
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 63

Reduced Energy Consumption in Operating Systems for

Wireless Sensor Networks
 Md. Khalid Hassan [1], Seema Sinha [2], Dr. Saket Bihari Singh [3]

Research Scholar [1], University Dept. of Mathematics, Magadh University, BodhGaya , Bihar

Research Scholar [2], University Dept. of Mathematics, Magadh University, BodhGaya , Bihar

Associate Professor (Retd) [3], Dept. of Mathematics, A.M. College, Gaya, Bihar

ABSTRACT
This paper reveals with four wireless sensor network operating systems which are compared in terms of reduced

energy consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS

v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair

evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a

Wireless Sensor Network performs. The results show the instant and average current consumption of the devices

during the execution of these applications. The experimental measurements provide a good insight into the power

mode in which the device components are running at every moment, and they can be used to compare the performance

of different operating systems executing the same tasks.

Keywords:- Wireless Sensor Network Operating Systems; Tinyos; Mantis; Contiki; Micaz; Tmote

I. INTRODUCTION

Wireless sensor networks (WSNs) have emerged as a key

technology for a broad spectrum of applications, Wireless

Sensor Networks (WSNs) are a very promising technology on

which many researchers have focused on their attention .This

technology has become a reality thanks to the development of

wireless transceivers and microcontrollers with very low

power consumption.A wireless transceiver in conjunction

with a low power microcontroller, some

MicroElectroMechanical Systems (MEMS) to measure

physical or chemical variables and a battery are the basic

elements that are integrated in the nodes of the network. Due

to their small size, low cost and easy deployment, the nodes

of the network are usually called motes.Motes are small,

compact and autonomous devices destined to become

ubiquitous. WSN is a technology with an enormous potential

that can be used in a high number of heterogeneous

applications of interest to society such as environmental

monitoring, traffic control, structural monitoring of bridges

and buildings, tracking of people and objects, assisted living,

etc. The software that runs on the motes plays a fundamental

role in the development of WSNs. It controls the mote

operation, implements the network protocols and manages the

hardware power consumption. Various specific operating

systems and programming languages have been proposed to

facilitate and speed up the development of new applications.

Currently, the most important and widely adopted

operating systems for WSN are TinyOS, Contiki and Mantis.

The main goals of all of them are to provide a robust and

reliable

operation and to maintain the mote in the deepest low power

mode compatible with the requirements needed at that

moment. Low power operation extends the battery lifetime of

the motes and it is probably the most important requirement in

this type of systems.

A WSN can be considered as an embedded system with

severe constraints in terms of memory, computational

capacity and power consumption. Traditionally, the

development of software for embedded systems with very

limited resources has been based on event-driven

programming models. TinyOS follows the event-driven

model and achieves efficient low power consumption

operation and low memory footprint by means of a very

simple execution model, similar to the way the hardware

works. Contiki is the second operating system being taken

into account in this analysis. Contiki, together with TinyOS,

are nowadays the most important operating systems for WSN.

Both of them support IPv6 in their communications stacks, a

key feature for an increasing number of companies and

research institutions that are pursuing a seamless

connection of WSNs to Internet. Contiki can also be

considered an event-driven operating system, but it

incorporates programming abstractions to manage the

synchronization of concurrent tasks that facilitate the

programming of high level sequences of actions.

Finally, unlike the first two cases, Mantis is an example

of multithreading operating system. The main features

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 64

of Mantis are the integration of a multithreading

scheduler and the programming abstractions that deal

with concurrent threads.

II. OBJECTIVE OF THE STUDY

The aim of this study is to analyze and compare the low-level

current consumption of the mote during the execution of an

application running on different operating systems. These

measurements reveal the power state of the hardware and the

current drawn by the mote during the program execution.

Another effect that is evaluated is the noise that the operating

system can generate on the supply voltage of the mote due to

continuous changes in the hardware power state.This is the

case, for example, of a multi-threading scheduler with no task

ready to be run. The mote wakes up when the scheduler timer

overflows, however since there is no task ready to be

executed, the mote immediately goes back to a power down

state. This process produces quick transitions in the mote

current consumption and fluctuations in its supply voltage.

The inconvenience of having this noise affecting the supply

voltage is the risk of interfering with sensitive parts of the

mote, such as analog sensors.During the reduced energy

consumption assessment, a benchmark composed of four

applications covering the following operations has been used:

scheduling of timed events, data sampling from integrated

sensors, data processing and wireless communications.

III. RELATED WORKS

In the bibliography there are a large number of articles

concerning new protocols, algorithms and operating systems

for WSNs. For example, in Table 1, a list of operating

systems proposed in this area is shown. This is a large list

considering that TinyOS, which can be considered the pioneer

of this type of systems, only dates from the beginning of the

last decade. Each one of these operating systems has been

developed pursuing different objectives and they present

different features. Thus, choosing the most appropriate

operating system for one specific application is not an easy

matter, because there are a lot of proposals and very few

papers with practical evaluations and comparisons between

them. In particular, power management can be considered as

the most important restriction that developers usually face

when they are trying to deploy a real WSN. Consequently,

the results that are provided in this article try to

compare the real power consumption of the most

important operating systems running on typical motes,

with the intention of helping developers in their choice.

