of 

articles related to each operating system included in the main 

scientific and engineering online databases has been 

calculated. The databases considered were: IEEE Xplore, 

ACM Digital Library and Science Direct. The percentages 

are: 81% TinyOS, 9% Contiki, 8% Mantis and 1% others. The 

supporting most active communities are the TinyOS 

development group, with more than 10 new releases in a 

decade, support for 12 different platforms and an annual 

TinyOS technology exchange developer meeting, and the 

Contiki group, with seven releases and a development team 

composed of people from prestigious companies and research 

institutions. As a result, the following ones have been selected 

as the most active and widely accepted: TinyOS Version 1.0 

[7,8], TinyOS Version 2.0 [9], Contiki [13] and Mantis 

[10,11]. At the beginning of this analysis, the SOS [12] 

operating system was also included as well. But, it was finally 

discarded due to several problems to make all its modules 

fully functional and the announcement that it is no longer 

going to be supported by its developers. 

 Tinyos version 1.0 (T1)  

TinyOS was the first event-driven operating system specific 

for WSN. It was conceived at the University of California 

(Berkley) as a collection of components that implement basic 

operations and it is written in a variant of the C programming 

language named NesC. TinyOS is considered as a component 

based operating system due to this property. Components are 

connected to each other by means of interfaces. New 

applications can be quickly programmed combining 

components connected using their interfaces. There are 

components at the highest level that implement protocols, 

hardware abstractions, data structures, services, etc. Since 

TinyOS is open source, that is, programmers can combine and 

adapt its basic components to implement custom applications. 

Only the components that are really needed in the application 

are compiled and included in the final executable file, with a 

significant reduction of the total amount of the mote memory 

required. TinyOS provides a robust and reliable functionality 

by making use of static memory allocation and a non-

preemptive FIFO scheduler. All the concurrency mechanisms 

implemented are the hardware interrupts associated with their 

handlers. When an interrupt occurs, the microcontroller jumps 

immediately to the corresponding event handler, stopping the 

execution of the current task. In TinyOS there are basically 

three types of procedures: (1) commands executed 

immediately after its invocation and conceived to perform 

some action on the hardware elements of the mote, (2) event 

handlers that interrupt the execution of commands and tasks 

after being activated by the hardware, and (3) tasks that are 

functions executed in a deferred way. 

 Commands and event-handlers constitute the elements 

associated to the split-phase execution model that represents 

the usual way in which programs in TinyOS are structured. 

When the system attempts to perform an action using some 

hardware component, first it calls a command that sets the 

order and immediately ends giving back the control to the 

system. After the hardware configuration carried out by the 

command, the mote can be placed in a low power state 

waiting for the hardware response. The second phase occurs 

when the interrupt from the hardware is fired and the event 

handler receives the result from the hardware. This event-

driven programming model provides concurrency with low 

memory overhead and saving energy, since it is adapted to the 

way in which hardware works. Moreover, the mote 

components can remain in a low-power mode during periods 

of inactivity. The main problem of this methodology is the 

absence of complex concurrency abstractions which make 

difficult the implementation of mutual exclusion sections or 

the access to shared resources. For this reason, code 

specification is mainly made by using state machines that 

establish the program flow and synchronize the access to the 

shared system resources. But this programming abstraction 

based on state machines does not benefit a rapid development 

of complex new applications. In addition, the lack of support 

to deal with concurrent tasks makes very difficult to sequence 

high-level operations and block conditions between tasks. 

Tinyos version 2.0 (T2) 

The main difference between TinyOS v1.0 and TinyOS v2.0 

from the programmer’s point of view is the appearance in the 

latter of a new class of abstractions, named generic 

components. They can be included in different components, 

but each instantiation is a new different copy independent and 

private from the rest of them. TinyOS v2 also improves some 

aspects related to the platform support, reliability of the basic 

components and data structures. The boot sequence has also 

been changed and it can be blocked during a certain time to 

avoid race conditions during the execution of different 

concurrent tasks. 

