
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 4, Jul - Aug 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 89

Methodology to Describe and Verify Systems Behaviour by

Integrating Several Formal Languages
PhD. Bassem KOSAYBA [1], Waseem Ahmad [2]

Dept. of Software Engineering and Information Systems

University of Damascus, Damascus

 Syria

ABSTRACT
Early stages of critical systems development include ensuring that implementation is valid across all operational scenarios that

may be encountered. We examine systems models to find errors before going to the implementation. That allows to improve the

software quality. Because we are ensured that the systems is in compliance with the imposed specifications and free of the

rejected conditions. Petri nets is an important formal method for modeling the systems behavior, and this is confirmed by the

increasing number of researches and studies to find conversions from different systems models to Petri nets. But Petri nets suffer

from a low level of abstraction in both the system behavior verification as well as the modeling of systems behavior. That limits

the Petri nets usage. In this paper, we have transformed the CSP models of systems behavior to Petri nets. CSP is a formal

language to describe systems behavior as a combination of processes. The process is a set of events. Our proposed solution allows

verification of the systems behavior using sophisticated query system rather than directly accessing the reachability graph of Petri

net. That Allows to increase the level of abstraction of the Petri nets in both the systems verification and modeling.

Keywords :— Formal Method, CSP, Petri Nets, Temporal Logic, Reachability Graph, Verification Model.

I. INTRODUCTION

The use of formal methods is an important factor in

avoiding errors at an early stage of system design and

verification of the required properties. Where formal methods

tend to describe systems at a fairly simple level to facilitate

modeling and analysis. Petri nets are a graphical method used

to analyze complex distributed processing systems in terms of

performance and reliability. Petri nets allow designers to

verify the behavior of these systems by representing them

using the concepts of petri nets (places, arcs, markers) and

then get the reachability Graph equivalent to the Petri nets.

Then, we can read this reachability Graph to verify that the

states for the conditions that are rejected in the functioning of

the system do not exist and that the conditions imposed are

always fulfilled. The equivalent reachability Graph of the

Petri net has the necessary information to predict all operating

scenarios that a system represented by the Petri net can pass.

In contrast, Petri networks suffer from the following points:

• Difficulty reading the reachability Graph because it is

often too huge.

• The difficulty of modeling systems in Petri nets.

In this research we seek to take advantage of the power of

the Petri nets to verify the behavior of critical systems. At the

same time, we want to facilitate the use of Petri nets to verify

the behavior of systems. In this paper, we have devised a new

formal methodology to investigate the behavior of systems by

characterizing systems using CSP and then converting them

into a Petri net. Thus, our contribution is through modeling

systems using high-level PETRI nets as written in CSP text,

and from analyzing the tree of coverage for the resulting Petri

network in order to inquire about the existence of the rejected

and assigned conditions as query operations similar to

temporal logic processes.

The chapter II, III, IV describes the methodology used to

describe and verify the behavior of the systems: CSP, Petri

networks, linear temporal logic (LTL). While in Chapter VI

we explain our algorithms for applying transformations from

the text description to the Petri nets and the use of temporal

logic log processes in the tree trees of the Petri networks. In

chapter VII we present the Conclusions and Future work.

II. COMMUNICATING SEQUENTIAL

PROCESSES(CSP)
 Is a mathematical notation to describe the interaction and its

use in the simultaneous behavior analysis of applications, CSP

uses a set of processes to characterize behavioral

characteristics [6]. Figure (1) [7] shows the use of CSP

parameters to describe the effectiveness of the system,CSP

processes use a number of transactions, such as choice,

sequence, and parallelism. The names of processes are used

in capital letters , and the lowercase letters are used to refer to

events, the left side of each definition is the process name

defined in the right side by expression A call to another

process [6].

The sequence (Prefixing) is denoted by a → P ie that event a

must occur before operation P. The internal choice is the

P (⨅Q), where the non-deterministic system chooses to

execute one of the processes P or Q. The external choice is

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 4, Jul - Aug 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 90

marked P (P Q Q) and is identical to the internal option, but

the choice comes from outside the system (eg: user).

M , N … Names (process names)

P , Q … Process (processes)

a , b … (Event)

P ::= M (Process call)

| a (Prefixing)

| P (Internal choice)

| P (External choice)

| P (Synchronized parallelism)

| P (External choice)

| x •P))Recursion(

| STOP (Stop)

Figure 1: CSP syntax

Synchronized parallelism is symbolized by b (P || (X⊆Σ) Q)

where both operations are performed in parallel with the X set

of concurrent events, and there is a special case of parallel

execution that is (interleaving) and symbolized by (|||) where

there is no synchronization (X = ∅) So both processes can be

performed in any order. The stop is symbolized by STOP,

which is synonymous with deadlock, ie, the current operation

is completed. Recursion, denoted by μx (P), is a recursive

term in which each occurrence of X in P represents an instant

recursion.Operations are synchronized by sending and

receiving messages [13] which are done using input (?) And

output (!). Where the expression Pi? X is the procedure that

receives the Pi process of the value sent through the x event,

while the expression Pj! x The procedure for sending the Pj

operation describes a value through the x event.

