

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 58

Monitoring Managing and Co-ordinating Mega Data Centers

With Multiple Controller
S.Ravi Kumar [1], Yarraguntla Jayalakshmi [2]

Department of Computer Science and Engineering

Visakha Institute of Engineering and Technology

Andhra Pradesh, India

ABSTRACT

 In most existing cloud services, a centralized controller is utilized for resource management and coordination.

Nevertheless, such infrastructure is gradually not sufficient to match the rapid growth of mega data centers. In recent

literature, a new approach named devolved controller was proposed for scalability concern. This approach separates

the whole network into various regions, each with one controller to monitor and reroute a portion of the flows. This

technique relieves the trouble of an overloaded single controller, but brings other problems such as unbalanced work

load among controllers and reconfiguration complexities. In this report, we establish an exploration on the use of

devolved controllers for mega data centers, and design some new strategies to overcome these defects and improve the

functioning of the organization. We first formulate Load Balancing problem for Devolved Controllers (LBDC) in data

centers, and establish that it is NP-complete. We then design an f -approximation for LBDC, where f is the largest act of

potential controllers for a switch in the mesh. Furthermore, we propose both centralized and distributed greedy

approaches to solve the LBDC problem effectively. The numerical results validate the efficiency of our strategies,

which can become a solution to monitoring, managing, and coordinating mega data centers with multiple controllers

working in concert.

Keywords:- LBDC

I. INTRODUCTION

In recent years, data center has emerged as a common
base that supports thousands of servers and supports many
cloud applications and helps such as scientific computing,
group collaboration, computer memory, financial
applications, etc. This fast proliferation of cloud computing
has promoted a rapid development of mega data centers
used for commercial uses. Fellowships such as Amazon,
Cisco, Google, and Microsoft have made immense
investments to improve Data Center Networks (DCNs).

Typically, a DCN uses a centralized controller to monitor
the global network status, manage resources and update
routing information. For instance, Hedera [1] and SPAIN
[2] both adopt such a centralized controller to combine the
traffic statistics and reroute the flows for better load
balancing.

Driven by the unprecedent objectives of improving
the performance and scale of DCNs, researchers try to
deploy multiple controllers in such networks [4] [8]. The
concept of devolved controllers is thereby brought out for
the inaugural time in [4], in which they used dynamic flow
[5] to illustrate the detailed configuration. Devolved
controllers are a set of controllers that collaborate as a
single omniscient controller, as a similar scheme in [9].

 However, none of the controllers have the complete info on
the whole web.. Rather, every controller only maintains a lot
of the pairwise multipath information beforehand, hence
cutting the work load significantly.

Recently, software-defined networking (SDN) as
proposed by OpenFlow [10] has been touted as one of the
most promising solutions for the future Internet. SDN is
characterized by two distinguished features: decoupling the
control plane from the data plane and providing
programmability for network application development
[11]. From these characteristics, we can divide the DCN
flow control systems into two layers: the lower layer
focuses on traffic management and virtual machine (VM)
migrations, which could relieve the intensive traffic in hot
spots; the upper layer coordinates the control rights of
switches among controllers, which dispenses with the load
imbalance problem in a hierarchical fashion.

For the lower layer control, there are adult and well-
evolved methods to treat the current control and VM
migration at present [12] –[15]. Spell for the upper layer
control, managing the DCNs by devolved controllers
gradually becomes a live issue in recent years due to the
enlargement of the scale of DCNs.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 59

Many relevant studies emphasis on the imbalanced load
problem for devolved controllers [4], [11], [16], only none
of them break a clear conceptualization of the controller
imbalance problem and examine the execution of their
resolutions. This contributes to our concern on the
imbalanced load issue for devolved controllers to better
control the traffic and bring off the network.