OS Model ROM RAM Type of

Memory Memory Processes

TinyOS v1 Events 3.4 kbytes 336 Bytes Tasks,

commands and

event handlers

TinyOS v2 Events 3.4 kbytes 336 Bytes Tasks,

commands and

event handlers

Contiki Events 3.8 kbytes 230 Bytes Proto threads

MantisOS Multithreading 14kbytes 500 Bytes Threads

Nano-RK Multithreading 10kbytes

2,000 Bytes

Tasks with

priority

t-kernel Multithreading 28.8 kbytes 2,000 Bytes Threads

Bertha Multithreading 10kbytes 1,500 Bytes Process

fragments

CORMO Events 5.5 kbytes 130 Bytes Tasks and

event handlers

SOS Events 20kbytes 1,163

Bytes

Tasks defined

as modules

SenOS State Machines Not

specified

Not

specified

Processes

Table 1.Operating Systems for Wireless Sensor Networks.

Until now, there are very few published articles that include

assessments and comparisons between different operating

systems in terms of power consumption. The first one is a

paper in which a comparison between TinyOS and MantisOS

is provided [1].The main contribution of that paper is the

evaluation of the performance of event-driven vs. multi-

threaded systems in terms of power consumption and

execution time, but the evaluation does not take into account

the interaction between hardware and software and how the

operating systems manages the different parts of the mote

using power adjustment handlers. On the other hand, article

[2] gives an assessment of the battery life of the mote running

some applications on different operating systems, but it does

not give any information about the instant current drained and

its relation with the power state of the mote. Finally, in [3] its

authors identify and measure the cost of elementary

operations with respect to the overall power consumption, but

they do not relate this information with real operating

systems. Apart from measuring the average and instant

current consumption, in that article, the noise that the

operating system can introduce in the power supply of the

mote during its operation is taken into account. This is an

important matter because the noise can affect the data

acquired from the mote’s analog sensors and it has not been

considered before in this context. Other authors have

confirmed this risk [4] and its effect over sensors has been

studied in [5].

IV. OPERATING SYSTEMS

This section provides a summary of the most important

operating systems for wireless sensor networks. The attention

has been focused on four of them, basing this selection on

certain parameters, such as: the number of publications about

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 65

them or the activity of the communities that support them.

Concerning the number of publications, the percentage of

articles related to each operating system included in the main

scientific and engineering online databases has been

calculated. The databases considered were: IEEE Xplore,

ACM Digital Library and Science Direct. The percentages

are: 81% TinyOS, 9% Contiki, 8% Mantis and 1% others. The

supporting most active communities are the TinyOS

development group, with more than 10 new releases in a

decade, support for 12 different platforms and an annual

TinyOS technology exchange developer meeting, and the

Contiki group, with seven releases and a development team

composed of people from prestigious companies and research

institutions. As a result, the following ones have been selected

as the most active and widely accepted: TinyOS Version 1.0

[7,8], TinyOS Version 2.0 [9], Contiki [13] and Mantis

[10,11]. At the beginning of this analysis, the SOS [12]

operating system was also included as well. But, it was finally

discarded due to several problems to make all its modules

fully functional and the announcement that it is no longer

going to be supported by its developers.

 Tinyos version 1.0 (T1)

TinyOS was the first event-driven operating system specific

for WSN. It was conceived at the University of California

(Berkley) as a collection of components that implement basic

operations and it is written in a variant of the C programming

language named NesC. TinyOS is considered as a component

based operating system due to this property. Components are

connected to each other by means of interfaces. New

applications can be quickly programmed combining

components connected using their interfaces. There are

components at the highest level that implement protocols,

hardware abstractions, data structures, services, etc. Since

TinyOS is open source, that is, programmers can combine and

adapt its basic components to implement custom applications.

Only the components that are really needed in the application

are compiled and included in the final executable file, with a

significant reduction of the total amount of the mote memory

required. TinyOS provides a robust and reliable functionality

by making use of static memory allocation and a non-

preemptive FIFO scheduler. All the concurrency mechanisms

implemented are the hardware interrupts associated with their

handlers. When an interrupt occurs, the microcontroller jumps

immediately to the corresponding event handler, stopping the

execution of the current task. In TinyOS there are basically

three types of procedures: (1) commands executed

immediately after its invocation and conceived to perform

some action on the hardware elements of the mote, (2) event

handlers that interrupt the execution of commands and tasks

after being activated by the hardware, and (3) tasks that are

functions executed in a deferred way.

 Commands and event-handlers constitute the elements

associated to the split-phase execution model that represents

the usual way in which programs in TinyOS are structured.

When the system attempts to perform an action using some

hardware component, first it calls a command that sets the

order and immediately ends giving back the control to the

system. After the hardware configuration carried out by the

command, the mote can be placed in a low power state

waiting for the hardware response. The second phase occurs

when the interrupt from the hardware is fired and the event

handler receives the result from the hardware. This event-

driven programming model provides concurrency with low

memory overhead and saving energy, since it is adapted to the

way in which hardware works. Moreover, the mote

components can remain in a low-power mode during periods

of inactivity. The main problem of this methodology is the

absence of complex concurrency abstractions which make

difficult the implementation of mutual exclusion sections or

the access to shared resources. For this reason, code

specification is mainly made by using state machines that

establish the program flow and synchronize the access to the

shared system resources. But this programming abstraction

based on state machines does not benefit a rapid development

of complex new applications. In addition, the lack of support

to deal with concurrent tasks makes very difficult to sequence

high-level operations and block conditions between tasks.

