
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 101

Building A Model for Multi-Core Architecture Using Systemc
Mouhsen Ibrahim [1], Mohammad Sobeih [2]

Department of Operating Systems and Computer Networks [1], Tishreen University, Latakia

Department of Operating Systems and Computer Networks [2], Tishreen University, Latakia

ABSTRACT
Modern parallel programming models help programmers to easily convert serial programs into parallel ones, by creating a set of

tasks and their dependencies to define execution order of them. To increase the efficiency of running these multi task programs,

Hardware-Accelerators were created to take the lift of the Operating System kernel from scheduling tasks to worker processing

cores, to be able to create these accelerators, we need to have a model of a multi-core architecture where we can define a big

number of cores, and simulate executing several tasks on these cores with help from the hardware accelerators.

In this paper, we present a model of a multi-core architecture using SystemC, which can be used to evaluate the Task-

Management Hardware-Accelerators using simulation and tune their parameters accordingly.

Keywords :— Multi-core architecture, SystemC, Parallel Programming

I. INTRODUCTION

To effectively use available cores in a multi-core

architecture several task-based programming models have

been proposed to enable programmers to write parallel

applications that generate multiple tasks to be executed on

worker cores.

StarSs is one of these programming models, it enables

programmers to write annotations around the code which will

be executed in parallel, however relying on software to

schedule these tasks to worker cores will create a bottleneck in

performance as the software will not be able to co-op with the

ever increasing number of tasks and cores.

Nexus [1] was created for the StarSs parallel programming

model and was enhanced later [2]–[4]

Also we have TaskGenX [5] which focuses mainly on

accelerating the process of adding new tasks to the

dependency graph in order to be sent to be executed on ready

worker cores once all their dependencies are fulfilled.

Anyway to be able to design and test Nexus, we need a

model of a multi-core architecture so we can run it inside it, a

model was created using SystemC and evaluated [6] so we

decided to use SystemC to create our own model that can be

easily used to evaluate and test Nexus.

The previous model [6] lacks an advanced memory system

and also cannot be used effectively to run tasks with arbitrary

number of inputs, outputs and execution cycles, so here we

decided to put these two consideration in top priority and

create a model that has advanced memory architecture and can

be easily used to run tasks with many inputs, outputs and

different execution cycles.

Section 2 shows some related work, section 3 gives an

introduction to SystemC and its architecture, section 4

describes the multi-core architecture modelled here using

SystemC, section 5 describes the SystemC modules used to

create the architecture here and their interfaces, section 6

shows several test benches for the SystemC modules and

evaluates their efficiency in executing multiple independent

tasks in the architecture, section 7 provides concluding results.

II. RELATED WORK

HORNET [7] is a parallel, cycle-level multicore simulator

based on an wormhole router network-on-chip architecture.

The parallel simulation engine offers cycle-accurate as well as

periodic synchronization, while preserving functional

accuracy. This permits tradeoffs between perfect timing

accuracy and high speed with very good accuracy. Most

hardware parameters are configurable, including memory

hierarchy, interconnect geometry, bandwidth, and crossbar

dimensions. A highly parameterized table-based NoC design

allows a variety of routing and virtual channel allocation

algorithms out of the box.

The COTSon team at HP labs describes [8] a methodology

to efficiently simulate a Chip Multiprocessor of hundreds or

thousands of cores using a full system simulator. They

consider an idealized architecture with a perfect memory

hierarchy, i.e., without any interconnect, caches nor

distribution of memory banks. Their experiments show that

the simulator can scale up to 1024 cores with an average

simulation speed overhead of only 30% with respect to the

single-core simulation.

As an example of heterogeneous multi-core architecture

we find ARM big.LITTLE which combines in order execution

cores with low power consumption and high performance out

of order execution cores [9], to achieve the best utilization

there was a model to evaluate performance and power

consumption [10] using gem5 and McPAT simulators.

Also another model of heterogeneous cores was created to

be used in edge computing, this architecture was evaluated

using FPGA to get better unbiased results [11] also a parallel

programming model was created for this architecture.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 102

In [6] a SystemC model is presented to prove the applicability

of SystemC to simulate many-core architecture, it models a

system of P cores then simulate the execution of matrix

multiplication. The simulation of the model allows analyzing

the results regarding the number of transfers and the number

of clock cycles required to complete each transaction. A

theoretical model of the algorithm execution time is used to

evaluate the precision of the system-level simulator.

Simulation results indicate that the simulation models are

quite precise and simulation times of a few minutes are

possible for systems with a hundred of cores.

