
 

 

 
 

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019 

  

ISSN: 2347-8578                                www.ijcstjournal.org                                 Page 58 
      

Monitoring Managing  and Co-ordinating Mega Data Centers 

With Multiple Controller 
S.Ravi Kumar [1], Yarraguntla Jayalakshmi [2] 

Department of Computer Science and Engineering 

Visakha Institute of Engineering and Technology 

Andhra Pradesh, India 

ABSTRACT  

 In most existing cloud services, a centralized controller is utilized for resource management and coordination. 

Nevertheless, such infrastructure is gradually not sufficient to match the rapid growth of mega data centers. In recent 

literature, a new approach named devolved controller was proposed for scalability concern. This approach separates 

the whole network into various regions, each with one controller to monitor and reroute a portion of the flows. This 

technique relieves the trouble of an overloaded single controller, but brings other problems such as unbalanced work 

load among controllers and reconfiguration complexities. In this report, we establish an exploration on the use of 

devolved controllers for mega data centers, and design some new strategies to overcome these defects and improve the 

functioning of the organization. We first formulate Load Balancing problem for Devolved Controllers (LBDC) in data 

centers, and establish that it is NP-complete. We then design an f -approximation for LBDC, where f is the largest act of 

potential controllers for a switch in the mesh. Furthermore, we propose both centralized  and distributed greedy 

approaches to solve the LBDC problem effectively. The numerical results validate the efficiency of our strategies, 

which can become a solution to monitoring, managing, and coordinating mega data centers with multiple controllers 

working in concert. 
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I. INTRODUCTION 

In recent years, data center has emerged as a common 
base that supports thousands of servers and supports many 
cloud applications and helps such as scientific computing, 
group collaboration, computer memory, financial 
applications, etc. This fast proliferation of cloud computing 
has promoted a rapid development of mega data centers 
used for commercial uses. Fellowships such as Amazon, 
Cisco, Google, and Microsoft have made immense 
investments to improve Data Center Networks (DCNs). 

Typically, a DCN uses a centralized controller to monitor 
the global network status, manage resources and update 
routing information. For instance, Hedera [1] and SPAIN 
[2] both adopt such a centralized controller to combine the 
traffic statistics and reroute the flows for better load 
balancing. 

Driven by the unprecedent objectives of improving 
the performance and scale of DCNs, researchers try  to 
deploy multiple controllers in such networks [4] [8]. The 
concept of devolved controllers is thereby brought out for 
the inaugural time in [4], in which they used dynamic flow 
[5] to illustrate the detailed configuration. Devolved 
controllers are a set of controllers that collaborate as a 
single omniscient controller, as a similar scheme in [9]. 

 However, none of the controllers have the complete info on 
the whole web.. Rather, every controller only maintains a lot 
of the pairwise multipath information beforehand, hence 
cutting the work load significantly. 

Recently, software-defined networking (SDN) as 
proposed by OpenFlow [10] has been touted as one   of the 
most promising solutions for the future Internet. SDN is 
characterized by two distinguished features: decoupling the 
control plane from the data plane and providing 
programmability for network application development 
[11]. From these characteristics, we can divide the DCN 
flow control systems into two layers: the lower layer 
focuses on traffic management and virtual machine (VM) 
migrations, which could relieve the intensive traffic in hot 
spots; the upper layer coordinates the control rights of 
switches among controllers, which dispenses with the load 
imbalance problem in a hierarchical fashion.  

For the lower layer control, there are adult and well-
evolved methods to treat the current control and VM 
migration at present [12] –[15]. Spell for the upper layer 
control, managing the DCNs by devolved controllers 
gradually becomes a live issue in recent  years due to the 
enlargement of the scale of DCNs.  
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Many relevant studies emphasis on the imbalanced load 
problem for devolved controllers [4], [11], [16], only none 
of them break a clear conceptualization of the controller 
imbalance problem and examine the execution of their 
resolutions. This contributes to our concern on the 
imbalanced load issue for devolved controllers to better 
control the traffic and bring off the network. 

Prompted by these fears, in this report we propose a 
novel system to manage devolved controllers. In our 
system, each controller monitors the traffics of a 
constituent of the switches locally. When traffic load 
imbalance occurs, some of them will migrate a lot of their 
supervised work to other controllers so that the workload 
can be kept balanced dynamically. We limit this problem as a 
Load Balancing problem for Devolved Controllers (LBDC). Then 
we design mul- tiple solutions for LBDC, including a linear 
programming with rounding approximation, three 
centralized greedy algorithms, and one distributed greedy 
algo- rithm. Using these results, we can dynamically Bal- 
once the traffic load among controllers. Such methods can 
cut down the natural event of traffic hot spots significantly, 
which will degrade network performance. These strategies 
can also improve the availability and throughput of DCN, 
supporting horizontal scaling and enhancing 
responsiveness of clients’ requests. In whole, the main 
contributions of this report are as follows: 

1) We design and implement a traffic load balancing 
scheme using devolve controller, which Elim- inates 
the scalability problem and balances the traffic load 
among manifold controllers. All these controllers are 
configured based on their physical placements, which 
is more sensible and takes in the whole network more 
efficient and dependable. 

2) We  prove the NP-totality of LBDC, and design an f -
approximation algorithm to obtain the solution. We 
also get up with both concentrated and distributed heuristics 
for workload migration between controllers in dynamic sites. 
The distributed algorithm is scalable, stable, and more 
appropriate for real-world applications, especially for 
large-scale DCNs. 

3) We evaluate our algorithms with various experts- 
ailments. Arithmetical results validate our design’s 
competence. To the best of our knowledge, we are the 
first to discuss workload balancing problem among 
multi-controllers in DCNs, which has both 
hypothetical and nononsense consequence. 

This theme is the expanded variant of our conference 
version [17]. Established along the short symposium 
version, we add a randiest rounding for the linear 
programming, as well as two novel centralize migration 
algorithms under limited circumstances. To boot, we 
generate a new appraisal fragment and get more honest and 
exact results by several numerical experiments. 

 

The remainder of the paper is formed as follows. Part 2 
shows the system architecture and problem statement; 
Section 3 and Section 4 give our solutions to LBDC. 
Section 5 presents our performance evalue- action and 
demonstrates the potency of our algorithms. Section 6 
introduces the related works; Finally, Section 7 concludes 
the paper. 