Tinyos version 2.0 (T2)

The main difference between TinyOS v1.0 and TinyOS v2.0

from the programmer’s point of view is the appearance in the

latter of a new class of abstractions, named generic

components. They can be included in different components,

but each instantiation is a new different copy independent and

private from the rest of them. TinyOS v2 also improves some

aspects related to the platform support, reliability of the basic

components and data structures. The boot sequence has also

been changed and it can be blocked during a certain time to

avoid race conditions during the execution of different

concurrent tasks.

Contiki

Contiki was developed at the Swedish Institute of Computer

Science. As in the case of TinyOS, Contiki can be considered

an event-driven operating system but with some particularities

that facilitate the development of new applications in which

there are several concurrent tasks involved. One of the main

contributions of Contiki is the introduction of protothreads.

This abstraction allows programmers to block conditions that

stop a thread waiting for the activation of an event from

another concurrent thread. Protothreads simplify and reduce

the number of the state machines needed to implement the

sequence of high-level operations. The memory overhead

introduced by protothreads is very low because they share the

same stack and the thread switching only needs a little rewind

of the stack positions. Consequently, protothreads combine

the energy efficiency and low memory overhead of event-

driven models with blocking conditions semantics and

programming simplicity of thread-driven models. Programs in

Contiki can be disseminated and executed dynamically.

Moreover, the last distributions released include a great

variety of communication stacks and protocols such as: uIP,

SICSlowpan, Rime, etc.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 66

MantisOS (MOS)

The last operating system taken into account in this analysis is

Mantis, developed at the University of Colorado. It is a

specific operating system for WSNs that facilitates the

programming of new applications with a completely different

approach. Mantis makes use of a multi-threaded scheduler

allowing that a short task, with strict time constrains,

interleaves its execution with other long complex tasks. The

scheduler implements a round robin service and includes a

queue of tasks ready to be executed. Using a timer, the

scheduler divides the microprocessor time in slices and

assigns them to the queued tasks. During each time slice only

one task is selected and executed whereas the rest of tasks

remain in the queue. This thread-driven model is usually

employed in modern operating systems and it prevents a

complex task from blocking the execution of other time-

sensitive task during too much time.

However, this ability of accommodate different tasks

increases the RAM memory footprint and the energy

consumed due to the task preemption. Mantis supports binary

and counting semaphores that ease the implementation of

blocking structures to access shared resources. It is

programmed in standard C language that makes easy the

inclusion of software from other systems or communication

stacks and its portability to different platforms, both real and

simulated. The version used in this article is 1.0 beta.

V. PLATFORMS

This section exposes the main features of the two platforms

used in the analysis: Tmote Sky [14] and MICAz [15,16].

They can be considered platforms for research and

experimentation rather than professional devices, but they

have become very popular among the research community

due to the great availability of open source software

developed for them, adaptability to different scenarios and

ease of operation. They are the motes most frequently

employed in the implementation of testbeds and are usually

the typical platforms used for the validation and assessment of

new protocols. The wide acceptance of these platforms in

academic and research forums led us to consider them as the

best option to carry out this work.

Both motes present a very similar architecture based on a

microcontroller together with a wireless transceiver and some

sensors for measuring physical variables. The main difference

between them is the microcontroller, since the Tmote Sky

uses the Texas Instruments MSP430F1611 [19] and MICAz

relies on the Atmel Atmega128 [21], but both include the

same wireless transceiver: the CC2420 [24] from Texas

Instruments. Table 2 summarizes the main features of both

motes. A detailed presentation of these features is provided

below.

 Tmote Sky (Telosb) MICAz

Microcontroller Texas MSP430 F1611 Atmel

ATmega128(L)

Vcc 1.8 .. 3.6 V 2.7 .. 5.5 V

Instant current Active (500µA @ Active 5.5mA @

1MHz, 3V) 4MHz, 3V

consumption Standby (2.6 µA) Power down (5 µA)

Off (0.2 µA)

Wakeup time 6 µs 4.1 ms

Architecture RISC 16 bits RISC 8 bits

Flash 48 kB 128 kB

RAM 10 kB 4 kB

EPROM 4 kB

A/D 12 bits, 8 channels 10 bits, 8 channels

D/A 12 bits, 2 channels

Communications JTAG, 2xUART, 2xSPI, I2C, 3xDMA,

JTAG, 2xUART, SPI, I2C

Transceiver CC2420

Vcc 2.1 … 3.6 V

Transmission power 0, –5, –10, –15, –25

dBm

Sensitivity –95 dBm

Instant current

consumption

RX 18.8 mA

 TX 17.4 mA (@ 0 dBm

 Sleep 426 µA

 Power down 20 µA

 Off 0.02 µA

Startup time 1 ms (xtal oscillator

Radio range Over 120 m outdoors

with 0 dBm

External Memory ST M25P80 AT45DB041B

 Flash Memory 1 MB Flash memory 512 KB

Vcc 2.7 … 3.6 V 2.5 … 3.6 V

Instant current Read (>4 mA) Read (4 mA)

Consumption Standby (>50 µA) Standby (>2 µA)

 Power-down (1 µA)

Interface SPI SPI

Sensors

On board integrated

sensors: humidity,

temperature and

light.

Expansion connector

that includes digital

I/O, analog inputs,

I2C, SPI and UART.

There are available

expansion boards with

light, temperature,

RH, barometric

pressure,

accelerometers,

acoustic and magnetic.