Prompted by these fears, in this report we propose a
novel system to manage devolved controllers. In our
system, each controller monitors the traffics of a
constituent of the switches locally. When traffic load
imbalance occurs, some of them will migrate a lot of their
supervised work to other controllers so that the workload
can be kept balanced dynamically. We limit this problem as a
Load Balancing problem for Devolved Controllers (LBDC). Then
we design mul- tiple solutions for LBDC, including a linear
programming with rounding approximation, three
centralized greedy algorithms, and one distributed greedy
algo- rithm. Using these results, we can dynamically Bal-
once the traffic load among controllers. Such methods can
cut down the natural event of traffic hot spots significantly,
which will degrade network performance. These strategies
can also improve the availability and throughput of DCN,
supporting horizontal scaling and enhancing
responsiveness of clients’ requests. In whole, the main
contributions of this report are as follows:

1) We design and implement a traffic load balancing
scheme using devolve controller, which Elim- inates
the scalability problem and balances the traffic load
among manifold controllers. All these controllers are
configured based on their physical placements, which
is more sensible and takes in the whole network more
efficient and dependable.

2) We prove the NP-totality of LBDC, and design an f -
approximation algorithm to obtain the solution. We
also get up with both concentrated and distributed heuristics
for workload migration between controllers in dynamic sites.
The distributed algorithm is scalable, stable, and more
appropriate for real-world applications, especially for
large-scale DCNs.

3) We evaluate our algorithms with various experts-
ailments. Arithmetical results validate our design’s
competence. To the best of our knowledge, we are the
first to discuss workload balancing problem among
multi-controllers in DCNs, which has both
hypothetical and nononsense consequence.

This theme is the expanded variant of our conference
version [17]. Established along the short symposium
version, we add a randiest rounding for the linear
programming, as well as two novel centralize migration
algorithms under limited circumstances. To boot, we
generate a new appraisal fragment and get more honest and
exact results by several numerical experiments.

The remainder of the paper is formed as follows. Part 2
shows the system architecture and problem statement;
Section 3 and Section 4 give our solutions to LBDC.
Section 5 presents our performance evalue- action and
demonstrates the potency of our algorithms. Section 6
introduces the related works; Finally, Section 7 concludes
the paper.

II. PROBLEM STATEMENT

Traffic in DCN can be considered as Virtual Machine
(VM) announcement. VMs in different servers collab-
orate with each other to complete specified tasks. In order
to communicate between VMs, communication flow will
go through several switches.

Founded along the concept of OpenFlow [10], there is a
flow table in each toggle, store the flow entries to be used
in routing. One duty of a accountant is to modify these
flow tables when announcement takes place. Every
controller has a corresponding routing component and it
may be composed of several graded switches, including
Top of Rack (TOR) Switches, Aggregation Switches, and
Core Switches. These substitutions are utilized for
communication within the data center. Furthermore, every
rack has a server called elected server [18], which is
responsible for aggregate and processing the network
statistics for the rack. It is also in charge of sending the
summarize traffic matrices to the network controller, using
a mapping program which wins over the traffic of this rack
(server-to-server data) into ToR-to-ToR messages. In one
case a controller receives these data, it will distribute them
to a routing element which works out the flow reroute and
reply to the new flow messages sent to the accountant.
Then the checker installs these route in turn to all
associated switches by switch over their flow tables. Since
this report is not concerned with routing, we overlook the
details of table computing and flow rerouting.

Today we will fix our problem formally. In a typical

DCN, denote so as the earth switch, with the corresponding

traffic weight w (psi), which is determined precisely as the bit of

outgoing streams. Note that this weight does not take account

of the communication within the ToRs. Next, given and

switches S = s1, seen with their weights w (psi) and m

controllers C = c1, cm, we desire to create a weighted m-

partition for switches such that each contrailer will monitor

a subset of switches. The weight of a controller w (chi) is

the weighted summation of its monitored switches. Due to

physical precincts, assume every si has a potential

controller set PC(si) and it can only be monitored by

controller in PC(si). Every key has a potential switch set

PS (chi) and it can only control switches in PS (chi).

Later on the division, the real controller of sin is denoted by RC (psi) and the real switch subset
of chi is denoted by RS (chi). The symbols employed in this theme are listed in Table 1.

TABLE 1

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 60

{ | ∈ \ }
{ | ∈ }

}

&RQWUROOHU FL &RQWUROOHU FM

PLJUDWLRQ

Theorem 1. LBDC is NP complete.

Proof. We will prove the NP completeness of LBDC by

considering a decision version of the problem, and showing

a reduction from PARTITION problem [19].

