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ABSTRACT 
Modern parallel programming models help programmers to easily convert serial programs into parallel ones, by creating a set of 

tasks and their dependencies to define execution order of them. To increase the efficiency of running these multi task programs, 

Hardware-Accelerators were created to take the lift of the Operating System kernel from scheduling tasks to worker processing 

cores, to be able to create these accelerators, we need to have a model of a multi-core architecture where we can define a big 

number of cores, and simulate executing several tasks on these cores with help from the hardware accelerators. 

In this paper, we present a model of a multi-core architecture using SystemC, which can be used to evaluate the Task-

Management Hardware-Accelerators using simulation and tune their parameters accordingly. 

Keywords :— Multi-core architecture, SystemC, Parallel Programming 

 

I.     INTRODUCTION 

To effectively use available cores in a multi-core 

architecture several task-based programming models have 

been proposed to enable programmers to write parallel 

applications that generate multiple tasks to be executed on 

worker cores. 

StarSs is one of these programming models, it enables 

programmers to write annotations around the code which will 

be executed in parallel, however relying on software to 

schedule these tasks to worker cores will create a bottleneck in 

performance as the software will not be able to co-op with the 

ever increasing number of tasks and cores. 

Nexus [1] was created for the StarSs parallel programming 

model and was enhanced later [2]–[4] 

Also we have TaskGenX [5] which focuses mainly on 

accelerating the process of adding new tasks to the 

dependency graph in order to be sent to be executed on ready 

worker cores once all their dependencies are fulfilled. 

Anyway to be able to design and test Nexus, we need a 

model of a multi-core architecture so we can run it inside it, a 

model was created using SystemC and evaluated [6] so we 

decided to use SystemC to create our own model that can be 

easily used to evaluate and test Nexus. 

The previous model [6] lacks an advanced memory system 

and also cannot be used effectively to run tasks with arbitrary 

number of inputs, outputs and execution cycles, so here we 

decided to put these two consideration in top priority and 

create a model that has advanced memory architecture and can 

be easily used to run tasks with many inputs, outputs and 

different execution cycles. 

Section 2 shows some related work, section 3 gives an 

introduction to SystemC and its architecture, section 4 

describes the multi-core architecture modelled here using 

SystemC, section 5 describes the SystemC modules used to 

create the architecture here and their interfaces, section 6 

shows several test benches for the SystemC modules and 

evaluates their efficiency in executing multiple independent 

tasks in the architecture, section 7 provides concluding results. 

II. RELATED WORK 

HORNET [7] is a parallel, cycle-level multicore simulator 

based on an wormhole router network-on-chip architecture. 

The parallel simulation engine offers cycle-accurate as well as 

periodic synchronization, while preserving functional 

accuracy. This permits tradeoffs between perfect timing 

accuracy and high speed with very good accuracy. Most 

hardware parameters are configurable, including memory 

hierarchy, interconnect geometry, bandwidth, and crossbar 

dimensions. A highly parameterized table-based NoC design 

allows a variety of routing and virtual channel allocation 

algorithms out of the box. 

The COTSon team at HP labs describes [8] a methodology 

to efficiently simulate a Chip Multiprocessor of hundreds or 

thousands of cores using a full system simulator. They 

consider an idealized architecture with a perfect memory 

hierarchy, i.e., without any interconnect, caches nor 

distribution of memory banks. Their experiments show that 

the simulator can scale up to 1024 cores with an average 

simulation speed overhead of only 30% with respect to the 

single-core simulation. 

As an example of heterogeneous multi-core architecture 

we find ARM big.LITTLE which combines in order execution 

cores with low power consumption and high performance out 

of order execution cores [9], to achieve the best utilization 

there was a model to evaluate performance and power 

consumption [10] using gem5 and McPAT simulators. 

Also another model of heterogeneous cores was created to 

be used in edge computing, this architecture was evaluated 

using FPGA to get better unbiased results [11] also a parallel 

programming model was created for this architecture. 
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In [6] a SystemC model is presented to prove the applicability 

of SystemC to simulate many-core architecture, it models a 

system of P cores then simulate the execution of matrix 

multiplication. The simulation of the model allows analyzing 

the results regarding the number of transfers and the number 

of clock cycles required to complete each transaction. A 

theoretical model of the algorithm execution time is used to 

evaluate the precision of the system-level simulator. 