Operating systems TinyOS v1, Tinyos

v2, Contiki, Mantis

TinyOS v1, Tinyos

v2, Contiki,

 OS, Sos, RETOS

[23]

Mantis OS, Sos,

Nano-RK [22],

Table 2. Main properties of Tmote Sky (Telosb) and Micaz

platforms.

The Tmote Sky platform is also known as Telosb. This

duality of names comes from the fact that two companies,

Moteiv Corporation and Crossbow, shared the same design

and they supplied the same mote under different names.

Moteiv Corporation has currently changed its name and it is

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 67

now called Sentilla. Moreover, the company has discontinued

this product and is now focused on the development of energy

management systems for data centers. Therefore, the proper

name of this platform nowadays should be Telosb since this is

currently the name under which it is supplied by Crossbow. In

any case, due to historic reasons and since a lot of people still

refer to this mote as Tmote, this name will be used in the rest

of the paper.

The main components of the Tmote platform are the Texas

Instruments MSP430F1611 microcontroller and the Texas

Instruments CC2420 wireless transceiver. The MSP430F1611

is a ultra-low-power microcontroller that features 10 kB of

RAM and 48 kB of program memory (flash). It is a 16-bit

processor with several power-down modes and extremely low

sleep-current. The MSP430 has a digitally controlled

oscillator (DCO) that implements an internal clock of 8 MHz.

The microcontroller can wake up from sleep mode in only 6

μs, which allows a short reaction time after the activation of

some event. The MSP430 has eight 12-bit ADC channels of

which six are accessible on the Tmote expansion connector.

The ADC input ranges from 0 to 3.0 V and the maximum

sampling frequency is 200 kHz.

Other peripherals are available, including serial peripheral

interfaces (SPI), universal asynchronous receiver/transmitters

(UART), timers with capture and compare functionality, 2-

port 12-bit digital-to-analog converter (DAC) module, a

supply voltage supervisor and a 3-port direct memory access

(DMA) controller. On the other hand, the CC2420 radio

transceiver implements the IEEE802.15.4 standard wireless

communication. It offers reliable wireless communication and

power management capabilities with a very low-power

consumption. The CC2420 is connected to the TI MSP430

microcontroller through the SPI port. Other peripheral

components integrated in the Tmote platform are: the USB

connection implemented using the FTDI transceiver, a flash

memory of 1 Mbyte of capacity and the Sensirion’s SHT15

digital temperature and humidity sensor. A list of operating

systems that support this platform is shown in Table 2.

The second platform being used in this article is the MICAz

one. This mote is supplied by Crossbow and the main

difference with respect the Tmote platform is the

microcontroller. The Atmega128 from Atmel is based on an

advanced RISC architecture with instructions of 8-bit that are

executed in a single clock cycle. The ATmega128 provides

128 kbytes of Flash, 4 kbytes of EEPROM, 4 kbytes of

SRAM, 53 general purpose I/O, four flexible Timer/Counters

with compare modes and PWM, two USARTs, a byte

oriented Two-wire Serial Interface, an 10-bit ADC with 8-

channel, a SPI serial port and an internal calibrated RC

oscillator. Jointly with the main board of the mote, Crossbow

sells sensor boards that can be connected to the MICAz

expansion connector, including a great variety of sensors such

as: light, temperature, barometric pressure,

acceleration/seismic, acoustic, magnetic etc. A summary of

the mote characteristics and the operating systems with

support for this mote is shown in Table 2.

VI. APPLICATIONS

The final objective of this study is to compare the

performance of the previously mentioned operating systems,

providing at the same time results that could be easily

reproducible by other researchers. As a first step, the

possibility of using typical applications included as examples

in the distributions of these operating systems was considered.

However, an identical group of applications that were

implemented beforehand in all of them could not be found.

So, the decision was to conceive a new benchmark composed

of four applications performing the most typical actions that

the nodes of the network carry out. The same four

applications were programmed on each operating system to

ensure a fair comparison.

The first one is a program that does nothing and it is called

blank. With this program, the way in which the operating

system manages the power consumption when there is no task

to be executed, is evaluated. Since there are some operating

systems that do not perform a direct control of the power state

of the hardware, a second blank application, named blank2,

has been programmed, where the code explicitly optimizes

the power mode using some management functions, e.g., in

TinyOS the components HPLPowerManagementM and

McuSleepC have been used, whereas in MOS the impact of

the USB interface integrated in the Tmote Sky has been

eliminated. This test is particularly relevant because WSN

applications require a low power operation.

The second program is the typical blink application. With this

program, the way the operating systems behave when they

have to do a simple task can be determined. In this case, the

task constantly changes the state of one LED after a period of

time.

With the third program called xtea the opposite case is

checked, this is, the objective is to evaluate an application that

involves the processing of a large quantity of data. To this

end, it has been programmed an application in which 32 bits

data is coded using the XTEA algorithm [20] in a loop

repeated 150,000 times. In addition, the multithreading

capabilities of each operating system are tested interleaving

the XTEA algorithm with a second task that blinks one LED.

Finally, the last program sens performs a typical WSN

application. In this case, the microcontroller reads a

temperature sensor every second and transmits this

value wirelessly. As in the first case, another version of

this program has been developed, called sens2, with an

explicit management of the mote’s power consumption.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 68

It should be noticed that different sensors are integrated

in each platform and this can be reflected in the final

results: MICAz uses a 10 kΩ thermistor whereas Tmote

Sky includes the SHT15 sensor from the Sensirion

Company.