Our work presents an improved version of the last SystemC

simulator, it uses multiple modules to represent each

component of a multi-core architecture such as an execution

unit, a core unit, memory access unit and a board unit for

simulating a different number of cores. Also we presented a

complete memory architecture using NUMA, this is

considered essential in any multi-core architecture because the

memory access becomes a performance bottle neck with

increasing number of cores so we had to use NUMA to avoid

this.

We opted to use SystemC because it makes it easy to simulate

hardware and software component together where we can

create a model for the multi-core architecture and at the same

time create another one for the Hardware-Accelerator we want

to test so integrating the Hardware-Accelerator model is very

easy with the multi-core architecture as they are both written

in SystemC.

III. SYSTEMC INTRODUCTION

SystemC is a system design language that has evolved in

response to a pervasive need for a language that improves

overall productivity for designers of electronic systems [6], it

enables designers to create models of their systems, evaluate

and verify these models in software before they are

synthesized to create an even more accurate model of the

systems.

SystemC offers flexibility and the ability to favor performance

or accuracy above each other, each SystemC process can be

allowed to take as much as clock cycles we want but the real

hardware can do X amount of work in Y clock cycles, this is

the task of the synthesizer to determine the number of clock

cycles required to do a task, however in SystemC we are given

the ability to change this number as we want to favor

performance over accuracy if we want.

SystemC consists of a collection of C++ classes which

implement extra data types for hardware communication and

has classes which are used to model hardware units with

inputs, outputs and processing methods inside them, the

SystemC scheduler handles the execution of all methods as

separate threads running at the same time, however SystemC

does not use operating system threads to do its task and is

considered single thread programs.

The main building blocks of SystemC are modules which are

declared using the SC_MODULE macro, a module has a

group of input and output ports used to send and receive data

to/from other modules through communication channels.

Also, modules have processes which do the actual job for each

module these processes might read inputs from input ports,

process these inputs and write outputs to output ports, there

are three types of processes: Methods, Threads and Clocked

threads.

Methods are functions that get executed once each time its

trigger is activated (A change in input value).

Threads these are executed all the time and are activated

using a specific trigger, the thread continues execution until it

reaches a wait call, where it waits until the trigger is active

again.

Clocked Threads are exactly just like threads but they can

only be activated using clock cycles which makes them the

best in simulating hardware components.

IV. MULT-CORE ARCHITECTURE

Here we will explain the main components of the

architecture created in this paper.

We created two models one that uses shared memory space

called UMA (Uniform Memory Access) and the other

segments memory space among all available cores called

NUMA (Non-Uniform Memory Access), first we will explain

common components between the two

There are 3 common components:

1. Execution unit: each core consists of one

execution unit which is used to execute tasks, we

did not include any extra details in here because

we only need to model the task execution time,

we do not care what kind of instructions a task is

executing since we already have task execution

time in number CPU cycles.

2. The core unit: This unit describes a single CPU

core which has a buffer for buffering tasks

before they are sent to execution unit, it receives

tasks from the System Board or the Nexus

hardware accelerator, sends them to be executed

in the execution unit and finally notifies what-

ever sent them of their completion.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 103

3. The Board unit: This unit describes a System

Board which contains a predefined number of

cores, it receives tasks from the OS and send

them to an idle core, currently the board unit

does not contain a hardware accelerator for

dependency management and resolution, it will

be added later.

That is all for common components now we move to

each one of the models:

The first Model UMA

This model uses a shared memory space between all

cores, access to main memory is coordinated using a

memory controller, here we describe this new unit

The Memory Access Unit this unit is used to

organize access to the System Memory, it has a

number of inputs and outputs that is equal to the

number of cores, when a core wants to read a

memory location it signals this unit using its own

input, the memory unit reads each input in round-

robin algorithm once it finds an active one it signals

the right core that it can use memory now using its

own output after that the core can access memory

and once finished this unit continues to check other

cores’ inputs, memory read/write is modelled using a

wait for a few cycles, this parameter can be changed

accordingly.

Figure 1 shows the above described model

Figure 1 first model of multi-core architecture

The second model NUMA

In this model memory is partitioned to segments and each

segment is linked directly with a number of cores, this

consists what is called a NUMA node, cores within a single

node can access its own memory segment without any

competition from other cores, when the core needs to access a

memory address from another segment the memory bus is

used, also there is a cache memory for each core and another

cache memory for each NUMA node.

The following figure shows the NUMA architecture

Figure 2 second model of multi-core architecture

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 104

The architecture described here is hierarchical, and has four

components:

1. Level 1 cache memory l1cache: This represents the first

memory level, when any core wants to read a memory

location it asks the address from l1cache first, if it was

found it is returned immediately to the core in only two

clock cycles and if not, it is asked from l2cache.