III. PETRI NETS (PN)

The Petri Network is a visual mathematical tool for modeling

and verifying system behavior and is one of the most

important tools for verifying the behavior of systems with

concurrent tasks (competing for system resources) as well as

distributed network protocols and systems that we can not

easily verify because of critical sectors ,resource sharing and

the need to synchronize and coordinate the various functions

of the system. [1].

The Petri network consists of places, transitions and arcs. The

arc reaches a place into a transition or vice versa. Places in the

Petri nets may contain a separate number of tags called tokens.

The mathematical expression of the Petri network is expressed

through the pentagram [8] (P; T; I; O; M) where:

 P = {p1; p2 } is the set of np places (drawn as circles

in the graphical representation);

T = {t1; t2 } tn} is the set of nt transitions (drawn as

bars);

I is the transition input relation and is represented by means of

arcs directed from places to transitions;

 O is the transition output relation and is represented by means

of arcs directed from transitions to places;

 M = {m1;m2. } is the marking. The generic entry mi

is the number of tokens (drawn as black dots) in place pi in

marking M. The graphical structure of a PN is a bipartite

directed graph: the nodes belong to two different classes

(places and transitions) and the edges (arcs) are allowed to

connect only nodes of different classes (multiple arcs are

possible in the definition of the I and O relations [1]).

The dynamics of a PN is obtained by moving the tokens in the

places by means of the following execution rules:

- A transition is enabled in a marking M if all its input places

carry at least one token.

- an enabled transition fires by removing one token per arc

from each input place and adding one token per arc to each

output place.
The reachability graph G = (V,E, v0) of a net N = (P, T,W,M0)

is defined inductively as follows:

– v0 = M0 V .

– If M V and M M0 then M0 V and (M, t,M0) E.

– V and E contain no other elements.

The reachability graph of a net describes the dynamic

behaviour of the net.

IV. LINEAR TEMPORAL LOGIC

Linear Temporal logic is a type of time logic in which logical

formulas are defined for a set of implementation paths of the

system, ie, each path in this group represents an infinite path

in the reachability tree that starts from the root, so in each case

in this way There is only one possible future situation.

The syntax of Linear Time Logic can be defined as follow :

Let AP be a set of atomic propositions, and p AP, then LTL

syntax can be recursively defined as follows

where X, U,V G, and F are temporal operators that denote

“next”, “until”, “weak until (a variant

of until)”, “all (states)”, and “there exists (a future state)”,

respectively, for a path.

The semantics of LTL formulas can be recursively defined

as follows:

 |= p L().

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 4, Jul - Aug 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 91

b a

b a

user user

V. PIPE TOOL

Platform-Independent Petri Net Editor (PIPE), an open-source

tool that supports the design and analysis of Generalized

Stochastic Petri-Net (GSPN) models [4].

VI. PROPOSED MODEL
In chapter II we noted that the CSP suggests high-level

processes for characterizing systems behavior. We also noted

in chapter IV that the liner temporal logic suggests high-level

processes to verify system behavior. While the Petri net

suffers from a low level of abstraction and no high level

processes to verify system behavior despite the strength of the

reachability tree in predicting all possible system scenarios.

In this section, we propose a solution figure 2 that process of

converting a characterization from CSP to a Petri net that

achieves the correct characterization of the system and its

integration with the query model based on LTL, which also

allows roaming in the reachability tree to verify system

behavior.

Figure 2: A diagram showing the parts of the proposed

solution and the sequence of necessary processes

a-Text conversion unit to Petri net :

In this module, we propose a formal language as shown in

Figure 3, explaining the CSP language rules through a full set

of standard CSP translations that are corresponding to our

proposed language.

PROCESS ProcessID :: ProcessList

ProcessList :: ParallelDef | SequenceDef |

 RecursionDef | DeterministicChoiceDef |

 NonDeterministicChoiceDef | StopDef

ParallelDef :: PAR { ProcessID , ProcessID }

SequenceDef :: SEQ { ProcessID , ProcessID }

RecursionDef :: REC { ProcessID , ProcessID }

DeterministicChoiceDef ::DC { ProcessID , ProcessID }

NonDeterministicChoiceDef::NDC { ProcessID , ProcessID }

SEND { ProcessID , ProcessID }

RECIVE{ ProcessID , ProcessID }

ProcessID :: [A-Z] [A-Z_a-z]* | ProcessList

Figure 3: syntax of Suggested language

We proposed the Petri nets corresponding after studying the

structural characteristics of the Petri nets to achieve

compatibility between the proposed model and the description

as shown in Figure 4. Through these standard translations of

the smallest possible conversion process, we can now switch

from our proposed language to the Petri net by building a

compiler that compiles operations according to the proposed

translations in Figure 4.