Contiki and MOS kernels have integrated handlers to control

automatically the power consumption of the mote, avoiding

the requirement of adding explicit calls to low-power

functions in the code to change the hardware state during the

inactivity periods. Thus, in these two operating systems,

blank2 and sens2 applications, that explicitly perform the

power management of the mote, are not relevant. However,

MOS is not able to automatically control the wireless

transceiver and it does not configure properly one of the

control lines of the USB interface in the Tmote Sky mote.

Therefore, a specific application blank2 has been developed

in MOS, only for the Tmote Sky platform, with a correct

configuration of this line for the USB transceiver and another

application sens2 that changes the state of the wireless

transceiver during the inactivity periods.

VII. RESULTS AND DISSCUSION

 Experimental setup

First of all, the measuring process of the mote power

consumption is presented. Since the supply voltage of the

mote is kept constant, the power consumption is directly

related to the current drawn. Consequently, the current gives

an indication of the total power consumption and it can be

measured easily, for example by measuring the voltage drop

across a shunt resistor connected in series with the power

supply of the mote. There are other articles in which the

power consumption is evaluated using the lifetime of a mote

powered by batteries. For this purpose, the mote is equipped

initially with fully charged batteries and the parameter that is

measured is the time period in which the mote remains in

operation [2].

In this paper, another method to evaluate the mote power

consumption has been used. The two premises were to

measure the instantaneous consumption, thus ruling out the

method of the batteries (as well as there may be many factors

that can affect measures), and to achieve a high accuracy. The

experimental setup being used is based on a SourceMeter that

can generate the 3 V supply voltage and can measure

accurately the current supplied. Additionally, a LabVIEW

program that communicates with the SourceMeter through a

GPIB link to set it up with the supply voltage and the

sampling frequency required has been developed. Once the

SourceMeter starts the measurement process, it can save the

samples in its internal memory until reaching its maximum

capacity of 2,500 samples. When the internal memory is full,

the SourceMeter sends the data to the PC that represents it on

a graph, calculates the mean and variance and saves all this

information in a file.

The advantage of this method is the high accuracy of the

results obtained. On the other hand, the major limitation is the

low sampling frequency that the SourceMeter admits.

However, this sampling frequency was enough for the

purposes in most of the tests. There was only one case in

which a higher sampling frequency was required. For this test,

the measurement method was changed and a shunt resistor

followed by an amplifier [18] connected to an oscilloscope

was used to determine the voltage drop and the current drawn.

Results and discussion for power consumption measurement

The results are focused on the measurement of the instant and

average current consumption of the motes running the

programs presented in Section 5. The programs were

compiled for the MICAz and Tmote Sky platforms, with the

total size of the final executable files being the ones shown in

Table 3. Regarding the information contained in this Table, it

should be noticed that not all the applications could be

compiled for all the platforms. Thus, none of the Contiki

programs could be compiled for the MICAz platform because

by the time this comparison was done, Contiki did not support

MICAz. Moreover, in the case of MOS it was not necessary

to program the application Blank2 for the MICAz because

MOS does not require an explicit call to the power

management functions for this platform. The same condition

occurs in Contiki for the Tmote platform and the Blank2

application.

 Blank Blank 2 Blink

MICAz

T1 ROM 476 B 620 B 1,674 B

 RAM 19 B 21B 48 B

T2 ROM 680 B 686 B 2,218 B

 RAM 4 B 4 B 51 B

MOS ROM 26 kB - 26 kB

 RAM 1 kB - 1 kB

Tmote Sky

T1 ROM 1,586 B 1,586 B 2,722 B

 RAM 27 B 27 B 45 B

T2 ROM 1418 B 1,430 B 2,654 B

 RAM 4 B 4 B 55 B

MOS ROM 14 kB 15 kB 14 kB

 RAM 1.6 kB 1.6 kB 1.6 kB

Contiki ROM 20.8 kB - 20.9 kB

 RAM 2.3 kB - 2.3 kB

Table 3a. MICAz and Tmote Sky program sizes expressed in

B (Bytes) or kB (kbytes).

 XTEA Sens Sens 2

MICAz 1,790 B 11,402 B 11,594 B

T1 ROM 64 B 441 B 443 B

 RAM 2,104 B 11,890 B 13,906 B

T2 ROM 49 B 278 B 331 B

 RAM 27 kB 30 kB 30 kB

MOS ROM 1 kB 1.1 kB 1.1 kB

 RAM

Tmote Sky

T1 ROM 2,858 B 13,040 B 13,203

 RAM 45 B 405 B 407 B

T2 ROM 2,656 B 12,198 B 14,068 B

 RAM 35 B 328 B 384 B

MOS ROM 14 kB 16 kB 16 kB

 RAM 1.6 kB 1.7 kB 1.7 kB

Contiki ROM 21 kB 21 kB 21 kB

 RAM 2.3 kB 2.3 kB 2.3 kB

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 69

Table 3b. MICAz and Tmote Sky program sizes expressed in

B (Bytes) or kB (kbytes).

The instant currents drawn by the motes running the test

applications are shown in the graphs of Figure 1, whereas the

average current is represented in Figure 2. With these graphs

the power state of the platform components during the

execution of each program can be determined.