 

II. PROBLEM STATEMENT 

Traffic in DCN can be considered as Virtual Machine 
(VM) announcement. VMs in different servers collab- 
orate with each other to complete specified tasks. In order 
to communicate between VMs, communication flow will 
go through several switches. 

Founded along the concept of OpenFlow [10], there is a 
flow table in each toggle, store the flow entries to be used 
in routing. One duty of a accountant is to modify these 
flow tables when announcement takes place. Every 
controller has a corresponding routing component and it 
may be composed of several graded switches, including 
Top of Rack (TOR) Switches, Aggregation Switches, and 
Core Switches. These substitutions are utilized for 
communication within the data center. Furthermore, every 
rack has a server called elected server [18], which is 
responsible for aggregate and processing the network 
statistics for the rack. It is also in charge of sending the 
summarize traffic matrices to the network controller, using 
a mapping program which wins over the traffic of this rack 
(server-to-server data) into ToR-to-ToR messages. In one 
case a controller receives these data, it will distribute them 
to a routing element which works out the flow reroute and 
reply to the new flow messages sent to the accountant. 
Then the checker installs these route in turn to all 
associated switches by switch over their flow tables. Since 
this report is not concerned with routing, we overlook the 
details of table computing and flow rerouting. 

Today  we  will  fix  our  problem  formally. In    a typical 

DCN, denote  so  as  the  earth  switch,  with  the corresponding 

traffic weight w (psi), which is determined precisely as the bit of 

outgoing streams. Note that this weight does not take account 

of the communication within the ToRs. Next, given and 

switches   S = s1, seen with  their  weights  w (psi)  and  m 

controllers C = c1, cm, we desire to create a weighted m-

partition for switches such that each contrailer will monitor 

a subset of switches. The weight of a controller w (chi) is 

the weighted summation of its monitored switches. Due to 

physical precincts, assume every si has a potential 

controller set PC(si)  and  it  can  only be monitored by 

controller in PC(si). Every key has a potential switch set 

PS (chi) and it can only control switches in PS (chi).  

Later on the division, the real controller of sin is denoted by RC (psi) and the real switch subset 
of chi is denoted by RS (chi). The symbols employed    in this theme are listed in Table 1. 

 

TABLE 1 
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Theorem 1. LBDC is NP complete. 

Proof. We will prove the NP completeness of LBDC by 

considering a decision version of the problem, and showing 

a reduction from PARTITION problem [19].
 

The system  running, the  weightiness of  the controller I  
may grow exclusively, making it unbalanced comparing 
with other controllers. Then in this condition, we must 
marginally migrate some switches in RS (chi) to other 
available controllers, in society to reduce its workload and 
preserve the whole network traffic balanced. 

Then our problem becomes balancing the traffic load 
among my partition in real time upbringing, and migrate 
switches among controllers when the symmetry is gone. 
We limit this problem as a Load Balancing problem for Devolved 
Controllers (LBDC). In our system, each controller can 
lethargically migrate switch to or receive switches from 
understandably adjacent controllers to keep up the traffic load 
balanced. 

Image 1 illustrates the migration pattern. Here Con- 
troller cj dominates 17 switches (as red shifts) and 
Controller ci dominates 13 switches (as blue switches). 
Since the traffic between chi and cj is unbalanced, cj    is 
migrating one of its switches to watch. 

 

Fig. 1. An example of regional balancing migration. 

We make an instance of LBDC. In this case there are 
two controller c1, c2 and A switches. Each switch so 
represents an element a A, with weight w (SA) = size (a). 
Both controllers can control every switch in the network 
(PS (c1) = PS (c2) = SA an A). 
Then, given a YES solution A′  for PARTITION, 
we  have  a  solution  RS(c1)  = sa   a A′ ,  RS(c2) = 
sa   a A A′ with σ = 0. The reverse part is trivial. The 
reductions can be done within polynomial time, which  
completes the proof. Next we demonstrate our results for 
the LBDC. We carry out the schemes within OpenFlow 
framework, which clears the system fairly easy to configure and 
enforce. It changes the devolved controllers from a 
statistical model into an implementable prototype. besides, 
our schemes are topology free, which is scalable for any 
DCN topology such as Fat-Tree, BCube, Portland, etc. 

 

 

III. LINEAR PROGRAMMING AND 

ROUNDING 
 

Given the traffic status of the a current DCN with devolved 

controllers, we can solve the LBDC prob- lem using the 

above programming. To simplify this programming, we will 

then transfer it into a similar integer programming

Term Definition 
S, si 
w(si) 
PC(si) 
rc(si) 

switch set with n switches: S={s1, · · · , sn} 
weight of si, as the no. of out-going flows. 
potential controllers set of the ith switch. 
the real controller of the ith switch. 

C, ci 
w(ci) 
PS(ci) 
RS(ci) 
AN (ci) 

controller set with m controllers: C={c1, · · · , cm} 

weight of ci, as the sum of RS(ci)’s weight. 
potential switches set of the ith controller. 
real Switches set of the ith controller. 
adjacent node set (1-hop neighbors) of ci. 
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Summing up all switch elements a ∈ U , we get Pr[C
′ 

is not a valid switch set cover] ≤ n · 1 ≤ 1 

We then present our LBDC-Randomized Rounding 
(LBDC-RR) algorithm as described below. 

First, we claim that our LBDC problem can be described 

in another way as the definition and prop- erties of set 

cover: Given a universe U of n switch elements, S  is  a  

collection  of  subsets  of  U ,  and  S=  S1, , Sn  . And 

there is a cost assignment func-  tion c : S Z+. Find the 

subcollection of S with the minimum deviation that covers 

all the switches of the universal switch set U . 

We will show that each switch element is covered with 
constant probability by the controllers with a specific 
switch set, which is picked by this process.  Repeating this  
process  O(log n)  times,  and  picking  a subset of switches 
if it is chosen in any of the iterations, we get a set cover 
with high probability, by a standard coupon collector 
argument. The expected minimum deviation of cover (or 
say controller-switch matching)  picked  in  this  way  is  
O(log n)  OPTf O(log n) OPT , where OPTf is the cost of 
an optimal solution to the LP-relaxation. 