Figure 4: Proposed model for converting between CSP and

Petri-nets

PIPE tool

Characterization

Module

Verification

Unit

Path Analysis

Unit

Result

System

behavior Query

System

action paths

Reachability

Graph

Petri net

b a

a B

SEQ{a,B}

a

b

a □ b

DC{a,b}

a!mes

SEND{a,mes}

a b

 b

NDC{a,b}

a

mes

a?mes

RECIVE{a,mes}

a b

 b

PAR{a,b}

a

mes

REC{a,X}

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 4, Jul - Aug 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 92

b- System Path Analysis Unit:

This unit relies on PIPE data structures for the reachability

tree. Where we proceed from the initial marking and use a

recursion algorithm to detect all the paths of the system,

provided that we do not go over the marking twice in the same

path in the same order. The algorithm begins its work by

experimenting with all the paths associated with the initial

marking S0 node and combining the marking that lead to it

through the different paths from initial marking S0. This work

is repeated for each marking M we get to. The path ends when

trying to cross a marking that were previously crossed or for

lack of subsequent marking.

c- Verification Unit:

In this unit we have built an interpreter to handle operations

similar to the linear temporal logic operations for work on the

reachability tree in Petri network. The interpreter analyzes

these processes, the form in which we express the required

conditions in the behavior of the systems, by applying them to

the paths from the path analysis unit, path by path, until the

discovery of a correspondence between the query and the

marking in the path.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we provide PIPE with two new modules, the

first able to convert the description written according to our

proposed language inspired by CSP to the Petri nets and the

second module to provide petri nets with a mechanism to

formulate queries about the behavior of systems represented

by these networks, instead of manual simulation of all system

operating scenarios Is not exhaustive and instead of the

tedious manual roaming within the equal reachability tree of

the Petri nets represented by the studied system. In addition to,

allowing the abstraction of the characterization and

verification of systems behavior using petri nets, especially

for large-scale systems with competing tasks on common and

highly synchronized resources.

The proposed method of characterization allows to increase

abstraction in characterizing the behavior of the system and to

compensate for the decrease in the low level of abstraction of

the Petri network and to increase the efficiency of the query in

the Petri network by applying the temporal logic on the

reachability tree of petri nets .

The method of characterization and investigation of queries

allows the addition of new processes suitable for different

types of petri networks. By expanding the identification and

verification units. Where we can extend the process of

analyzing queries to include additional symbols and

processing them. We are currently working to add new

parameters to our tools, with the aim of working on Time Petri

networks and CSP time.

ACKNOWLEDGMENT
The research that led to this work was supported in the first

part by the Damascus University Foundation.

The authors wish to thank the University administration and

the College of Informatics Engineering for their assistance in

providing technical support for this work.

REFERENCES
[1] J.L. Peterson. Petri net theory and the modeling of

systems. Prentice Hall, Englewood Cliffs, 1981.

[2] Llorens, M., Oliver, J., Silva, J., & Tamarit, S. (2012).

Generating a Petri net from a CSP specification: A

semantics-based method. Advances in Engineering

Software, 50, 110-130.

[3] Leuschel, M., Currie, A., & Massart, T. (2001, March).

How to make FDR spin LTL model checking of CSP by

refinement. In International Symposium of Formal

Methods Europe (pp. 99-118). Springer, Berlin,

Heidelberg.

[4] Platform independent petri net editor download on

sourceforge. https://sourceforge.net/projects/ pipe2/.

Accessed: 15 August 2016.

[5] Nattira MANEERAT and Wiwat VATANAWOOD,

2016 - Translation UML activity diagram into colored

Petri net with inscription. In the proceedings of 13th

International Joint Conference on Computer Science and

Software Engineering (JCSSE) pp 1-6.

[6] Boyle, R. (1985). Communicating sequential processes:

CAR Hoare. Published by Prentice-Hall. 256pp.

[7] Jones, A. E. A. C. B., & Sanders, J. W. (2005).

Communicating sequential processes. Published by

Springer, Berlin, Heidelberg.335pp.

[8] Halder, A., & Venkateswarlu, A. (2006). A study of petri

nets modeling analysis and simulation.Department of

Aerospace Engineering Indian Institute of Technology

Kharagpur, India.

[9] Tan, L., Sokolsky, O., & Lee, I. (2004, November).

Specification-based testing with linear temporal logic. In

Proceedings of the 2004 IEEE International Conference

on Information Reuse and Integration, 2004. IRI 2004.

(pp. 493-498). IEEE.

[10] V. RYBAKOV, 2008 -Linear temporal logic with until

and next, logical consecutions. Annals of Pure and

Applied Logic, ISSN: 0168-0072, Vol: 155, Issue: 1,

Page: 32-45.

http://www.ijcstjournal.org/