The blank program results show that T2 has a current

consumption very similar for both platforms. The

consumption of T2 is the best in the case of MICAz and very

close to T1 in the case of Tmote. Most striking is that T1 for

MICAz presents a current consumption much higher than the

Tmote Sky case. This is due to the different ways in which

each operating system manages the microcontroller power

modes. For example, the ATmega128 can only be placed in a

low-power mode when it is commanded explicitly by means

of the adjustPower function. However, in the MSP430 case,

the scheduler constantly calculates the lowest power mode

that is compatible with the software operation [17]. For its

part, MOS estimates the low-power state whenever the

scheduler has no tasks to run. The problem in this case is that

the microcontroller cannot enter the lowest power down

mode, because MOS always needs to leave at least a timer

running to manage the scheduler operation. Contiki presents a

similar behavior and its efficiency is also worse than TinyOS.

In the program blank2 the power consumption has been

explicitly controlled by calling the power state handler

provided by each operating system. Curiously, in T2 the

overload introduced by this feature makes that the average

current rises, although not very significantly. The same

behavior can be seen in T1 running on the Tmote Sky.

Nevertheless, T1 on MICAz appreciably reduces the

consumption because the microcontroller no longer remains

in active mode during the inactivity periods. A great

improvement has also been observed in MOS running on the

Tmote platform when the line that controls the USB

connection is turned off, as indicated in the datasheet [18,19].

This reduction represents about 3.5 mA of the total average

consumption.

Figure 1. Average current consumption.(First row blank

program; second row Blank2 program with optimized

consumption; third row Blink; fourth Sens sensing and

transmission; fifth row Sens2 optimized sensing and

transmission.)

The Blink application has basically two power consumption

levels. One of them corresponds to the blank application level

and the other one is equal to this level but adding the LED

consumption through a series 470 Ω resistor.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 70

Figure 2(a). Instant current consumption of each application

for both motes.

The results of the XTEA program reveal that MOS is the only

operating system that really performs an interleaved execution

of two tasks at the same time. The MOS multithreading

scheduler can effectively execute several tasks in parallel

without the programmer’s awareness. For the rest of operating

systems the execution of the two tasks is sequential: first the

mote runs the XTEA algorithm and after its completion the

Blink program.

Figure 2(b). Instant current consumption of each application

for both motes.

This fact is reflected in the instant current graphs that can be

seen in the Figure 2(a,b,c,d). For T1, T2 and Contiki there are

two parts that can be easily distinguished in the graph: the

first part is flat and represents the execution of the XTEA

algorithm and the second part with a square form that

corresponds to the blinking process. Using this program the

processing time of two motes can be easily compared. The

difference in the execution time can be determined by the

number of samples in the instant current graph that the initial

execution of the XTEA algorithm takes. Consequently, as it

can be seen in the graph, the execution of this algorithm on

the MSP430 takes longer than on the ATmega128. Since both

microcontrollers have the same clock frequency, the

explanation of this result should be found in their internal

architectures. Atmel implements an8-bit Harvard architecture

whereas Texas is based on a 16-bit von Newman

organization, but above all, the main difference is that

Atmel128 can execute an instruction in one clock cycle,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 71

whereas MSP430 executes an instruction within a variable

interval from 1 to 6 cycles.

8-bit Harvard architecture whereas Texas is based on a 16-bit

von Newman organization, but above all, the main difference

is that Atmel128 can execute an instruction in one clock

cycle, whereas MSP430 executes an instruction within a

variable interval from 1 to 6 cycles. In the case of the Sens

application, the current consumption rises to 23 mA in

MICAz, and between 18 and 24 mA in the Tmote Sky. This

increment is related to the power mode in which the

microcontroller and the transceiver are configured. Sens does

not explicitly call the power management functions provided

by the operating systems and consequently the mote remains

in an active mode all the time. In the case of the Sens

application, the current consumption rises to 23 mA in

MICAz, and between 18 and 24 mA in the Tmote Sky. This

increment is related to the power mode in which the

microcontroller and the transceiver are configured.

Figure 2(c). Instant current consumption of each application

for both motes.

Figure 2(d). Instant current consumption of each application

for both motes.

This increment is related to the power mode in which the

microcontroller and the transceiver are configured. Sens does

not explicitly call the power management functions provided

by the operating systems and consequently the mote remains

in an active mode all the time. So, according to Table 2

(without taking into account the microcontroller clock

frequency) the current should be: 500 µA + 17.4 mA = 18 mA

for the Tmote Sky and 5.5 mA + 17.4 mA = 23 mA for the

MICAz. As it can be seen the average current for the three

operating systems approach the theoretical prediction for

MICAz: 23,06 mA with T2, 23.64 mA with T1 and 24.29 mA

with MOS.

Nevertheless, in the Tmote Sky only T2 fulfils the theoretical

value with 18.63 mA, whereas T1 and MOS are 1.5 and 3.5

mA respectively above the theoretical expectation. The

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 72

increment in MOS could be accounted for the 3.5 mA

consumed by the USB interface.

Finally, the last program sens2 drastically reduces the total

consumption, especially in T2. Sens2 include the same power

management handlers used in blank2 program. Contiki and

MOS show again the highest consumption, although the latter

running on the Tmote Sky could reduce its current disabling

the USB. It should be noticed that for Contiki this

modification does not improve the results of the previous

case, since this operating system handles by itself the

activation of the mote components.

Results and discussion for noise measurement

It is important to point out the noise that each operating

system introduces in the power supply of the mote due to

quick changes in the power state of some hardware elements.