Alg. 2 shows the formal description of LBDC-RR. 

 
Algorithm 1: Randomized Rounding (LBDC-RR) 

 
 

1 Let x = p be an optimal solution to the LP; 

2   foreach set Si S do 

3 Pick Si with probability xSi 

4   repeat 

5 Pick a subcollection as a min-cover 

6 until execute c log n times; 

7 Compute the union of subcollections in C. 

Therefore the LBDC-RR algorithm is efficient and we can 
solve the LBDC problem using linear program- ming and 
randomized rounding. 

 
IV. ALGORITHM DESIGN 

Using Linear programming and rounding, we can perfectly 
solve LBDC theoretically. However, it is usu- ally time 
consuming and impractical to solve an LP  in real-world 
applications. Thus, designing efficient and practical 
heuristics for real systems is essential.  In this section,  we  
will  propose  a  centralized  and  a distributed greedy 
algorithm for switch migration, when the traffic load 
becomes  unbalanced  among the controllers. We then 
describe OpenFlow based migration protocols that we use 
in this system. 

 

4.1 Centralized Migration 

Centralized Migration is split up into two phases.  The first 
phase is used for configuring and initializing the DCN. As 
the traffic load changes due to various applications, we 
have to come to the second phase for dynamical migration 
among devolved controllers. 

Fig. 2 illustrates the general workflow of Central- ized 
Migration, which includes Centralized Initialization and 
Centralized Regional Balanced Migration. 

 
 

 

Next let us compute the probability that a switch element 
a  U  is covered by C. Suppose that a occurs in k sets of S. 
Let the probabilities associated with these sets be p , · · · , p 
. Since a is fractionally covered 
in the optimal solution, p1 + p2 + + pk 1. Using elementary 
calculus, it is easy to show that under this condition, the 
probability that a is coverd by C is minimized when each of 

the pi

′ 
s is 1/k. Thus, 

Pr[a is covered by C] ≥ 1 − 
(
1 − 1 

)k 
≥ 1 − 1 

Fig. 2. Dynamic Load Balancing Workflow of LBDC 

 
Centralized Initialization: First we need to initial- ize the 

current DCN, and assign switches to the con- trollers in its 
potential controller set. We design a centialization process 

 

where e is the base of natural logarithms. Hence each 
element is covered with constant probability by C. 

To get a complete switch set cover, we can inde- 
pendently pick c log n such subcollections. And then we 

compute their union, say C
′ 

, where c is a constant such 

that ( 1 )
c log n 

≤ 1 . 

In order to get rid of the dilemma where we have to select 
from conflict switches or controllers, we first present the 
Break Tie Law. 

Break Tie Law: (1) When choosing si from S, we se- lect 
the one with the largest weight. If several switches have  
the  same  weight,  the  one  with  the  smallest 
|PC(si)|  is preferred. If  there are   still  several  candi- 

Then we can obtain the following probability, 

Pr[a is not covered by C
′ 

] ≤ 
( 1 )c log n 

≤ 1  

dates, we randomly choose one. (2) When choosing ci from 
C, we select the one with the minimum weight. If several 
controllers have the same weight, the one 

Network Traffic Varies Unbalanced 

Initialization   State 

 
check next controller 

Migration Yes 

Completed 

No 

check 

all? 

No 
w(c)>Efn 

Yes 

Regional 

Migration 

State 
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Search the cj ∈CC AN (cj); 
′ 

while ′ do 

with the smallest RS(ci) is preferred. If there are still 
several candidates, we choose the closer controller by 
physical distance. Finally, if we still cannot make a 

and stop the migration. In each round,  we  sample the  
current  weight  of  each  controller,  and calculate 

Avgnow = 
∑m    

w(ci)/m. In all, the Linear Expectation 

Then we design LBDC-CI as shown in Alg. 3. 
 

Thd = α · Avgnow + (1 − α) · Avglast, 
Efn = β · Thd 

 

(14) 

 
Algorithm 2: Centralized Initialization (LBDC-CI) 

  
Input : S with w(si); C with w(ci); 

Output: An m-Partition of S to C 

1   RemList=  s1,s2, ,sn ; 

3  while RemList = do 

4 Pick si from RemList; 

5 Let ℓ = arg min{w(cj) | cj ∈ PC(si)}; 
 

6 Assign si to cℓ (by break Tie Law); 

7 Remove si from RemList; 

  
 

LBDC-CI needs to search the  RemList  to  assign  the 
switches. This process takes running time O(n). While loop 
will be executed once for each switch in RemList, which 
takes O(m). Hence in the worst case the running time is 
O(mn). If we use a priority heap to store the RemList, we 
can improve the performance and reduce the overall 
running time to O(m log n). 

As the system runs, traffic load may vary frequently and 
will influence the balanced status among de- volved 
controllers. Correspondingly, we have to begin the second 
phase and design the centralized migration algorithm 
(LBDC-CM) to alleviate the situation. 

Centralized Regional Balanced Migration: During the 
migration process, we must assess when the con- troller 
needs to execute a migration. Thus we come up with a 
threshold and an effluence to judge the traffic 

 

The core principle of LBDC-CM is migrating the 
heaviest switch to the lightest controller  greedily.  Alg. 4 
describes the details. Note that AN (ci) denotes the 
neighbor set of ci. 