2. Level 2 cache memory l2cache: It represents the second

level of memory, it is shared between the cores in each

NUMA node, access to this memory is coordinated the

same way it was in UMA model, we chose to use 8

cores for each NUMA node because practical results

show that using 8 cores does not cause much memory

contention.

3. Memory Segment: It represents the third and last level

of memory hierarchy, this segment contains a portion

of address space between min_addr and max_addr, it

can be accessed directly from l2cache, if the address

was not available here then it is sent to the memory bus

which brings the data from the right memory segment.

4. Memory Bus: This is not part of memory hierarchy, it

just links memory segments together so we can fetch

any memory address form any NUMA node, it

coordinates access to each memory segment from other

memory segments.

V. SYSTEMC MODEL OF THE

ARCHITECTURE

Two models were built using SystemC for each one of the

previous multi-core architecture models, these two models

have 3 modules in common:

1- Execute Module: This module represents the Task

Execution Unit in a single processing core, it reads data

from the core unit using ready/valid protocol, when it is

ready to receive data it enables the rdy output and when

the core unit send data it enables the data in valid pin then

the execute module reads data and once finished it

enables the data in finished pin to signal end of reading

data to the core module, all other modules follow the

same protocol for reading and writing data.

2- Core Module: This module represents a single processing

core, it has a buffer for incoming tasks, this buffer has a

size of 2 by default which means it buffers only one task

while executing another one, it receives tasks from the

system board and sends them to execution unit, it stops

reading new tasks once buffer is full and continues to

read data when the buffer is not full. This module has a

slightly different design in the previous two models, in

UMA model it accesses memory using memory access

module and has to wait until it is given right to access

memory, but in the NUMA model it can access l1cache

directly which can return data immediately of it is

available in local cache or ask for the data according to

the memory hierarchy.

3- System Module: In this module we have a group of cores

that can be changed as needed, all received tasks from the

OS are buffered before they are sent to an idle core or to a

hardware accelerator such as Nexus that can send tasks to

idle cores later. In this module we have a single memory

access module in the UMA model but in NUMA model

we have a hierarchy of memory modules that represent

l1cache, l2cache, memory segment and memory bus.

Now we will describe the different modules in each model

UMA model

Here we have memory access module which organizes

access to main memory from all cores, it only allows one

core at a time to access memory which increases waiting

time when more cores are added, it uses round robin

algorithm to give access so in each round all cores are

allowed to access if they need.

NUMA Model

In this model we have these additional modules:

1- Level 1 cache module l1cache: Every core has its own

Level 1 cache memory, in this memory the most used

memory addresses are stored for very fast access, the

core can access this cache directly without competition

from any other core and it has a well defined interface

to send memory addresses and read/write data to them,

if the memory address is not available here it is

automatically requested from Level 2 cache.

2- Level 2 cache module l2cache: Every NUMA node has

a level 2 cache memory that is bigger that l1cache, this

memory is shared between all cores in the NUMA

node (The number is 8 by default). These cores

compete to access it and if the address was not found

here it is asked from the memory segment for this

NUMA node.

3- Memory segment: Evert NUMA node has its own

memory segment that holds part of the global address

space, cores in the NUMA node compete with each

other only to access this segment, if a memory address

is not found here the request is finally sent to the

memory bus.

4- Memory Bus: This bus is connected with all memory

segment in the board, it is used to access any segment

to get the right address data from it, only memory

segments for each NUMA node compete with each

other to access the bus.

VI. RESULTS

We did experiments using both models to compare them

and determine the best one of them to be used later when

evaluating the previously mentioned hardware accelerators,

we used 3 sets of independent tasks as follows:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 105

1. A set that consists of 10,000 tasks with one input

per task, all inputs exist in a single memory

segment.

2. A set that consists of 10,000 tasks with each task

having 4 to 6 inputs, all inputs exist in the same

memory segment.

3. A set of 10,000 tasks with one input per task but

these inputs are distributed among all memory

segments.

The models can be used to simulate a larger number of

tasks but simulation time would increase also the

results are very similar.

The following table shows the parameters for the two

models
Table 1 Models’ parameters

Parameter Value Model

Cores Number 10 Both

Buffering Depth 2 Both

Memory delay 10 UMA

Number of

buffered tasks in

board

100 Both

L1cache delay 2 NUMA

L2cache delay 4 NUMA

Memory

segment delay

6 NUMA

Memory Bus

delay

4 NUMA

The values for Memory delay in NUMA were used to

reflect increasing delay as we go higher in memory

hierarchy, we can get better values using a synthesizer.