Contiki 

Contiki was developed at the Swedish Institute of Computer 

Science. As in the case of TinyOS, Contiki can be considered 

an event-driven operating system but with some particularities 

that facilitate the development of new applications in which 

there are several concurrent tasks involved. One of the main 

contributions of Contiki is the introduction of protothreads. 

This abstraction allows programmers to block conditions that 

stop a thread waiting for the activation of an event from 

another concurrent thread. Protothreads simplify and reduce 

the number of the state machines needed to implement the 

sequence of high-level operations. The memory overhead 

introduced by protothreads is very low because they share the 

same stack and the thread switching only needs a little rewind 

of the stack positions. Consequently, protothreads combine 

the energy efficiency and low memory overhead of event-

driven models with blocking conditions semantics and 

programming simplicity of thread-driven models. Programs in 

Contiki can be disseminated and executed dynamically. 

Moreover, the last distributions released include a great 

variety of communication stacks and protocols such as: uIP, 

SICSlowpan, Rime, etc. 
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MantisOS (MOS) 

The last operating system taken into account in this analysis is 

Mantis, developed at the University of Colorado. It is a 

specific operating system for WSNs that facilitates the 

programming of new applications with a completely different 

approach. Mantis makes use of a multi-threaded scheduler 

allowing that a short task, with strict time constrains, 

interleaves its execution with other long complex tasks. The 

scheduler implements a round robin service and includes a 

queue of tasks ready to be executed. Using a timer, the 

scheduler divides the microprocessor time in slices and 

assigns them to the queued tasks. During each time slice only 

one task is selected and executed whereas the rest of tasks 

remain in the queue. This thread-driven model is usually 

employed in modern operating systems and it prevents a 

complex task from blocking the execution of other time-

sensitive task during too much time. 

However, this ability of accommodate different tasks 

increases the RAM memory footprint and the energy 

consumed due to the task preemption. Mantis supports binary 

and counting semaphores that ease the implementation of 

blocking structures to access shared resources. It is 

programmed in standard C language that makes easy the 

inclusion of software from other systems or communication 

stacks and its portability to different platforms, both real and 

simulated. The version used in this article is 1.0 beta. 

V. PLATFORMS 

This section exposes the main features of the two platforms 

used in the analysis: Tmote Sky [14] and MICAz [15,16]. 

They can be considered platforms for research and 

experimentation rather than professional devices, but they 

have become very popular among the research community 

due to the great availability of open source software 

developed for them, adaptability to different scenarios and 

ease of operation. They are the motes most frequently 

employed in the implementation of testbeds and are usually 

the typical platforms used for the validation and assessment of 

new protocols. The wide acceptance of these platforms in 

academic and research forums led us to consider them as the 

best option to carry out this work. 

Both motes present a very similar architecture based on a 

microcontroller together with a wireless transceiver and some 

sensors for measuring physical variables. The main difference 

between them is the microcontroller, since the Tmote Sky 

uses the Texas Instruments MSP430F1611 [19] and MICAz 

relies on the Atmel Atmega128 [21], but both include the 

same wireless transceiver: the CC2420 [24] from Texas 

Instruments. Table 2 summarizes the main features of both 

motes. A detailed presentation of these features is provided 

below. 

 Tmote Sky (Telosb) MICAz 

Microcontroller Texas MSP430 F1611 Atmel 

ATmega128(L) 

Vcc 1.8 .. 3.6 V 2.7 .. 5.5 V 

Instant current Active (500µA @ Active   5.5mA @ 

1MHz, 3V ) 4MHz, 3V 

consumption Standby (2.6 µA )   Power down ( 5 µA ) 

Off (0.2 µA )  