 

Algorithm 3: Centralized Migration (LBDC-CM) 

  
Input: S with w′(si); C with w′(ci); PendList 

= OverList = {∅}; 

1  Step 1: Add ci OverList  if  w′(ci) > Efn; 

2   Step 2: Find cm of max weight in OverList; 

3  if  cn AN (cm) : w′(cn) < Thd then 

4 repeat 

5 Pick sm RS(cm) of max weight ; 

6 if  cf AN (cm) PC(sm) : w′(cf ) < Thd 

then  Send sm cf ; 

7 else Ignore the current sm in cm; 

8 until w′(cm) Thd or all w′(cf ) Thd; 

9 if w′(cm) > Efn then move cm to PendList; 

10 else remove cm from OverList; 

11 else 

12 Move cm from OverList to PendList; 

13   Step 3: Repeat Step 2 until OverList = ; 

14 Let OverList = PendList, Repeat Step 2 until 

PendList becomes stable; 
15 Step 4: Now PendList has several connected 

components CCi (1 ≤ i ≤ |CC|); 

16   foreach CCi ∈∪CC  do       

 
 

  

Thd, it becomes relatively idle and available to receive 19 

more switches migrated from those controllers with 20 

workload overhead. If the workload of a controller is higher 
than Efn, it is in an overload status and should 21 
assign its switches to other idle controllers. Some 

|CCi|+|AN (CCi)| 
w (cj) ≥ γ · avglocal : cj ∈ CCi 

Migrate smax ∈ RS(cj) to 

cmin ∈ AN (CCi); 

remove cj ∈ CCi from PendList; 

Compute avglocal = w (CCi∪AN (CCi)) ; 18 

i 

load balancing status of the controllers. Here we de- 
fine Thd as the threshold and Efn as the effluence. If 

j 

{ 

17 
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measurement studies [21] of data center traffic have shown 
that data center traffic is expected to be linear. Thus we set 
the threshold according to the current traffic sample and the 
historical records, by imitating Round-Trip Time (RTT) and 
Timeout of TCP [22]. This linear expectation uses two 
constant weighting factors α and β, depending on the traffic 
features of the data center, where 0 ≤ α ≤ 1 and β > 1. 

(1) Naive LBDC-CM. We will first raise a naive 
algorithm for LBDC-CM. We will run naive LBDC-CM 
periodically and divide the running time of the system into 
several rounds. We use Avglast and Avgnow to represent the 
average workload of the last sample round and the current 
sample round. These two pa- rameters are used together to 
decide when to start 

22 Step 5: Repeat Step 4 until PendList is stable. 

  
 

The naive LBDC-CM consists of five steps. In Step 2, it 
searches the OverList to find cm, which  takes O(m). Next, 
it repeatedly migrates switches from the OverList to 
corresponding controllers, which takes O(mn). Step 3 
invokes Step  2  for  several  times  un- til the OverList is 
empty and makes the PendList become stable, which takes 
O(m2n). Step 4 and Step     5 balance the PendList locally 
as Step 2 and 3. In the worst case, the running time is 
O(m2n). By using a priority heap to store the OverList and 
PendList, we can reduce the time complexity to O(mn 
log m). 

(2) Limited LBDC-CM. In our naive version, we simply 
suppose that all controllers have unlimitedprocessing abilities. 
However, in real conditions, the performance of each controller 
will vary a lot. Thus, although naive LBDC-CM balances every 
controller with almost the same traffic load after several rounds, 
some of them will work in an overloaded state. For example, 
consider the following condition: there are three controllers c1, 
c2,  c3.  The  maximum  capacity for c1 is λ, for c2 is 2λ and for 
c3  is  4λ.  The  total weight of all switches in this system is 6λ. 
If our naive LBDC-CM works perfectly, then each controller 
will have a load of 2λ in the end. Definitely, c1  works in  an 
overloaded status, and will become the bottleneck of the system. 
Yet c3 only makes use of 50% of its maximum abilities. Thus in 
fact, the naive  LBDC-  CM only balances the value of load 
among devolved controllers, instead of balancing the 

performance of processing traffic load. 

Correspondingly, we design an improved algorithm as limited 
LBDC-CM. To reconfigure the system when it is unbalanced, 
we still need a threshold parameter and an effluence 
parameter for each controller. But now different controllers 
will have different param- eter values, and we use two sets 
to store them: T hdList  =  {T hd1,· · · ,  T hdm}  and  EfnList  
=  {Efn1, 

http://www.ijcstjournal.org/
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now 

last 

now 

now 

age percentage of resources utilized in the system, and 
migrating switches from the controllers that have high 
percentages to those with low percentages. The time 
complexity is the same as naive LBDC-CM, which 
takes O(m2n), and can be reduced to O(mn log m) 
using priority heap. For space complexity, we need 
to use several lists to store the following parameters: 
the weight of a switch, the current of a controller, the 
maximum capacity of a controller, the threshold and 
effluence of each controller, as well as the PendList 
and the OverList. Each of them requires a linear array 
to store, which takes O(n). We also need two 

matrices to store the potential mapping and real mapping 
between controllers and switches, which takes O(n2). 
Thus, the space complexity is O(n2). 

(3) LBDC-CM with switch priority. Our scheme of 
limited LBDC-CM can work well in a comparative in- 
tense structure. That is to say, if the distance between a 
switch and all its potential controllers are close enough, so 
that migrating  switch  si from  controller c1 to controller c2 
will not influence the processing speed of messages, then 
limited LBDC-CM will have a good performance. 
However, in some distributed data centers that have a very 
sparse structure, it is better to 

· · · ,   Efnm}.  For   controller   ci,  we use  Desi to attach a switch to its nearby controllers. Meanwhile, 

denote its deserved workload of the current round, as we have mentioned, the performance of controllers 

and use Desi to denote the deserved workload of in the network system may be very different. Some of 
the last round. Then these parameters are computed as 
follows 

the controllers may have strong computing capacities, and 
thus can process messages in a higher speed

 

 

We use Desi in  Relative  Weight  Deviation  to evaluate 
limited LBDC-CM and LBDC-CM with switch priority. We 
use Avgnow to replace Desi  in  RWD to evaluate naive 
LBDC-CM and LBDC-DM. 