The system running, the weightiness of the controller I
may grow exclusively, making it unbalanced comparing
with other controllers. Then in this condition, we must
marginally migrate some switches in RS (chi) to other
available controllers, in society to reduce its workload and
preserve the whole network traffic balanced.

Then our problem becomes balancing the traffic load
among my partition in real time upbringing, and migrate
switches among controllers when the symmetry is gone.
We limit this problem as a Load Balancing problem for Devolved
Controllers (LBDC). In our system, each controller can
lethargically migrate switch to or receive switches from
understandably adjacent controllers to keep up the traffic load
balanced.

Image 1 illustrates the migration pattern. Here Con-
troller cj dominates 17 switches (as red shifts) and
Controller ci dominates 13 switches (as blue switches).
Since the traffic between chi and cj is unbalanced, cj is
migrating one of its switches to watch.

Fig. 1. An example of regional balancing migration.

We make an instance of LBDC. In this case there are
two controller c1, c2 and A switches. Each switch so
represents an element a A, with weight w (SA) = size (a).
Both controllers can control every switch in the network
(PS (c1) = PS (c2) = SA an A).
Then, given a YES solution A′ for PARTITION,
we have a solution RS(c1) = sa a A′ , RS(c2) =
sa a A A′ with σ = 0. The reverse part is trivial. The
reductions can be done within polynomial time, which
completes the proof. Next we demonstrate our results for
the LBDC. We carry out the schemes within OpenFlow
framework, which clears the system fairly easy to configure and
enforce. It changes the devolved controllers from a
statistical model into an implementable prototype. besides,
our schemes are topology free, which is scalable for any
DCN topology such as Fat-Tree, BCube, Portland, etc.

III. LINEAR PROGRAMMING AND

ROUNDING

Given the traffic status of the a current DCN with devolved

controllers, we can solve the LBDC prob- lem using the

above programming. To simplify this programming, we will

then transfer it into a similar integer programming

Term Definition
S, si
w(si)
PC(si)
rc(si)

switch set with n switches: S={s1, · · · , sn}
weight of si, as the no. of out-going flows.
potential controllers set of the ith switch.
the real controller of the ith switch.

C, ci
w(ci)
PS(ci)
RS(ci)
AN (ci)

controller set with m controllers: C={c1, · · · , cm}

weight of ci, as the sum of RS(ci)’s weight.
potential switches set of the ith controller.
real Switches set of the ith controller.
adjacent node set (1-hop neighbors) of ci.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 61

→

·

∈

· ≤

{ · · · }

∈

· · · ≥

4
n

4

1 k

k e

e 4
n

e 4n

Summing up all switch elements a ∈ U , we get Pr[C
′

is not a valid switch set cover] ≤ n · 1 ≤ 1

We then present our LBDC-Randomized Rounding
(LBDC-RR) algorithm as described below.

First, we claim that our LBDC problem can be described

in another way as the definition and prop- erties of set

cover: Given a universe U of n switch elements, S is a

collection of subsets of U , and S= S1, , Sn . And

there is a cost assignment func- tion c : S Z+. Find the

subcollection of S with the minimum deviation that covers

all the switches of the universal switch set U .

We will show that each switch element is covered with
constant probability by the controllers with a specific
switch set, which is picked by this process. Repeating this
process O(log n) times, and picking a subset of switches
if it is chosen in any of the iterations, we get a set cover
with high probability, by a standard coupon collector
argument. The expected minimum deviation of cover (or
say controller-switch matching) picked in this way is
O(log n) OPTf O(log n) OPT , where OPTf is the cost of
an optimal solution to the LP-relaxation.

Alg. 2 shows the formal description of LBDC-RR.

Algorithm 1: Randomized Rounding (LBDC-RR)

1 Let x = p be an optimal solution to the LP;

2 foreach set Si S do

3 Pick Si with probability xSi

4 repeat

5 Pick a subcollection as a min-cover

6 until execute c log n times;

7 Compute the union of subcollections in C.

Therefore the LBDC-RR algorithm is efficient and we can
solve the LBDC problem using linear program- ming and
randomized rounding.