Wakeup time 6 µs 4.1 ms 

Architecture RISC 16 bits RISC 8 bits 

Flash 48 kB 128 kB 

RAM 10 kB 4 kB 

EPROM  4 kB 

A/D 12 bits, 8 channels 10 bits, 8 channels 

D/A 12 bits, 2 channels  

Communications JTAG, 2xUART, 2xSPI, I2C, 3xDMA, 

JTAG, 2xUART, SPI, I2C 

Transceiver CC2420  

Vcc 2.1 … 3.6 V  

Transmission power 0, –5, –10, –15, –25 

dBm 

 

Sensitivity –95 dBm  

Instant current 

consumption 

RX  18.8 mA 

 TX 17.4 mA (@ 0 dBm 

 Sleep 426 µA 

 Power down 20 µA 

 Off 0.02 µA 

Startup time 1 ms (xtal oscillator  

Radio range Over 120 m outdoors 

with 0 dBm 

 

External Memory ST M25P80 AT45DB041B 

 Flash Memory 1 MB Flash memory 512 KB 

Vcc 2.7 … 3.6 V    2.5 … 3.6 V 

Instant current Read ( >4 mA ) Read ( 4 mA ) 

Consumption Standby ( >50 µA ) Standby ( >2 µA ) 

 Power-down ( 1 µA )  

Interface SPI SPI 

Sensors 

On board integrated 

sensors: humidity, 

temperature and 

light. 

Expansion connector 

that includes digital 

I/O, analog inputs, 

I2C, SPI and UART. 

There are available 

expansion boards with 

light, temperature, 

RH, barometric 

pressure, 

accelerometers, 

acoustic and magnetic. 

Operating systems TinyOS v1, Tinyos 

v2, Contiki, Mantis 

TinyOS v1, Tinyos 

v2, Contiki, 

 OS, Sos, RETOS 

[23] 

Mantis OS, Sos, 

Nano-RK [22], 

Table 2. Main properties of Tmote Sky (Telosb) and Micaz 

platforms. 

The Tmote Sky platform is also known as Telosb. This 

duality of names comes from the fact that two companies, 

Moteiv Corporation and Crossbow, shared the same design 

and they supplied the same mote under different names. 

Moteiv Corporation has currently changed its name and it is 
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now called Sentilla. Moreover, the company has discontinued 

this product and is now focused on the development of energy 

management systems for data centers. Therefore, the proper 

name of this platform nowadays should be Telosb since this is 

currently the name under which it is supplied by Crossbow. In 

any case, due to historic reasons and since a lot of people still 

refer to this mote as Tmote, this name will be used in the rest 

of the paper.  

The main components of the Tmote platform are the Texas 

Instruments MSP430F1611 microcontroller and the Texas 

Instruments CC2420 wireless transceiver. The MSP430F1611 

is a ultra-low-power microcontroller that features 10 kB of 

RAM and 48 kB of program memory (flash). It is a 16-bit 

processor with several power-down modes and extremely low 

sleep-current. The MSP430 has a digitally controlled 

oscillator (DCO) that implements an internal clock of 8 MHz. 

The microcontroller can wake up from sleep mode in only 6 

μs, which allows a short reaction time after the activation of 

some event. The MSP430 has eight 12-bit ADC channels of 

which six are accessible on the Tmote expansion connector. 

The ADC input ranges from 0 to 3.0 V and the maximum 

sampling frequency is 200 kHz. 

Other peripherals are available, including serial peripheral 

interfaces (SPI), universal asynchronous receiver/transmitters 

(UART), timers with capture and compare functionality, 2-

port 12-bit digital-to-analog converter (DAC) module, a 

supply voltage supervisor and a 3-port direct memory access 

(DMA) controller. On the other hand, the CC2420 radio 

transceiver implements the IEEE802.15.4 standard wireless 

communication. It offers reliable wireless communication and 

power management capabilities with a very low-power 

consumption. The CC2420 is connected to the TI MSP430 

microcontroller through the SPI port. Other peripheral 

components integrated in the Tmote platform are: the USB 

connection implemented using the FTDI transceiver, a flash 

memory of 1 Mbyte of capacity and the Sensirion’s SHT15 

digital temperature and humidity sensor. A list of operating 

systems that support this platform is shown in Table 2. 