According to Eqn. (15), the procedure of the lim- ited 
LBDC-CM is very similar as the naive  LBDC- CM in Alg. 
4. The only difference comes from the comparison steps, 
when to judge whether a controller is overloaded, we need 
to compare w′(ci) to its local Efni and Thdi.  

to distribute si to c2, if the current load of both con- 
trollers are below their thresholds. Thus we come up with 
LBDC-CM with switch priorities. In this scheme, each 
switch has a value list, which stores the value of each 
mapping between this switch and its potential 
controllers. We want to balance the traffic load of the 
network and make the whole value as large as possible. 
In LBDC-CM, we use vij to denote the value we can get 
by attaching switch si to controller cj. These values are 
stored in a matrix V alue, and if cj 

Limited LBDC-CM uses the current load ratio of each 
controller other than the value of the current weight, to 
judge whether the devolved controllers are unbalanced. 
Thus, we only need to calculate the aver- 

 

The implementation of this algorithm is quite similar to 
limited LBDC, except that we changed the migration 
scheme used in Step 2 of limited LBDC- CM. 
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Algorithm 4: LBDC-CM with switch priority 
w′(c   ) 

 
 

Distributed Regional Balanced Migration: In the second 

phase, the controller uses the threshold and 
1   Step  2:  Find  cm ∈ OverList  with max 

2  if  cn AN (cm) : w′(cn) < Thdn then 

3 repeat 

m 
wm(cm) the effluence to judge its status and decide whether 

it  should  start  the  migration.  Since  in  a distributed 
system, a controller can only obtain the information of 

4 if  cf AN (cm): w′(cf ) < Thdf then 

5 Sort PS(cm) by vif : si PS(cm); 

6 Pick sk with max vkf in cm, and pick max 
sk to break tie; 

7 Send sk → cf ; 

8 until w′(cm) ≤ Thdm or all w′(cf ) ≥ Thdf ; 

its neighborhood, the threshold is not a global one that suits 
for all the controllers, but an independent value which is 
calculated by each controller locally. Also the algorithm 
runs periodically for several rounds. In each round, each 
controller samples AN (ci) and applies the Linear 
Expectation 

9 if w′(cm) > Efnm then move cm

 

10 Move cm from OverList to PendList; 

 
LBDC-DM aims at monitoring the traffic status of 

itself by comparing current load with its threshold. When 
the traffic degree is larger than Efn, it enters 

In this scheme, we add the process of sorting the 
switch list according to the value matrix, which will take 
O(log n) if we use heap sorting. Thus the time complexity 
is O(n log m log n) if we use a priority heap to store the 
PendList and the OverList. And the space complexity is 
still O(n2) since we need some matrices to store the value 
and the mapping relations. 

 
4.2 Distributed Migration 

The centralized algorithm is sometimes  unrealistic  for 
real-world applications, especially for large data center 
with regional controller. It is time consuming and 
complicated for a devolved controller to get the global 
information of the whole system. Thus it is natural to 
design a practical and reliable distributed algorithm [23]. 
We assume a synchronous environ- ment to deploy our 
algorithm. For the distributed algorithm, it is still divided 
into two phases. 

Distributed Initialization: During this phase, we assign 
each switch a corresponding controller ran- domly. By 
sending control messages to the controller’s potential 
switch set, the controller can determine the correct 
assignment. Alg. 6 shows the distributed ini- tialization 
process. 

the sending state and initiates a double-commit trans- 
action to transfer heavy switches to nearby nodes. Alg. 7 

shows the distributed migration procedure. 
 

Algorithm 5: Distributed Migration (LBDC-DM) 
 

 

Sending Mode: (when w′(cmy) ≥ Efn) 

1 if ∃ci ∈ AN (Cmy) in receiving or idle then 

2 add ci → RList (receiving > idle). 

3 repeat 

4 Pick smax with max weight, refer PC(smax), find 
cj RList with min weight, send 

“HELP[cmy, smax]” to cj, then check response: 

5 if response=“ACC” then 

6 send “MIG[cmy, smax]” to cj 

7 else if response=“REJ” then 

8 remove cj from RList, find next cj, send 
“HELP” again, check response. 

9 Check response, delete smax when receiving 
“CONFIRM” message, terminate. 

10 until w′(cmy) ≤ Efn; 

Receiving Mode: (when w′(cmy) Thd) 

11 When receiving “HELP” messages: 

12 repeat 

       13 receive switches for cj and return “ACC”; 

Algorithm 6: Distributed Initialization (LBDC-DI) 
 

 

1 Send “CONTROL” message to my own PS(cmy) 

2 si reply the first “CONTROL” message with 

“YES”, all other messages after that with “NO”. 

3 Move si with “YES” from PS(cmy) to RS(cmy). 

4 Wait until all the switches in PS(cmy) reply, and 

  then terminate.  

 
The correctness of LBDC-DI is easy to check. After 

initialization, we then design the distributed migra- tion 
algorithm (LBDC-DM) to balance the workload of the 
system dynamically. 

14  until w(cj) + smax Thd; 

15 Now all “HELP” messages will reply “REJ” 

16 When receiving “MIG” message: 

17 smax → cj, send back “CONFIRM” message; 

Idle Mode: (when Thd w′(cmy) Efn) 

18 When receiving “HELP” message: 

19 repeat 

20 receive switches for cj and return “ACC”; 

21 until w(cj) + smax > Efn; 

22 When receiving “MIG”, migrate as above; 
 

 

 

; 
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The main battle between the federal and  the strewn 
migration is that the earlier can produce in sequence in a 
global position and grow to better decision, but it will also 
perform more meting out  times and will become a 
potential classified access of the system. On the dissimilar, 
for the private eye in the broadcast version, each governor 
will simply gather data from its environs and can only 
make proper migration within this region. Though the 
distributed adaptation cannot obtain a global most 
advantageous balancing grade, it is more practical to 
deploy in real organizations. In the intervening time, it can 
resourcefully avoid the dilemma in the centralized scheme 
that the crumple or mistake of the central processor will 
affect problem of the system. 

Their quarrel is also indicate in the characterization of 
the brink (Thd). In the federal version, the porch is moved 
by the utilizing ratio of the whole system, which is the 
same for each public accountant in the centralized system. 
A enchantment in the distributed version, the threshold of 
each controller is premeditated by its local information 
instead of the global in sequence, and the deserved utilizing 
ratio of each controller is in actuality different from each 
other. 

By using our scattered scheme, for the state of affairs 
depicted in Fig. 1, regulator ci and controller cj will get 
the information about each other, estimate its Thd and Efn 
value, and make your mind up its status. If controller ci 
is in the conveyance mode and controller cj is in the being 
paid mode, then ci will move around some of its 
dominate switches to cj vouchsafe to Alg. 7. 