For this purpose, the noise level added to the supply voltage

during the mote operation running the Blank and Blank2

applications has been evaluated. In Table 4, the variance of

the current samples during the execution of these programs

for each operating system and each mote is shown. For the

estimation of these statistics 2,500 samples were taken, and

the weighting is set to sample, the confidence interval is the

95.4%. From Table 4 results, it can be deduced that Contiki is

the noisiest one, followed by MOS.

As shown in the graphs of Figure 2(a,b,c,d), MOS produces a

noise level added to the steady current that is higher than with

other operating systems. With a more detailed observation of

these graphs it can be pointed out that there is a pattern that

repeats periodically. The first hypothesis was to blame the

operating system scheduler. MOS activates a timer which

overflows every millisecond, but the scheduler is invoked by

default after 20 ms.

 Blank Blank2

MICAz

Tmote

Sky MICAz Tmote Sky

T1 1.833E-12 2.06E-12 1.679E-12 63.749E-12

T2 20.8E-12 2.872E-12 29.058E-12 11.8E-12

MOS 22.2E-9 5.482E-9 - 35.409E-9

Contiki - 3.41E-6 - -

Table 4. Variance of the current samples taken.

With the measurement system based on the SourceMeter, the

sampling frequency was not high enough to determine the

source of this noise that could be the timer interrupt, the

scheduler or some other element. Therefore, the measurement

method had to be changed for the second procedure

introduced in the experimental setup subsection, which is

based on a shunt resistor. This method is much more

inaccurate but with this change the sampling frequency could

be increased. The result, as shown in Figure 3, is a signal with

peaks at intervals of 1 ms. To check whether the noisy signal

of 1 ms is related with the main timer of MOS or not, an

additional test was carried out changing the overflow period

of this timer from 1 ms to 2 ms. The measurements with this

new overflow period showed that the noisy signal also

changed to 2 ms. So, it can be concluded that the timer

operation is what produces this noise. Finally, an important

issue is the perturbation that the noise can produce in the

sensor’s operation. To evaluate this risk, the conditioning

circuit of the analog sensors and its supply voltage was

analyzed. The noise affects the supply voltage of the mote and

therefore it could perturb the conditioning circuit and the

sensor measures. To evaluate of this effect the temperature

sensors included in the motes were used. In MICAz, there is a

thermistor that is fed by means of a microcontroller output pin

instead of through the general power supply signal of the

mote. The test that was performed to find out how the noise

affects the sensors was focused on monitoring the supply

voltage of this sensor. The result of this test is the voltage

graph shown in Figure 3.

Figure 3. Noise on the supply voltage of the sensors

of Tmote Sky & MICAz with MOS. (The

measurement was made with an oscilloscope; the

input channel is AC coupled.)

This plot lets us assert that there is almost no noise present on

this line during the sensor operation. The Tmote Sky case is

not different because, although the temperature sensor is the

digital SHT15 sensor from Sensirion, it is also powered

through a microcontroller digital output and the measured

noise level is negligible as well. Despite the fact that very low

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 73

levels of noise in the sensor supply lines were found, this

matter should be taken into account during the design of new

motes. In the case of sensitive sensors that require a signal

conditioning or amplification, filtering the sensors supply line

is recommend, even if they are fed from some microcontroller

digital pin.

VIII. CONCLUSIONS

After the development of all the applications for the different

operating systems shown in this paper, it can be concluded

that programming applications in C implies a much less steep

learning curve than when the application is programmed in

NesC, such as is the case of TinyOS. In NesC the programmer

has to get used to a new programming paradigm that includes

concepts such as: components, modules, configurations,

interfaces, etc. The positive side of the TinyOS programming

is the efficiency that can be achieved in terms of code size

(see Table 3) and energy consumption.

According to the results presented, in general T2 is more

efficient in terms of reduced energy consumption than T1,

MOS and Contiki. In the case of the Tmote Sky platform the

difference between T1 and T2 is minimal, even though T1 is a

little more efficient in simple programs. Moreover, in Section

3 it is seen that T2 is simpler than T1, Contiki and MOS. As

expected, in terms of energy efficiency, a simple system

normally consumes less than a more complex one. The real

question is whether this improvement of the power

consumption implies to accept lower capabilities for the final

system or not. There is no single answer to this question

because it depends on whether a particular application is

looking for the implementation of advanced features, like

parallel execution of complex tasks, or a further optimization

of the energy consumption. In most applications developed

the latter is chosen because WSN is a field in which it very is

important to maximize the network lifetime.

REFERENCES

[1] Duffy, C.; Roedig, U.; Herbert, J.; Sreenan, C.

An experimental comparison of event driven

and multi-threaded sensor node operating

systems. In Proceedings of the 3rd IEEE

International Workshop on Sensor Networks

and Systems for Pervasive Computing, White

Plains, NY, USA, March 19–23, 2007.

[2] Healy, M.; Newe, T.; Lewis, E. Power

management in operating systems for wireless

sensor nodes. In Proceedings of IEEE Sensors

Applications Symposium, San Diego, CA,

USA, February 6–8, 2007; pp. 1–6.

[3] Antonopoulos, C.; Prayati, A.; Stoyanova, T.;

Koulamas, C.; Papadopoulos, G. Experimental

evaluation of a WSN platform power

consumption. In Proceedings of IPDPS IEEE

International Symposium on Parallel &

Distributed Processing, Rome, Italy, May

2009; pp. 1–8.