The second platform being used in this article is the MICAz 

one. This mote is supplied by Crossbow and the main 

difference with respect the Tmote platform is the 

microcontroller. The Atmega128 from Atmel is based on an 

advanced RISC architecture with instructions of 8-bit that are 

executed in a single clock cycle. The ATmega128 provides 

128 kbytes of Flash, 4 kbytes of EEPROM, 4 kbytes of 

SRAM, 53 general purpose I/O, four flexible Timer/Counters 

with compare modes and PWM, two USARTs, a byte 

oriented Two-wire Serial Interface, an 10-bit ADC with 8-

channel, a SPI serial port and an internal calibrated RC 

oscillator. Jointly with the main board of the mote, Crossbow 

sells sensor boards that can be connected to the MICAz 

expansion connector, including a great variety of sensors such 

as: light, temperature, barometric pressure, 

acceleration/seismic, acoustic, magnetic etc. A summary of 

the mote characteristics and the operating systems with 

support for this mote is shown in Table 2. 

VI. APPLICATIONS 

The final objective of this study is to compare the 

performance of the previously mentioned operating systems, 

providing at the same time results that could be easily 

reproducible by other researchers. As a first step, the 

possibility of using typical applications included as examples 

in the distributions of these operating systems was considered. 

However, an identical group of applications that were 

implemented beforehand in all of them could not be found. 

So, the decision was to conceive a new benchmark composed 

of four applications performing the most typical actions that 

the nodes of the network carry out. The same four 

applications were programmed on each operating system to 

ensure a fair comparison. 

The first one is a program that does nothing and it is called 

blank. With this program, the way in which the operating 

system manages the power consumption when there is no task 

to be executed, is evaluated. Since there are some operating 

systems that do not perform a direct control of the power state 

of the hardware, a second blank application, named blank2, 

has been programmed, where the code explicitly optimizes 

the power mode using some management functions, e.g., in 

TinyOS the components HPLPowerManagementM and 

McuSleepC have been used, whereas in MOS the impact of 

the USB interface integrated in the Tmote Sky has been 

eliminated. This test is particularly relevant because WSN 

applications require a low power operation. 

The second program is the typical blink application. With this 

program, the way the operating systems behave when they 

have to do a simple task can be determined. In this case, the 

task constantly changes the state of one LED after a period of 

time. 

With the third program called xtea the opposite case is 

checked, this is, the objective is to evaluate an application that 

involves the processing of a large quantity of data. To this 

end, it has been programmed an application in which 32 bits 

data is coded using the XTEA algorithm [20] in a loop 

repeated 150,000 times. In addition, the multithreading 

capabilities of each operating system are tested interleaving 

the XTEA algorithm with a second task that blinks one LED. 

Finally, the last program sens performs a typical WSN 

application. In this case, the microcontroller reads a 

temperature sensor every second and transmits this 

value wirelessly. As in the first case, another version of 

this program has been developed, called sens2, with an 

explicit management of the mote’s power consumption. 
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It should be noticed that different sensors are integrated 

in each platform and this can be reflected in the final 

results: MICAz uses a 10 kΩ thermistor whereas Tmote 

Sky includes the SHT15 sensor from the Sensirion 

Company. 

Contiki and MOS kernels have integrated handlers to control 

automatically the power consumption of the mote, avoiding 

the requirement of adding explicit calls to low-power 

functions in the code to change the hardware state during the 

inactivity periods. Thus, in these two operating systems, 

blank2 and sens2 applications, that explicitly perform the 

power management of the mote, are not relevant. However, 

MOS is not able to automatically control the wireless 

transceiver and it does not configure properly one of the 

control lines of the USB interface in the Tmote Sky mote. 

Therefore, a specific application blank2 has been developed 

in MOS, only for the Tmote Sky platform, with a correct 

configuration of this line for the USB transceiver and another 

application sens2 that changes the state of the wireless 

transceiver during the inactivity periods. 