Other values can be changed as we need especially

cores number which is the most important parameter.

First, we will show results for the first task set using

both models.

Figure 1 total execution cycles using first set of tasks

Figure 2 memory access cycles using first set of tasks

The previous results show a slight enhancement in

execution cycles using the NUMA model and a big

enhancement in memory access time, however with increasing

number of cores the total cycles increase again which is not

acceptable.

We will show results using second set of tasks with more

inputs than the first one.

figure 3 total execution cycles using second set of tasks

Figure 4 total memory cycles using second set of tasks

Here the results are much like the previous ones, NUMA

shows some enhancements compared to UMA but when more

cores are used, we still have the problem of more execution

cycles to get the tasks done.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 106

The last set of tasks has one input per task but the inputs are

distributed among all memory segments not just one segment

as in the first set of tasks, here we also used an enhanced

scheduling algorithm to decrease the total cycles needed for

execution, the following figures show our results.

Figure 5 total execution cycles using third set of tasks

Figure 6 total memory cycles using third set of tasks

Here in these figures we see a significant improvement using

the new NUMA aware scheduling algorithm, this algorithm

schedules tasks to the cores which are near its input arguments

which would decrease the time needed to fetch task inputs and

also decreases the total execution time, with this algorithm we

can increase the number of cores as much as we can without

negatively affecting execution time.

VII. CONCLUSIONS

Here we offered two models for multi-core architecture, the

first one uses UMA architecture and shows bad scalability

when more cores are added, the second one uses NUMA

architecture and offers very good scalability when NUMA

aware scheduling algorithm is used, these two models can be

easily used to evaluate hardware accelerators with many task

sets and different dependency patterns and execution cycles

with a variable number of inputs and outputs.

ACKNOWLEDGMENT

The authors wish to acknowledge the Faculty of

Information Engineering in Tishreen university for their

support of this research.

REFERENCES

[1] C. Meenderinck and B. Juurlink, “A case for hardware

task management support for the StarSS programming

model,” Proc. - 13th Euromicro Conf. Digit. Syst. Des.

Archit. Methods Tools, DSD 2010, pp. 347–354, 2010.

[2] T. Dallou, B. Juurlink, and C. Meenderinck,

“Improving the scalability and capabilities of the

nexus hardware task management system,” 1st

{International} {Workshop} {Future} {Architectural}

{Support} {Prallel} {Programming}, vol. 5, pp. 442–

445, 2011.

[3] T. Dallou, A. Elhossini, and B. Juurlink, “FPGA-

Based Prototype of Nexus++ Task Manager,” 6th

Work. Many-Task Comput. Clouds, Grids,

Supercomput., 2013.

[4] T. Dallou, N. Engelhardt, A. Elhossini, and B.

Juurlink, “Nexus#: A Distributed Hardware Task

Manager for Task-Based Programming Models,” Proc.

- 2015 IEEE 29th Int. Parallel Distrib. Process. Symp.

IPDPS 2015, pp. 1129–1138, 2015.

[5] K. Chronaki, M. Casas, M. Moreto, J. Bosch, and R.

M. Badia, “TaskGenX: A hardware-software proposal

for accelerating task parallelism,” Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 10876 LNCS, pp. 389–409,

2018.

[6] A. R. Silva, W. José, H. Neto, and M. Véstias,

“Modeling and Simulation of a Many-core

Architecture Using SystemC,” Procedia Technol., vol.

17, pp. 146–153, 2014.

[7] M. Lis et al., “Scalable, accurate multicore simulation

in the 1000-core era,” ISPASS 2011 - IEEE Int. Symp.

Perform. Anal. Syst. Softw., pp. 175–185, 2011.

[8] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P.

Faraboschi, “How to simulate 1000 cores,” ACM

SIGARCH Comput. Archit. News, vol. 37, no. 2, p. 10,

2009.

[9] a R. M. Cortex-a and P. Greenhalgh, “big . LITTLE

Processing with,” no. September 2011, pp. 1–8, 2012.

[10] A. Butko et al., “Full-System Simulation of big .

LITTLE Multicore Architecture for Performance and

Energy Exploration To cite this version : HAL Id :

lirmm-01418745 Full-System Simulation of big .

LITTLE Multicore Architecture for Performance and

Energy Exploration,” 2016.

[11] A. Gamatie, G. Devic, G. Sassatelli, S. Bernabovi, P.

Naudin, and M. Chapman, “Towards Energy-Efficient

Heterogeneous Multicore Architectures for Edge

Computing,” IEEE Access, vol. 7, pp. 49474–49491,

2019.

http://www.ijcstjournal.org/