IV. ALGORITHM DESIGN

Using Linear programming and rounding, we can perfectly
solve LBDC theoretically. However, it is usu- ally time
consuming and impractical to solve an LP in real-world
applications. Thus, designing efficient and practical
heuristics for real systems is essential. In this section, we
will propose a centralized and a distributed greedy
algorithm for switch migration, when the traffic load
becomes unbalanced among the controllers. We then
describe OpenFlow based migration protocols that we use
in this system.

4.1 Centralized Migration

Centralized Migration is split up into two phases. The first
phase is used for configuring and initializing the DCN. As
the traffic load changes due to various applications, we
have to come to the second phase for dynamical migration
among devolved controllers.

Fig. 2 illustrates the general workflow of Central- ized
Migration, which includes Centralized Initialization and
Centralized Regional Balanced Migration.

Next let us compute the probability that a switch element
a U is covered by C. Suppose that a occurs in k sets of S.
Let the probabilities associated with these sets be p , · · · , p
. Since a is fractionally covered
in the optimal solution, p1 + p2 + + pk 1. Using elementary
calculus, it is easy to show that under this condition, the
probability that a is coverd by C is minimized when each of

the pi

′
s is 1/k. Thus,

Pr[a is covered by C] ≥ 1 −
(
1 − 1

)k
≥ 1 − 1

Fig. 2. Dynamic Load Balancing Workflow of LBDC

Centralized Initialization: First we need to initial- ize the

current DCN, and assign switches to the con- trollers in its
potential controller set. We design a centialization process

where e is the base of natural logarithms. Hence each
element is covered with constant probability by C.

To get a complete switch set cover, we can inde-
pendently pick c log n such subcollections. And then we

compute their union, say C
′

, where c is a constant such

that (1)
c log n

≤ 1 .

In order to get rid of the dilemma where we have to select
from conflict switches or controllers, we first present the
Break Tie Law.

Break Tie Law: (1) When choosing si from S, we se- lect
the one with the largest weight. If several switches have
the same weight, the one with the smallest
|PC(si)| is preferred. If there are still several candi-

Then we can obtain the following probability,

Pr[a is not covered by C
′

] ≤
(1)c log n

≤ 1

dates, we randomly choose one. (2) When choosing ci from
C, we select the one with the minimum weight. If several
controllers have the same weight, the one

Network Traffic Varies Unbalanced

Initialization State

check next controller

Migration Yes

Completed

No

check

all?

No
w(c)>Efn

Yes

Regional

Migration

State

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 62

| |

i=
1

̸ ∅
{ · · · }

→

→

∃ ∈

≤ ≥

∃ ∈ ∩
∈

{∅}

Search the cj ∈CC AN (cj);
′

while ′ do

with the smallest RS(ci) is preferred. If there are still
several candidates, we choose the closer controller by
physical distance. Finally, if we still cannot make a

and stop the migration. In each round, we sample the
current weight of each controller, and calculate

Avgnow =
∑m

w(ci)/m. In all, the Linear Expectation

Then we design LBDC-CI as shown in Alg. 3.

Thd = α · Avgnow + (1 − α) · Avglast,
Efn = β · Thd

(14)

Algorithm 2: Centralized Initialization (LBDC-CI)

Input : S with w(si); C with w(ci);

Output: An m-Partition of S to C

1 RemList= s1,s2, ,sn ;

3 while RemList = do

4 Pick si from RemList;

5 Let ℓ = arg min{w(cj) | cj ∈ PC(si)};

6 Assign si to cℓ (by break Tie Law);

7 Remove si from RemList;

LBDC-CI needs to search the RemList to assign the
switches. This process takes running time O(n). While loop
will be executed once for each switch in RemList, which
takes O(m). Hence in the worst case the running time is
O(mn). If we use a priority heap to store the RemList, we
can improve the performance and reduce the overall
running time to O(m log n).

As the system runs, traffic load may vary frequently and
will influence the balanced status among de- volved
controllers. Correspondingly, we have to begin the second
phase and design the centralized migration algorithm
(LBDC-CM) to alleviate the situation.

Centralized Regional Balanced Migration: During the
migration process, we must assess when the con- troller
needs to execute a migration. Thus we come up with a
threshold and an effluence to judge the traffic

The core principle of LBDC-CM is migrating the
heaviest switch to the lightest controller greedily. Alg. 4
describes the details. Note that AN (ci) denotes the
neighbor set of ci.