VII. RESULTS AND DISSCUSION 

 Experimental setup 

First of all, the measuring process of the mote power 

consumption is presented. Since the supply voltage of the 

mote is kept constant, the power consumption is directly 

related to the current drawn. Consequently, the current gives 

an indication of the total power consumption and it can be 

measured easily, for example by measuring the voltage drop 

across a shunt resistor connected in series with the power 

supply of the mote. There are other articles in which the 

power consumption is evaluated using the lifetime of a mote 

powered by batteries. For this purpose, the mote is equipped 

initially with fully charged batteries and the parameter that is 

measured is the time period in which the mote remains in 

operation [2]. 

In this paper, another method to evaluate the mote power 

consumption has been used. The two premises were to 

measure the instantaneous consumption, thus ruling out the 

method of the batteries (as well as there may be many factors 

that can affect measures), and to achieve a high accuracy. The 

experimental setup being used is based on a SourceMeter that 

can generate the 3 V supply voltage and can measure 

accurately the current supplied. Additionally, a LabVIEW 

program that communicates with the SourceMeter through a 

GPIB link to set it up with the supply voltage and the 

sampling frequency required has been developed. Once the 

SourceMeter starts the measurement process, it can save the 

samples in its internal memory until reaching its maximum 

capacity of 2,500 samples. When the internal memory is full, 

the SourceMeter sends the data to the PC that represents it on 

a graph, calculates the mean and variance and saves all this 

information in a file. 

The advantage of this method is the high accuracy of the 

results obtained. On the other hand, the major limitation is the 

low sampling frequency that the SourceMeter admits. 

However, this sampling frequency was enough for the 

purposes in most of the tests. There was only one case in 

which a higher sampling frequency was required. For this test, 

the measurement method was changed and a shunt resistor 

followed by an amplifier [18] connected to an oscilloscope 

was used to determine the voltage drop and the current drawn. 

Results and discussion for power consumption measurement 

The results are focused on the measurement of the instant and 

average current consumption of the motes running the 

programs presented in Section 5. The programs were 

compiled for the MICAz and Tmote Sky platforms, with the 

total size of the final executable files being the ones shown in 

Table 3. Regarding the information contained in this Table, it 

should be noticed that not all the applications could be 

compiled for all the platforms. Thus, none of the Contiki 

programs could be compiled for the MICAz platform because 

by the time this comparison was done, Contiki did not support 

MICAz. Moreover, in the case of MOS it was not necessary 

to program the application Blank2 for the MICAz because 

MOS does not require an explicit call to the power 

management functions for this platform. The same condition 

occurs in Contiki for the Tmote platform and the Blank2 

application. 

  Blank Blank 2 Blink 

MICAz     

T1 ROM 476 B 620 B 1,674 B 

 RAM 19 B 21B 48 B 

T2 ROM 680 B 686 B 2,218 B 

 RAM 4 B 4 B 51 B 

MOS ROM 26 kB - 26 kB 

 RAM 1 kB - 1 kB 

Tmote Sky     

T1 ROM 1,586 B 1,586 B 2,722 B 

 RAM 27 B 27 B 45 B 

T2 ROM 1418 B 1,430 B 2,654 B 

 RAM 4 B 4 B 55 B 

MOS ROM 14 kB 15 kB 14 kB 

 RAM 1.6 kB 1.6 kB 1.6 kB 

Contiki ROM 20.8 kB - 20.9 kB 

 RAM 2.3 kB - 2.3 kB 

Table 3a. MICAz and Tmote Sky program sizes expressed in 

B (Bytes) or kB (kbytes). 