[4] Reverter, F.; Pallas-Areny, R. Uncertainty

reduction techniques in microcontroller-based

time measurements. Sens. Actuat A: Phys.

2006, 127, 74–79.

[5] Reverter, F.; Gasulla, M.; Pallas-Areny, R.

Analysis of Power-Supply Interference Effects

on Direct Sensor-to-Microcontroller

Interfaces. IEEE Trans. Instrum. Meas. 2007,

56, 171–177.

[6] Kuorilehto, M.; Kohvakka M.; Suhonen, J.;

Hämäläinen, P.; Hännikäinen, M.;

Hämäläinen, T. Ultra-low energy wireless

sensor networks in practice. In Theory,

Realization and Deployment. West Sussex;

John Wiley & Sons: Hoboken, NJ, USA, 2007.

[7] Gay, D.; Levis, P.; Von Behren, R.; Welsh,

M.; Brewer, E.; Culler,D. The nesC Language:

A holistic approach to networked embedded

systems. In Proceedings of SIGPLAN

Conference on Programming Language

Design and Implementation (PLDI), San

Diego, CA, USA, June 14, 2003; ACM Press:

New York, NY, USA, 2003; pp. 1–11.

[8] Handziski, V.; Polastre, J.; Hauer, J.; Sharp,

C.; Wolisz, A.; Culler, D. Flexible hardware

abstraction for wireless sensor nodes. In

Proceedings of the 2nd European Workshop

on Wireless Sensor Networks, Istanbul,

Turkey, January 31–February 2, 2005; pp.

145–157.

[9] Levis, P.; Gay, D.; Handziski, V. T2: A Second

Generation OS for Embedded Sensor

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 3, May - Jun 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 74

Networks; Technical Report TKN-05-007;

Telecommunication Networks Group,

Technische Universitat Berlin: Berlin,

Germany, 2005.

[10] Abrach, H.; Bhatti, S.; Carlson, J.; Dai, H.;

Rose, J.; Sheth, A.; Shucker, B.; Deng, J.;

Han, R. MANTIS: System support for

MultimodAl NeTworks of in situ Sensors. In

Proceedings of the 2nd ACM International

Conference on Wireless Sensor Networks and

Applications, San Diego, CA, USA,

September 19, 2003; ACM Press: New York,

NY, USA, 2003; pp. 50–59.

[11] Bhatti, S.; Carlson, J.; Dai, H.; Deng, J.; Rose,

J.; Sheth, A.; Shucker, B.; Gruenwald, C.;

Torgerson, A.; Han, R. MANTIS OS: An

embedded multithreaded operating system for

wireless micro sensor platforms. Mob. Netw.

Appl. 2005, 10, 563–579.

[12] Shea, R.; Chih-Chieh, H.; Rengaswamy, R.

Motivations Behind SOS; Networked

Embedded Systems Lab, University of

California Los Angeles: Los Angeles, CA,

USA, 2004.

[13] Dunkels, A.; Grönvall, B.; Voigt, T. Contiki—

A lightweight and flexible operating system

for tiny networked sensors. In Proceedings of

the 1st IEEE Workshop on Embedded

Networked Sensors, Tampa, FL, USA,

November 2004.

[14] Crossbow Technology Inc. Telosb Datasheet.

Available online: http://www.xbow.com/

(accessed on 4 February 2010).

[15] Stan, A. Porting the Core of the Contiki

Operating System to the TelosB and MicaZ

Platforms; Guided Research Final Report

(Bachelor Thesis); International University

Bremen: Bremen, Germany, May 7, 2007.

[16] Crossbow Technology Inc. MICAz. Datasheet.

Available online: http://www.xbow.com/

(accessed on 4 February 2010).

[17] Szewczyk, L.; Turon, N.; Buonadonna, H.

Microcontroller Power Management; TinyOS

2 Documentation. Available online:

http://www.tinyos.net/tinyos-

2.x/doc/txt/tep112.txt (accessed on 5 February

2010).

[18] Microchip Technology. MCP6041/2/3/4

Datasheet. Available online:

http://www.microchip.com/ (accessed on 5

February 2010).

[19] Texas Instrument Inc. MSP430 Datasheet.

Available online: http://www.ti.com/ (accessed

on 6 February 2010).

[20] Needham, R.M.; Wheeler, D.J. Tea

Extensions; Technical Report; Computer

Laboratory, University of Cambridge:

Cambridge, UK, October 1997.

[21] Atmel Corporation. Atmel Atmega128

Datasheet. Available online:

http://www.atmel.com/ (accessed on 6

February 2010).

[22] Eswaran, A.; Rowe, A.; Rajkumar, R. Nano-

RK: An energy-aware resource-centric

operating system for sensor networks. In

Proceedings of the 26th IEEE Real-Time

Systems Symposium, Miami, FL, USA,

December 5–8, 2005.

[23] Cha, H.; Choi, S.; Jung, I.; Kim, H.; Shin, H.;

Yoo, J.; Yoon, C. RETOS: Resilient,

expandable, and threaded operating system for

wireless sensor networks. In Proceedings of

the 6th International Conference on

Information Processing in Sensor Networks

(IPSN’07), Cambridge, MA, USA, April 2007.

[24] Texas Instrument Inc. CC2420 Datasheet.

Available on: http://www.ti.com/ (accessed on

7 February 2010).

http://www.ijcstjournal.org/
http://www.xbow.com/
http://www.xbow.com/
http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.ti.com/