Algorithm 3: Centralized Migration (LBDC-CM)

Input: S with w′(si); C with w′(ci); PendList

= OverList = {∅};

1 Step 1: Add ci OverList if w′(ci) > Efn;

2 Step 2: Find cm of max weight in OverList;

3 if cn AN (cm) : w′(cn) < Thd then

4 repeat

5 Pick sm RS(cm) of max weight ;

6 if cf AN (cm) PC(sm) : w′(cf) < Thd

then Send sm cf ;

7 else Ignore the current sm in cm;

8 until w′(cm) Thd or all w′(cf) Thd;

9 if w′(cm) > Efn then move cm to PendList;

10 else remove cm from OverList;

11 else

12 Move cm from OverList to PendList;

13 Step 3: Repeat Step 2 until OverList = ;

14 Let OverList = PendList, Repeat Step 2 until

PendList becomes stable;
15 Step 4: Now PendList has several connected

components CCi (1 ≤ i ≤ |CC|);

16 foreach CCi ∈∪CC do

Thd, it becomes relatively idle and available to receive 19

more switches migrated from those controllers with 20

workload overhead. If the workload of a controller is higher
than Efn, it is in an overload status and should 21
assign its switches to other idle controllers. Some

|CCi|+|AN (CCi)|
w (cj) ≥ γ · avglocal : cj ∈ CCi

Migrate smax ∈ RS(cj) to

cmin ∈ AN (CCi);

remove cj ∈ CCi from PendList;

Compute avglocal = w (CCi∪AN (CCi)) ; 18

i

load balancing status of the controllers. Here we de-
fine Thd as the threshold and Efn as the effluence. If

j

{

17

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 63

measurement studies [21] of data center traffic have shown
that data center traffic is expected to be linear. Thus we set
the threshold according to the current traffic sample and the
historical records, by imitating Round-Trip Time (RTT) and
Timeout of TCP [22]. This linear expectation uses two
constant weighting factors α and β, depending on the traffic
features of the data center, where 0 ≤ α ≤ 1 and β > 1.

(1) Naive LBDC-CM. We will first raise a naive
algorithm for LBDC-CM. We will run naive LBDC-CM
periodically and divide the running time of the system into
several rounds. We use Avglast and Avgnow to represent the
average workload of the last sample round and the current
sample round. These two pa- rameters are used together to
decide when to start

22 Step 5: Repeat Step 4 until PendList is stable.

The naive LBDC-CM consists of five steps. In Step 2, it
searches the OverList to find cm, which takes O(m). Next,
it repeatedly migrates switches from the OverList to
corresponding controllers, which takes O(mn). Step 3
invokes Step 2 for several times un- til the OverList is
empty and makes the PendList become stable, which takes
O(m2n). Step 4 and Step 5 balance the PendList locally
as Step 2 and 3. In the worst case, the running time is
O(m2n). By using a priority heap to store the OverList and
PendList, we can reduce the time complexity to O(mn
log m).

(2) Limited LBDC-CM. In our naive version, we simply
suppose that all controllers have unlimitedprocessing abilities.
However, in real conditions, the performance of each controller
will vary a lot. Thus, although naive LBDC-CM balances every
controller with almost the same traffic load after several rounds,
some of them will work in an overloaded state. For example,
consider the following condition: there are three controllers c1,
c2, c3. The maximum capacity for c1 is λ, for c2 is 2λ and for
c3 is 4λ. The total weight of all switches in this system is 6λ.
If our naive LBDC-CM works perfectly, then each controller
will have a load of 2λ in the end. Definitely, c1 works in an
overloaded status, and will become the bottleneck of the system.
Yet c3 only makes use of 50% of its maximum abilities. Thus in
fact, the naive LBDC- CM only balances the value of load
among devolved controllers, instead of balancing the

performance of processing traffic load.