  XTEA Sens Sens 2 

MICAz  1,790 B 11,402 B 11,594 B 

T1 ROM 64 B 441 B 443 B 

 RAM 2,104 B 11,890 B 13,906 B 

T2 ROM 49 B 278 B 331 B 

 RAM 27 kB 30 kB 30 kB 

MOS ROM 1 kB 1.1 kB 1.1 kB 

 RAM    

Tmote Sky     

T1 ROM 2,858 B 13,040 B 13,203 

 RAM 45 B 405 B 407 B 

T2 ROM 2,656 B 12,198 B 14,068 B 

 RAM 35 B 328 B 384 B 

MOS ROM 14 kB 16 kB 16 kB 

 RAM 1.6 kB 1.7 kB 1.7 kB 

Contiki ROM 21 kB 21 kB 21 kB 

 RAM 2.3 kB 2.3 kB 2.3 kB 
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Table 3b. MICAz and Tmote Sky program sizes expressed in 

B (Bytes) or kB (kbytes). 

The instant currents drawn by the motes running the test 

applications are shown in the graphs of Figure 1, whereas the 

average current is represented in Figure 2. With these graphs 

the power state of the platform components during the 

execution of each program can be determined. 

The blank program results show that T2 has a current 

consumption very similar for both platforms. The 

consumption of T2 is the best in the case of MICAz and very 

close to T1 in the case of Tmote. Most striking is that T1 for 

MICAz presents a current consumption much higher than the 

Tmote Sky case. This is due to the different ways in which 

each operating system manages the microcontroller power 

modes. For example, the ATmega128 can only be placed in a 

low-power mode when it is commanded explicitly by means 

of the adjustPower function. However, in the MSP430 case, 

the scheduler constantly calculates the lowest power mode 

that is compatible with the software operation [17]. For its 

part, MOS estimates the low-power state whenever the 

scheduler has no tasks to run. The problem in this case is that 

the microcontroller cannot enter the lowest power down 

mode, because MOS always needs to leave at least a timer 

running to manage the scheduler operation. Contiki presents a 

similar behavior and its efficiency is also worse than TinyOS. 

In the program blank2 the power consumption has been 

explicitly controlled by calling the power state handler 

provided by each operating system. Curiously, in T2 the 

overload introduced by this feature makes that the average 

current rises, although not very significantly. The same 

behavior can be seen in T1 running on the Tmote Sky. 

Nevertheless, T1 on MICAz appreciably reduces the 

consumption because the microcontroller no longer remains 

in active mode during the inactivity periods. A great 

improvement has also been observed in MOS running on the 

Tmote platform when the line that controls the USB 

connection is turned off, as indicated in the datasheet [18,19]. 

This reduction represents about 3.5 mA of the total average 

consumption. 

 

Figure 1. Average current consumption.( First row blank 

program; second row Blank2 program with optimized 

consumption; third row Blink; fourth Sens sensing and 

transmission; fifth row Sens2 optimized sensing and 

transmission. ) 

The Blink application has basically two power consumption 

levels. One of them corresponds to the blank application level 

and the other one is equal to this level but adding the LED 

consumption through a series 470 Ω resistor. 
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Figure 2(a). Instant current consumption of each application 

for both motes. 

The results of the XTEA program reveal that MOS is the only 

operating system that really performs an interleaved execution 

of two tasks at the same time. The MOS multithreading 

scheduler can effectively execute several tasks in parallel 

without the programmer’s awareness. For the rest of operating 

systems the execution of the two tasks is sequential: first the 

mote runs the XTEA algorithm and after its completion the 

Blink program. 

 

Figure 2(b). Instant current consumption of each application 

for both motes. 