 
4.3 OpenFlow based Migration Protocol 

To  keep up a well balanced in commission mode when a peak 
flow appear, switches should change the roles of their modern 
controllers while controllers should change their typescript by 
sending Role demand messages to the replacement. These 
operations stipulate the system to achieve a switch 
migration operation. Nevertheless, there is no such 
instrument provided in the OpenFlow standard. OpenFlow 
1.3 defines three equipped modes for a controller master, 
work fingers to bone, and equal. Both superior and equal 
controllers can transform switched state and receive 
nonparallel messages from the substitution. Side by side, we 
design a unambiguous code of behavior to transfer a switch 
from its initial controller to a novel controller. 

It is taken for granted that we are not able to stage-
manage the switch in our resettlement protocol design, 
while it is theoretically reasonable to update the OpenFlow 
standard to put through our system. Nevertheless, there are 
two extra events. Foremost, the OpenFlow standard 
without a doubt says that a toggle may process messages 
not automatically in the same guild as they are picked up, 
first and foremost to allow multi-threaded implementations. 
Second, the measure does not specify unambiguously 
whether the order of messages sent by the switch remains  
regular between two controllers that are in master or equal 
mode.  

 

Our code of behavior is built on the vital  idea  that  we  
need to first make a distinct trigger event to stop message 
dispensation in  the  first  controller  and  start a same 
significance in the second one. We  can exploit   the fact that 
Flow-Removed messages are sent to all controllers in commission 
in the equatorial mode. We therefore simply insert a dummy flow into 
the switch from the first controller and then remove the flow, which will 
offer a single  trigger  event  to  both  the controller in equatorial mode to 
signal handoff . Our anticipated migration protocol for migrating 
switch some of the initial organizer key to target controller cog 
works in four forms as indicate under. 

Phase 1: Change the role of intention cj to equal mode. 
Here, controller cj is first transitional to the equal mode for 
switch sm. Initially master ci initiate this phase by sending a 
start migration message to cj on the controller-to-controller 
channel. cj sends the Role-Request message to sm informing 
that it is an equal. After cj receives a Role-Reply message 
from sm, it informs the initial master ci that its role change 
is completed. Since cj changes its role to equal, it can 
receive asynchronous messages from other switches, but 
will ignore them. During this phase, ci remains the only 
master and processes all messages from the switch 
guaranteeing liveness and safety. 

Phase 2: Insert and remove a dressmaker's dummy flow. 
To find an exact split second for the voyage, cue sends a dummy 
Flow-Mod domination to seem to append a new flow table entry 
that does not check any incoming packets. We presume that all 
controller know this dummy flow entry a priori as part of the 
protocol. And so, it sends another Flow-Mod command to 
delete this entry. In reaction, the switch sends a Flow-
Removed message  to both controllers since cog is in the 
equatorial mode. This Flow-Removed event provide a time 
point to transfer the tenure of switch sm from ci to cj, after 
which only cj will process all messages transmit by sm. An 
supplementary barrier message is taken after the insertion 
of the dummy flow and before the dressmaker's dummy 
flow is deleted to prevent any chance of processing the 
delete message before the interleave. Note that we do not 
assume that the Flow-Removed message is received by ci 
and cj concurrently, since we assume that the message 
order is unswerving between ci and cj after these controllers 
enter the equal mode, meaning that all messages before 
Flow-Removed will be process by ci and after this will be 
processed by cj. 

Phase 3: Flush pending requests with a barrier. While cj 
has assumed the tenure of sm in the subsequent phase, the 
protocol is not  complete unless  ci is connected from sm. 
However, it cannot just be isolated immediately from sm 
since there may be pending requests at ci that arrives before 
the Flow-Removed message. This appears easily since we 
assume the same ordering at ci and cj. So all ci needs to do 
is processing all messages arrived before Flow-Removed, 
and committing to sm. 
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Even so, in that respect is no unambiguous appreciation 
from the switch that these messages are obtainable. Thus, 
in order to certification all these messages are steadfast, ci 
hand on a Barrier Request and waits for the Barrier Reply, 
only after which it signal end migration to the final master 
cj. 

Phase 4: Dispense controller cj as the final master of sm. 
cj sets  its  role  as  the  master  of  sm  by  sending a Role-
Request message to sm. It also updates the distributed 
information store to argue this. The switch sets ci to slave 
when it receive the Role-Request communication from cj. 
Then cj remains active and process all messages from sm 
for this segment. 

The above movement protocol requires 6 round-trip 
times to complete the migration. But notice that we need to 
trigger migration only once in a while when the load 
conditions change, as we discussed in the algorithm design 
subsections. 

 
V. PERFORMANCE EVALUATION 

In this segment, we assess the execution of our centralized 
and disseminated protocols. We  look at the case where traffic 
stipulate changes and test whether the metric of evenhanded 
workload controllers is minimize. We likewise consider the 
number of migrated switches into thoughtfulness. Furthermore, 
we look into how different parameters will determine the 
outcomes. 

 
5.1 Environment Setup 

We construct simulations by Python 2.7 to assess the 
routine of our intentions. We  place 10,000 switches and 

100 controllers in a 100 100m2 square. Switches are evenly 
isolated in this square, sound out, each switch is 1m away 
from any of its neighbors.  The controllers are too similarly 
spread and each controller is 10m away from its fellow 
citizen. Each controller can check all the switch within 
30m, and  can exchange a few words with other controllers 
within the range of 40m. We take on the weight of each switch 
follows the Pareto distribution with its parameter αp = 3. We make 
a small simulation to choose the most appropriate α, β and γ, so that 
the environment  we make can be very near to the actual situation, 
in terms of the traffic condition, workload of controllers, and 
migration frequency,  etc. [13] –[15], [24]. Thus we set  α = 0.7, 
β = 1.5, γ = 1.3 as default configuration. 

 
5.2 System Performance Visualization Results 

We employ the default configuration described above to 
examine the operation of the organization. We first apply 
initialization and change the traffic demands dynamically 
to emulate unpredictable user requests. And so we apply 
naive LBDC-CM and other variants to alleviate 

the spot congestion. We use relative weight deviation to 
evaluate the functioning of our algorithms. 