Correspondingly, we design an improved algorithm as limited
LBDC-CM. To reconfigure the system when it is unbalanced,
we still need a threshold parameter and an effluence
parameter for each controller. But now different controllers
will have different param- eter values, and we use two sets
to store them: T hdList = {T hd1,· · · , T hdm} and EfnList
= {Efn1,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 64

now

last

now

now

age percentage of resources utilized in the system, and
migrating switches from the controllers that have high
percentages to those with low percentages. The time
complexity is the same as naive LBDC-CM, which
takes O(m2n), and can be reduced to O(mn log m)
using priority heap. For space complexity, we need
to use several lists to store the following parameters:
the weight of a switch, the current of a controller, the
maximum capacity of a controller, the threshold and
effluence of each controller, as well as the PendList
and the OverList. Each of them requires a linear array
to store, which takes O(n). We also need two

matrices to store the potential mapping and real mapping
between controllers and switches, which takes O(n2).
Thus, the space complexity is O(n2).

(3) LBDC-CM with switch priority. Our scheme of
limited LBDC-CM can work well in a comparative in-
tense structure. That is to say, if the distance between a
switch and all its potential controllers are close enough, so
that migrating switch si from controller c1 to controller c2
will not influence the processing speed of messages, then
limited LBDC-CM will have a good performance.
However, in some distributed data centers that have a very
sparse structure, it is better to

· · · , Efnm}. For controller ci, we use Desi to attach a switch to its nearby controllers. Meanwhile,

denote its deserved workload of the current round, as we have mentioned, the performance of controllers

and use Desi to denote the deserved workload of in the network system may be very different. Some of
the last round. Then these parameters are computed as
follows

the controllers may have strong computing capacities, and
thus can process messages in a higher speed

We use Desi in Relative Weight Deviation to evaluate
limited LBDC-CM and LBDC-CM with switch priority. We
use Avgnow to replace Desi in RWD to evaluate naive
LBDC-CM and LBDC-DM.

According to Eqn. (15), the procedure of the lim- ited
LBDC-CM is very similar as the naive LBDC- CM in Alg.
4. The only difference comes from the comparison steps,
when to judge whether a controller is overloaded, we need
to compare w′(ci) to its local Efni and Thdi.

to distribute si to c2, if the current load of both con-
trollers are below their thresholds. Thus we come up with
LBDC-CM with switch priorities. In this scheme, each
switch has a value list, which stores the value of each
mapping between this switch and its potential
controllers. We want to balance the traffic load of the
network and make the whole value as large as possible.
In LBDC-CM, we use vij to denote the value we can get
by attaching switch si to controller cj. These values are
stored in a matrix V alue, and if cj

Limited LBDC-CM uses the current load ratio of each
controller other than the value of the current weight, to
judge whether the devolved controllers are unbalanced.
Thus, we only need to calculate the aver-

The implementation of this algorithm is quite similar to
limited LBDC, except that we changed the migration
scheme used in Step 2 of limited LBDC- CM.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 65

∃ ∈

∈
∃ ∈

∈

≤

≥

≤ ≤

Algorithm 4: LBDC-CM with switch priority
w′(c)

Distributed Regional Balanced Migration: In the second

phase, the controller uses the threshold and
1 Step 2: Find cm ∈ OverList with max

2 if cn AN (cm) : w′(cn) < Thdn then

3 repeat

m
wm(cm) the effluence to judge its status and decide whether

it should start the migration. Since in a distributed
system, a controller can only obtain the information of

4 if cf AN (cm): w′(cf) < Thdf then

5 Sort PS(cm) by vif : si PS(cm);

6 Pick sk with max vkf in cm, and pick max
sk to break tie;

7 Send sk → cf ;

8 until w′(cm) ≤ Thdm or all w′(cf) ≥ Thdf ;

its neighborhood, the threshold is not a global one that suits
for all the controllers, but an independent value which is
calculated by each controller locally. Also the algorithm
runs periodically for several rounds. In each round, each
controller samples AN (ci) and applies the Linear
Expectation

9 if w′(cm) > Efnm then move cm

10 Move cm from OverList to PendList;

LBDC-DM aims at monitoring the traffic status of

itself by comparing current load with its threshold. When
the traffic degree is larger than Efn, it enters

In this scheme, we add the process of sorting the
switch list according to the value matrix, which will take
O(log n) if we use heap sorting. Thus the time complexity
is O(n log m log n) if we use a priority heap to store the
PendList and the OverList. And the space complexity is
still O(n2) since we need some matrices to store the value
and the mapping relations.