Simulation results indicate that the simulation models are 

quite precise and simulation times of a few minutes are 

possible for systems with a hundred of cores. 

Our work presents an improved version of the last SystemC 

simulator, it uses multiple modules to represent each 

component of a multi-core architecture such as an execution 

unit, a core unit, memory access unit and a board unit for 

simulating a different number of cores. Also we presented a 

complete memory architecture using NUMA, this is 

considered essential in any multi-core architecture because the 

memory access becomes a performance bottle neck with 

increasing number of cores so we had to use NUMA to avoid 

this. 

We opted to use SystemC because it makes it easy to simulate 

hardware and software component together where we can 

create a model for the multi-core architecture and at the same 

time create another one for the Hardware-Accelerator we want 

to test so integrating the Hardware-Accelerator model is very 

easy with the multi-core architecture as they are both written 

in SystemC. 

III. SYSTEMC INTRODUCTION 

SystemC is a system design language that has evolved in 

response to a pervasive need for a language that improves 

overall productivity for designers of electronic systems [6], it 

enables designers to create models of their systems, evaluate 

and verify these models in software before they are 

synthesized to create an even more accurate model of the 

systems. 

SystemC offers flexibility and the ability to favor performance 

or accuracy above each other, each SystemC process can be 

allowed to take as much as clock cycles we want but the real 

hardware can do X amount of work in Y clock cycles, this is 

the task of the synthesizer to determine the number of clock 

cycles required to do a task, however in SystemC we are given 

the ability to change this number as we want to favor 

performance over accuracy if we want. 

SystemC consists of a collection of C++ classes which 

implement extra data types for hardware communication and 

has classes which are used to model hardware units with 

inputs, outputs and processing methods inside them, the 

SystemC scheduler handles the execution of all methods as 

separate threads running at the same time, however SystemC 

does not use operating system threads to do its task and is 

considered single thread programs. 

The main building blocks of SystemC are modules which are 

declared using the SC_MODULE macro, a module has a 

group of input and output ports used to send and receive data 

to/from other modules through communication channels. 

Also, modules have processes which do the actual job for each 

module these processes might read inputs from input ports, 

process these inputs and write outputs to output ports, there 

are three types of processes: Methods, Threads and Clocked 

threads. 

Methods are functions that get executed once each time its 

trigger is activated (A change in input value). 

Threads these are executed all the time and are activated 

using a specific trigger, the thread continues execution until it 

reaches a wait call, where it waits until the trigger is active 

again. 

Clocked Threads are exactly just like threads but they can 

only be activated using clock cycles which makes them the 

best in simulating hardware components. 

IV. MULT-CORE ARCHITECTURE 

Here we will explain the main components of the 

architecture created in this paper. 

We created two models one that uses shared memory space 

called UMA (Uniform Memory Access) and the other 

segments memory space among all available cores called 

NUMA (Non-Uniform Memory Access), first we will explain 

common components between the two 

There are 3 common components: 

1. Execution unit: each core consists of one 

execution unit which is used to execute tasks, we 

did not include any extra details in here because 

we only need to model the task execution time, 

we do not care what kind of instructions a task is 

executing since we already have task execution 

time in number CPU cycles. 

2. The core unit: This unit describes a single CPU 

core which has a buffer for buffering tasks 

before they are sent to execution unit, it receives 

tasks from the System Board or the Nexus 

hardware accelerator, sends them to be executed 

in the execution unit and finally notifies what-

ever sent them of their completion. 
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3. The Board unit: This unit describes a System 

Board which contains a predefined number of 

cores, it receives tasks from the OS and send 

them to an idle core, currently the board unit 

does not contain a hardware accelerator for 

dependency management and resolution, it will 

be added later. 