This fact is reflected in the instant current graphs that can be 

seen in the Figure 2(a,b,c,d). For T1, T2 and Contiki there are 

two parts that can be easily distinguished in the graph: the 

first part is flat and represents the execution of the XTEA 

algorithm and the second part with a square form that 

corresponds to the blinking process. Using this program the 

processing time of two motes can be easily compared. The 

difference in the execution time can be determined by the 

number of samples in the instant current graph that the initial 

execution of the XTEA algorithm takes. Consequently, as it 

can be seen in the graph, the execution of this algorithm on 

the MSP430 takes longer than on the ATmega128. Since both 

microcontrollers have the same clock frequency, the 

explanation of this result should be found in their internal 

architectures. Atmel implements an8-bit Harvard architecture 

whereas Texas is based on a 16-bit von Newman 

organization, but above all, the main difference is that 

Atmel128 can execute an instruction in one clock cycle, 

http://www.ijcstjournal.org/


International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019 

ISSN: 2347-8578                          www.ijcstjournal.org                                              Page 71 

whereas MSP430 executes an instruction within a variable 

interval from 1 to 6 cycles. 

8-bit Harvard architecture whereas Texas is based on a 16-bit 

von Newman organization, but above all, the main difference 

is that Atmel128 can execute an instruction in one clock 

cycle, whereas MSP430 executes an instruction within a 

variable interval from 1 to 6 cycles. In the case of the Sens 

application, the current consumption rises to 23 mA in 

MICAz, and between 18 and 24 mA in the Tmote Sky. This 

increment is related to the power mode in which the 

microcontroller and the transceiver are configured. Sens does 

not explicitly call the power management functions provided 

by the operating systems and consequently the mote remains 

in an active mode all the time. In the case of the Sens 

application, the current consumption rises to 23 mA in 

MICAz, and between 18 and 24 mA in the Tmote Sky. This 

increment is related to the power mode in which the 

microcontroller and the transceiver are configured.  

 

 

Figure 2(c). Instant current consumption of each application 

for both motes. 

 

 

Figure 2(d). Instant current consumption of each application 

for both motes. 

This increment is related to the power mode in which the 

microcontroller and the transceiver are configured. Sens does 

not explicitly call the power management functions provided 

by the operating systems and consequently the mote remains 

in an active mode all the time. So, according to Table 2 

(without taking into account the microcontroller clock 

frequency) the current should be: 500 µA + 17.4 mA = 18 mA 

for the Tmote Sky and 5.5 mA + 17.4 mA = 23 mA for the 

MICAz. As it can be seen the average current for the three 

operating systems approach the theoretical prediction for 

MICAz: 23,06 mA with T2, 23.64 mA with T1 and 24.29 mA 

with MOS. 

Nevertheless, in the Tmote Sky only T2 fulfils the theoretical 

value with 18.63 mA, whereas T1 and MOS are 1.5 and 3.5 

mA respectively above the theoretical expectation. The 
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increment in MOS could be accounted for the 3.5 mA 

consumed by the USB interface. 

Finally, the last program sens2 drastically reduces the total 

consumption, especially in T2. Sens2 include the same power 

management handlers used in blank2 program. Contiki and 

MOS show again the highest consumption, although the latter 

running on the Tmote Sky could reduce its current disabling 

the USB. It should be noticed that for Contiki this 

modification does not improve the results of the previous 

case, since this operating system handles by itself the 

activation of the mote components. 

Results and discussion for noise measurement 

It is important to point out the noise that each operating 

system introduces in the power supply of the mote due to 

quick changes in the power state of some hardware elements. 

For this purpose, the noise level added to the supply voltage 

during the mote operation running the Blank and Blank2 

applications has been evaluated. In Table 4, the variance of 

the current samples during the execution of these programs 

for each operating system and each mote is shown. For the 

estimation of these statistics 2,500 samples were taken, and 

the weighting is set to sample, the confidence interval is the 

95.4%. From Table 4 results, it can be deduced that Contiki is 

the noisiest one, followed by MOS. 

As shown in the graphs of Figure 2(a,b,c,d), MOS produces a 

noise level added to the steady current that is higher than with 

other operating systems. With a more detailed observation of 

these graphs it can be pointed out that there is a pattern that 

repeats periodically. The first hypothesis was to blame the 

operating system scheduler. MOS activates a timer which 

overflows every millisecond, but the scheduler is invoked by 

default after 20 ms. 