We analyze the performance of our four algorithms.. 
Consider a DCN with 10 10 controllers locating as a 
straight array. At the start of  a time slot, the weights of 
switches are updated and then we play the  migration  
algorithms.The  weight of switches follows Pareto 
distribution with αp = 3. Figure 3 indicates the system 
initial traffic states, Different color scale represents 
different working state of a controller. The darker the  color  
is,  the  busier the controller works. Figure 4, Figure 5, 
Figure 6 and Figure 7 illustrate the performance of the 
naive LBDC- CM, limited LBDC-CM, Priori LBDC-CM 
and LBDC- DM respectively. We can see that after the 
migration, the whole system becomes more balanced. 

Actually, the performance of LBDC-DM is poor when 
the number of the controllers is relatively lim- ited. This 
phenomenon is attributed to the system setting that one 
controller can only cover switches within 30m. When the 
number of controllers is few, more switches should be 
controlled by one particular controller without many 
choices. As the number of the controller increases, LBDC-
DM can achieve a better performance and a higher 
improvement ratio. 

Intuitively, increasing the number of controllers may 
increase the deviation, but it may lead to less migration 
frequency. To balance the number of controllers and the 
migration frequency, we need to carefully set α, β, and γ 
values. If there are sufficient controllers to manage the 
whole system, we can adjust the three parameters such that 
the system will maintain a stable state longer. While if the 
number of controller reduces, we have to raise the 
migration threshold to fully utilize controllers. The effect 
on these parameters are further discussed in Sec. 5.4. 

 
5.3 Horizontal Protocol Performance Comparison 

We designed three variations of LBDC-CM: naive LBDC-
CM, which is the simplest and applicable to most of the 
cases. While if the controllers are hetero- geneous or the 
switches have a space priority to its closest controller 
physically, then we can implement limited LBDC-CM or 
LDBC-CM with switch priority respectively. Finally we 
have a distributed LBDC-DM protocol. Now let us 
compare the performance of the four migration protocols. 

Comparison on number of controllers. Firstly, we vary 
the number of controllers from 30 to 210 with a step of 20 
and check the change of relative weight deviation of the 
system. The simulation results are shown in Fig. 8 and Fig. 
9. We compare the relative weight deviation of the initial 
bursty traffic state and the state after the migration. We find 
that after the migration, the relative weight deviation of all 
the controllers decreases. It depicts that our four protocols 
improve the system performance significantly com- 
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Fig. 3. Initial state Fig. 4. Naive LBDC- 

CM migration 
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LBDC-CM migration 

Fig. 6. Priori LBDC- 

CM migration 

Fig. 7. LBDC-DM mi- 

gration 
 

   

Fig. 8. Relative weight deviation 

protocol comparison 

 

Fig. 11. Migrated switch without 

traffic changes 

Fig. 9. Performance improvement for 

different protocols 

 

Fig. 12. Relative weight deviation as 

traffic changes 

Fig. 10. Relative weight deviation without 

traffic changes 

 

Fig. 13. Migrated switch as traffic 

changes 
 

pared with the initial state, whether in the relative weight 
deviation part or in the improvement part. As the number 
of controllers increases, the improvement ratio is also 
increasing. It is quite intuitive that more controllers will 
share jobs to reach a balanced state. Both figures show that 
our algorithm has a pretty good performance when the 
number of controllers grows, which indicates that our 
scheme is suitable for mega data centers. 

The naive LBDC-CM  performs  the  best  because  it 
considers all possible migrations from a global prospective. 
It is even better than the performance    of the LBDC-DM, 
but the difference between them is decreasing as the 
number of the controllers increases. It is better if we add 
more controllers to the network to achieve a balanced traffic 
load. In reality we may only run the other protocols such as 
the LBDC-DM, lim- ited LBDC-CM and LBDC-CM with 
switch priority. For the limited LBDC-CM, the maximum 
workload  of controllers also follows  Pareto  distribution  
with αp = 3, and we amplify it with a constant to make  sure 
the total traffic load not exceed the capacity of  all 
controllers. For LBDC-CM with switch priority, we allocate 
a value to each mapping of a switch and a controller, which 
is inversely proportional to their dis- tance, we can also see 
that it has a significant growth as the number of controller 
increases. Overall we can conclude that all of the four 
protocols performs quite well in balancing the workload of 
the entire system. 

Run-Time performance w.r.t static traffic loads. 

Figure 10 and Figure 11 show the relative weight deviation 
and migrated switch number w.r.t. the four protocols at 
different time slot under the condition that the global traffic 
load is not  changed  all  the  time (the weight of each 
switch is constant). We can see that the relative weight 
deviation is decreasing,  but the values of limited LBDC-
CM and LBDC-CM with switch priority are higher than 
that of the naive LBDC-CM. This is because through 
limited LBDC-CM and LBDC-CM with switch priority, 
each controller has a different upper bound, which will 
influence the migration. For example, if some switches can 
only be monitored by a certain controller, and that 
controller is overloaded, then it will cause a high relative 
weight deviation since we cannot remove the switches to 
other controllers. In addition, controllers in LBDC- CM 
with switch priority even have a preference when choosing 
potential switches. In terms of migrated switch numbers, 
we can see that with time goes by,  all four protocols 
remain stable on the number of migrated switches. LBDC-
DM has the lowest number of migrated switches because of 
its controllers can only obtain a local traffic situation, 
resulting in the relatively low frequency in migrating 
switches. 

Run-Time performance w.r.t. dynamic traffic loads. 
Figure 12 and Figure 13 show the relative weight deviation 
and migrated switch number w.r.t. the four protocols at 
different time slot under the condition that the global traffic 
load is changed dynamically (the weight of each switch 
is dynamic). Even if the 
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traffic load is changing at different time slots, the migrated 
switch number stays in a relatively stable status. If 
controller c1 is overloaded, it will release some dominating 
switches to its nearby controllers. However, if in the next 
round, the switches that monitored by those controllers 
gain higher traffic load and make the nearby controllers 
overloaded, then the switches may be sent back to 
controller c1. Thus, to avoid such frequent swapping 
phenomenon, we can set an additional parameter for each 
switch. If its role has been changed in the previous slot, 
then it will be stable at current state. 

We may also consider the deviation of load bal- ancing 
among switches to better improve the sys-  tem 
performance. Since we consider the balancing problem 
among controllers, which is like the “higher level” of 
balancing problem among switches, we can implement 
some load balancing strategies among switches [25]–[28] 
and combine the two-layers to- gether to achieve a better 
solution. 