That is all for common components now we move to 

each one of the models: 

The first Model UMA 

This model uses a shared memory space between all 

cores, access to main memory is coordinated using a 

memory controller, here we describe this new unit 

The Memory Access Unit this unit is used to 

organize access to the System Memory, it has a 

number of inputs and outputs that is equal to the 

number of cores, when a core wants to read a 

memory location it signals this unit using its own 

input, the memory unit reads each input in round-

robin algorithm once it finds an active one it signals 

the right core that it can use memory now using its 

own output after that the core can access memory 

and once finished this unit continues to check other 

cores’ inputs, memory read/write is modelled using a 

wait for a few cycles, this parameter can be changed 

accordingly. 

Figure 1 shows the above described model 

 

 
Figure 1 first model of multi-core architecture 

The second model NUMA 

In this model memory is partitioned to segments and each 

segment is linked directly with a number of cores, this 

consists what is called a NUMA node, cores within a single 

node can access its own memory segment without any 

competition from other cores, when the core needs to access a 

memory address from another segment the memory bus is 

used, also there is a cache memory for each core and another 

cache memory for each NUMA node. 

The following figure shows the NUMA architecture 

 

 
 

Figure 2 second model of multi-core architecture 
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The architecture described here is hierarchical, and has four 

components: 

1. Level 1 cache memory l1cache: This represents the first 

memory level, when any core wants to read a memory 

location it asks the address from l1cache first, if it was 

found it is returned immediately to the core in only two 

clock cycles and if not, it is asked from l2cache. 

2. Level 2 cache memory l2cache: It represents the second 

level of memory, it is shared between the cores in each 

NUMA node, access to this memory is coordinated the 

same way it was in UMA model, we chose to use 8 

cores for each NUMA node because practical results 

show that using 8 cores does not cause much memory 

contention. 

3. Memory Segment: It represents the third and last level 

of memory hierarchy, this segment contains a portion 

of address space between min_addr and max_addr, it 

can be accessed directly from l2cache, if the address 

was not available here then it is sent to the memory bus 

which brings the data from the right memory segment. 

4. Memory Bus: This is not part of memory hierarchy, it 

just links memory segments together so we can fetch 

any memory address form any NUMA node, it 

coordinates access to each memory segment from other 

memory segments. 

V. SYSTEMC MODEL OF THE 

ARCHITECTURE 

Two models were built using SystemC for each one of the 

previous multi-core architecture models, these two models 

have 3 modules in common: 

1- Execute Module: This module represents the Task 

Execution Unit in a single processing core, it reads data 

from the core unit using ready/valid protocol, when it is 

ready to receive data it enables the rdy output and when 

the core unit send data it enables the data in valid pin then 

the execute module reads data and once finished it 

enables the data in finished pin to signal end of reading 

data to the core module, all other modules follow the 

same protocol for reading and writing data. 

2- Core Module: This module represents a single processing 

core, it has a buffer for incoming tasks, this buffer has a 

size of 2 by default which means it buffers only one task 

while executing another one, it receives tasks from the 

system board and sends them to execution unit, it stops 

reading new tasks once buffer is full and continues to 

read data when the buffer is not full. This module has a 

slightly different design in the previous two models, in 

UMA model it accesses memory using memory access 

module and has to wait until it is given right to access 

memory, but in the NUMA model it can access l1cache 

directly which can return data immediately of it is 

available in local cache or ask for the data according to 

the memory hierarchy. 

3- System Module: In this module we have a group of cores 

that can be changed as needed, all received tasks from the 

OS are buffered before they are sent to an idle core or to a 

hardware accelerator such as Nexus that can send tasks to 

idle cores later. In this module we have a single memory 

access module in the UMA model but in NUMA model 

we have a hierarchy of memory modules that represent 

l1cache, l2cache, memory segment and memory bus. 

Now we will describe the different modules in each model 

UMA model 

Here we have memory access module which organizes 

access to main memory from all cores, it only allows one 

core at a time to access memory which increases waiting 

time when more cores are added, it uses round robin 

algorithm to give access so in each round all cores are 

allowed to access if they need. 