 Blank Blank2 

 

MICAz 

Tmote 

Sky MICAz Tmote Sky 

T1 1.833E-12 2.06E-12 1.679E-12 63.749E-12 

T2 20.8E-12 2.872E-12 29.058E-12 11.8E-12 

MOS 22.2E-9 5.482E-9 - 35.409E-9 

Contiki - 3.41E-6 - - 

Table 4. Variance of the current samples taken. 

 

With the measurement system based on the SourceMeter, the 

sampling frequency was not high enough to determine the 

source of this noise that could be the timer interrupt, the 

scheduler or some other element. Therefore, the measurement 

method had to be changed for the second procedure 

introduced in the experimental setup subsection, which is 

based on a shunt resistor. This method is much more 

inaccurate but with this change the sampling frequency could 

be increased. The result, as shown in Figure 3, is a signal with 

peaks at intervals of 1 ms. To check whether the noisy signal 

of 1 ms is related with the main timer of MOS or not, an 

additional test was carried out changing the overflow period 

of this timer from 1 ms to 2 ms. The measurements with this 

new overflow period showed that the noisy signal also 

changed to 2 ms. So, it can be concluded that the timer 

operation is what produces this noise. Finally, an important 

issue is the perturbation that the noise can produce in the 

sensor’s operation. To evaluate this risk, the conditioning 

circuit of the analog sensors and its supply voltage was 

analyzed. The noise affects the supply voltage of the mote and 

therefore it could perturb the conditioning circuit and the 

sensor measures. To evaluate of this effect the temperature 

sensors included in the motes were used. In MICAz, there is a 

thermistor that is fed by means of a microcontroller output pin 

instead of through the general power supply signal of the 

mote. The test that was performed to find out how the noise 

affects the sensors was focused on monitoring the supply 

voltage of this sensor. The result of this test is the voltage 

graph shown in Figure 3. 

 

 

Figure 3. Noise on the supply voltage of the sensors 

of Tmote Sky & MICAz with MOS. (The 

measurement was made with an oscilloscope; the 

input channel is AC coupled.) 

 

This plot lets us assert that there is almost no noise present on 

this line during the sensor operation. The Tmote Sky case is 

not different because, although the temperature sensor is the 

digital SHT15 sensor from Sensirion, it is also powered 

through a microcontroller digital output and the measured 

noise level is negligible as well. Despite the fact that very low 
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levels of noise in the sensor supply lines were found, this 

matter should be taken into account during the design of new 

motes. In the case of sensitive sensors that require a signal 

conditioning or amplification, filtering the sensors supply line 

is recommend, even if they are fed from some microcontroller 

digital pin. 

VIII. CONCLUSIONS 

After the development of all the applications for the different 

operating systems shown in this paper, it can be concluded 

that programming applications in C implies a much less steep 

learning curve than when the application is programmed in 

NesC, such as is the case of TinyOS. In NesC the programmer 

has to get used to a new programming paradigm that includes 

concepts such as: components, modules, configurations, 

interfaces, etc. The positive side of the TinyOS programming 

is the efficiency that can be achieved in terms of code size 

(see Table 3) and energy consumption. 

According to the results presented, in general T2 is more 

efficient in terms of reduced energy consumption than T1, 

MOS and Contiki. In the case of the Tmote Sky platform the 

difference between T1 and T2 is minimal, even though T1 is a 

little more efficient in simple programs. Moreover, in Section 

3 it is seen that T2 is simpler than T1, Contiki and MOS. As 

expected, in terms of energy efficiency, a simple system 

normally consumes less than a more complex one. The real 

question is whether this improvement of the power 

consumption implies to accept lower capabilities for the final 

system or not. There is no single answer to this question 

because it depends on whether a particular application is 

looking for the implementation of advanced features, like 

parallel execution of complex tasks, or a further optimization 

of the energy consumption. In most applications developed 

the latter is chosen because WSN is a field in which it very is 

important to maximize the network lifetime. 
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