 
5.4 Parameter Specification 

Next we explore the impact of the threshold parame- ters α, 
β, γ. Here α is a parameter to balance conser- vativeness 
and radicalness, β is a crucial parameter which decides 
whether to  migrate  switches  or  not in four protocols, and 
γ is used in Step 4 of LBDC- CM. We examine the impact 
of changing α, β and γ altogether. TABLE 2 lists the 
statistics for α ranging between 0.25 and 0.75, β ranging 
between 1.15 and 
1.35, γ ranging between 1.15 and 1.35. The improve- ment 
rate and the number of migrated switches is mostly 
decreasing as β increases, which is actually correct 
according to the definition of the threshold. 

 

TABLE 2 

Influence of α, β and γ factor 
 

α β γ Initial LBDC-CM Rate Switch # 
0.25 1.15 1.15 181.87 14.41 92.08 6344 
0.25 1.15 1.35 188.54 16.90 91.04 6236 
0.25 1.35 1.15 193.81 11.83 93.90 6536 
0.25 1.35 1.35 182.76 16.18 91.15 6224 
0.75 1.15 1.15 196.73 12.01 93.90 6705 
0.75 1.15 1.35 187.62 17.29 90.79 6244 
0.75 1.35 1.15 178.77 15.46 91.35 6305 

0.75 1.35 1.35 181.01 14.29 92.11 6231 

 
VI. RELATED WORK 

As data center becomes more important in industries, there 
have been tremendous interests in designing efficient 
DCNs [1], [2], [29]–[32]. Also, the effects of traffic 
engineering have been proposed as one of the most crucial 
issues in the area of cloud computing. 

The existing DCN usually adapts a centralized controller 
for aggregation, coordination and resource management 
[1], [2], [10], [31], which can be energy efficient and can 
leverage the failure of using a global 

view of traffic to make routing decisions. Actually, us- ing a 
centralized controller makes the design simpler and 
sufficient for a fairly large DCN. 

However, using a single omniscient controller in- 
troduces scalability concerns when the scale of DCN grows 
dramatically. To address these issues, re- searchers installed 
multiple controllers across DCN by introducing devolved 
controllers [4]–[8], [33] and used dynamic flow as an 
example [5] to illustrate the detailed configuration. The 
introduction of devolved controllers alleviates the 
scalability issue, but still introduce some additional 
problems. 

Meanwhile, several literatures in devising dis- tributed 
controllers [6]–[8] have been proposed for SDN [34] to 
address the issues of scalability and reliability, which a 
centralized controller suffers from. Software-Defined 
Networking (SDN) is a new net- work technology that 
decouples the control plane logic from the data plane and 
uses a programmable software controller to manage 
network operation and the state of network components. 

The SDN paradigm has emerged over the past few years 
through several initiatives and standards. The leading SDN 
protocol in the industry is the OpenFlow protocol. It is 
specified by the Open Networking Foundation (ONF) [35], 
which regroups the major net- work service providers and 
network manufacturers. The majority of current SDN 
architectures, OpenFlow- based or vendor-specific, relies 
on a single or mas- ter/slave controllers, which is a 
physically centralized control plane. Recently, proposals  
have  been  made to physically distribute the SDN control 
plane, either with a hierarchical organization [36] or with a 
flat or- ganization [7]. These approaches avoid having a 
SPOF and enable to scale up sharing load among several 
controllers. In [34], the authors present a distributed NOX-
based controllers interwork through extended GMPLS 
protocols. Hyperflow [7] is, to our best knowl- edge, the 
only work  so  far  also  tackling  the  issue of distributing 
the OpenFlow control plane for the sake of scalability. In 
contrast to our approach based on designing a traffic load 
balancing scheme with well designed migration protocol 
under the Open- Flow framework, HyperFlow proposes to 
push (and passively synchronize) all state (controller 
relevant events) to all controllers. This way, each controller 
thinks to be the only controller at the cost of requiring 
minor modifications to applications. 

HyperFlow [7], Onix [34], and Devolved Con- trollers 
[4] try to distribute the control plane while maintaining 
logically centralized using a distributed file system, a 
distributed hash table and a pre- computation of all possible 
combinations respectively. These approaches, despite their 
ability to distribute the SDN control plane, impose a strong 
requirement: a consistent network-wide view in all the 
controllers. On the contrary, Kandoo [36] proposes a 
hierarchical distribution of the controllers based on two 
layers of controllers.
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Meanwhile, DevoFlow [37] and DAIM [38] also solve 
these problems by devolving network control to switches. 

In addition, [39] analyzes the trade-off between 
centralized and distributed control states in SDN, while 
[40] proposes a method to optimally place a single 
controller in an SDN network. Authors in [41] also 
presented a low cost network emulator called Distributed 
OpenFlow Testbed (DOT), which can em- ulate large SDN 
deployments. Recently, Google has presented their 
experience with B4 [42], a global SDN deployment 
interconnecting their data centers. In B4, each site hosts a 
set of master/slave controllers that are managed by a 
gateway. The different gateways communicate with a 
logically centralized Traffic Engi- neering (TE) service to 
decide on path computations. Authors in [6] implemented 
migration protocol on current OpenFlow standard. Thus 
switch migration become possible and we are able to 
balance the workload dynamically by presenting the 
following schemes to overcome the shortcomings as well 
as improve system performance from many aspects. 

 

 

VII. CONCLUSION 

With the evolution of data center networks (DCNs), the 
usage of a centralized controller has become the bottleneck 
of the entire system, and the traffic management problem 
also becomes serious. In this paper, we explored the 
implementation of devolved controllers, used it to manage 
the DCN effectively and alleviate the imbalanced load 
issues. 

We first defined the Load Balancing problem for 
Devolved Controllers (LBDC) and proved its NP- 
completeness. We then proposed an f -approximation 
solution, and developed applicable schemes for both 
centralized and distributed conditions.  The  feature  of 
traffic load balancing ensures scaling efficiently. Our 
performance evaluation validates the efficiency  of our 
designs, which dynamically balances traffic load among 
controllers, thus becoming a solution to monitor, manage, 
and coordinate mega data centers. 
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