NUMA Model 

In this model we have these additional modules: 

1- Level 1 cache module l1cache: Every core has its own 

Level 1 cache memory, in this memory the most used 

memory addresses are stored for very fast access, the 

core can access this cache directly without competition 

from any other core and it has a well defined interface 

to send memory addresses and read/write data to them, 

if the memory address is not available here it is 

automatically requested from Level 2 cache. 

2- Level 2 cache module l2cache: Every NUMA node has 

a level 2 cache memory that is bigger that l1cache, this 

memory is shared between all cores in the NUMA 

node (The number is 8 by default). These cores 

compete to access it and if the address was not found 

here it is asked from the memory segment for this 

NUMA node. 

3- Memory segment: Evert NUMA node has its own 

memory segment that holds part of the global address 

space, cores in the NUMA node compete with each 

other only to access this segment, if a memory address 

is not found here the request is finally sent to the 

memory bus. 

4- Memory Bus: This bus is connected with all memory 

segment in the board, it is used to access any segment 

to get the right address data from it, only memory 

segments for each NUMA node compete with each 

other to access the bus. 

VI. RESULTS 

We did experiments using both models to compare them 

and determine the best one of them to be used later when 

evaluating the previously mentioned hardware accelerators, 

we used 3 sets of independent tasks as follows: 
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1. A set that consists of 10,000 tasks with one input 

per task, all inputs exist in a single memory 

segment. 

2. A set that consists of 10,000 tasks with each task 

having 4 to 6 inputs, all inputs exist in the same 

memory segment. 

3. A set of 10,000 tasks with one input per task but 

these inputs are distributed among all memory 

segments. 

The models can be used to simulate a larger number of 

tasks but simulation time would increase also the 

results are very similar. 

The following table shows the parameters for the two 

models 
Table 1 Models’ parameters 

Parameter Value Model 

Cores Number 10 Both 

Buffering Depth 2 Both 

Memory delay 10 UMA 

Number of 

buffered tasks in 

board 

100 Both 

L1cache delay 2 NUMA 

L2cache delay 4 NUMA 

Memory 

segment delay 

6 NUMA 

Memory Bus 

delay 

4 NUMA 

The values for Memory delay in NUMA were used to 

reflect increasing delay as we go higher in memory 

hierarchy, we can get better values using a synthesizer. 

Other values can be changed as we need especially 

cores number which is the most important parameter. 

 

First, we will show results for the first task set using 

both models. 

 
Figure 1 total execution cycles using first set of tasks 

 
Figure 2 memory access cycles using first set of tasks 

The previous results show a slight enhancement in 

execution cycles using the NUMA model and a big 

enhancement in memory access time, however with increasing 

number of cores the total cycles increase again which is not 

acceptable. 

We will show results using second set of tasks with more 

inputs than the first one. 

figure 3 total execution cycles using second set of tasks 

 
Figure 4 total memory cycles using second set of tasks 

Here the results are much like the previous ones, NUMA 

shows some enhancements compared to UMA but when more 

cores are used, we still have the problem of more execution 

cycles to get the tasks done. 
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The last set of tasks has one input per task but the inputs are 

distributed among all memory segments not just one segment 

as in the first set of tasks, here we also used an enhanced 

scheduling algorithm to decrease the total cycles needed for 

execution, the following figures show our results. 

 
Figure 5 total execution cycles using third set of tasks 

 
Figure 6 total memory cycles using third set of tasks 

 

Here in these figures we see a significant improvement using 

the new NUMA aware scheduling algorithm, this algorithm 

schedules tasks to the cores which are near its input arguments 

which would decrease the time needed to fetch task inputs and  

also decreases the total execution time, with this algorithm we 

can increase the number of cores as much as we can without 

negatively affecting execution time. 

 

VII. CONCLUSIONS 

 

Here we offered two models for multi-core architecture, the 

first one uses UMA architecture and shows bad scalability 

when more cores are added, the second one uses NUMA 

architecture and offers very good scalability when NUMA 

aware scheduling algorithm is used, these two models can be 

easily used to evaluate hardware accelerators with many task 

sets and different dependency patterns and execution cycles 

with a variable number of inputs and outputs. 
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