4.2 Distributed Migration

The centralized algorithm is sometimes unrealistic for
real-world applications, especially for large data center
with regional controller. It is time consuming and
complicated for a devolved controller to get the global
information of the whole system. Thus it is natural to
design a practical and reliable distributed algorithm [23].
We assume a synchronous environ- ment to deploy our
algorithm. For the distributed algorithm, it is still divided
into two phases.

Distributed Initialization: During this phase, we assign
each switch a corresponding controller ran- domly. By
sending control messages to the controller’s potential
switch set, the controller can determine the correct
assignment. Alg. 6 shows the distributed ini- tialization
process.

the sending state and initiates a double-commit trans-
action to transfer heavy switches to nearby nodes. Alg. 7

shows the distributed migration procedure.

Algorithm 5: Distributed Migration (LBDC-DM)

Sending Mode: (when w′(cmy) ≥ Efn)

1 if ∃ci ∈ AN (Cmy) in receiving or idle then

2 add ci → RList (receiving > idle).

3 repeat

4 Pick smax with max weight, refer PC(smax), find
cj RList with min weight, send

“HELP[cmy, smax]” to cj, then check response:

5 if response=“ACC” then

6 send “MIG[cmy, smax]” to cj

7 else if response=“REJ” then

8 remove cj from RList, find next cj, send
“HELP” again, check response.

9 Check response, delete smax when receiving
“CONFIRM” message, terminate.

10 until w′(cmy) ≤ Efn;

Receiving Mode: (when w′(cmy) Thd)

11 When receiving “HELP” messages:

12 repeat

 13 receive switches for cj and return “ACC”;

Algorithm 6: Distributed Initialization (LBDC-DI)

1 Send “CONTROL” message to my own PS(cmy)

2 si reply the first “CONTROL” message with

“YES”, all other messages after that with “NO”.

3 Move si with “YES” from PS(cmy) to RS(cmy).

4 Wait until all the switches in PS(cmy) reply, and

 then terminate.

The correctness of LBDC-DI is easy to check. After

initialization, we then design the distributed migra- tion
algorithm (LBDC-DM) to balance the workload of the
system dynamically.

14 until w(cj) + smax Thd;

15 Now all “HELP” messages will reply “REJ”

16 When receiving “MIG” message:

17 smax → cj, send back “CONFIRM” message;

Idle Mode: (when Thd w′(cmy) Efn)

18 When receiving “HELP” message:

19 repeat

20 receive switches for cj and return “ACC”;

21 until w(cj) + smax > Efn;

22 When receiving “MIG”, migrate as above;

;

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 66

The main battle between the federal and the strewn
migration is that the earlier can produce in sequence in a
global position and grow to better decision, but it will also
perform more meting out times and will become a
potential classified access of the system. On the dissimilar,
for the private eye in the broadcast version, each governor
will simply gather data from its environs and can only
make proper migration within this region. Though the
distributed adaptation cannot obtain a global most
advantageous balancing grade, it is more practical to
deploy in real organizations. In the intervening time, it can
resourcefully avoid the dilemma in the centralized scheme
that the crumple or mistake of the central processor will
affect problem of the system.

Their quarrel is also indicate in the characterization of
the brink (Thd). In the federal version, the porch is moved
by the utilizing ratio of the whole system, which is the
same for each public accountant in the centralized system.
A enchantment in the distributed version, the threshold of
each controller is premeditated by its local information
instead of the global in sequence, and the deserved utilizing
ratio of each controller is in actuality different from each
other.

By using our scattered scheme, for the state of affairs
depicted in Fig. 1, regulator ci and controller cj will get
the information about each other, estimate its Thd and Efn
value, and make your mind up its status. If controller ci
is in the conveyance mode and controller cj is in the being
paid mode, then ci will move around some of its
dominate switches to cj vouchsafe to Alg. 7.

4.3 OpenFlow based Migration Protocol

To keep up a well balanced in commission mode when a peak
flow appear, switches should change the roles of their modern
controllers while controllers should change their typescript by
sending Role demand messages to the replacement. These
operations stipulate the system to achieve a switch
migration operation. Nevertheless, there is no such
instrument provided in the OpenFlow standard. OpenFlow
1.3 defines three equipped modes for a controller master,
work fingers to bone, and equal. Both superior and equal
controllers can transform switched state and receive
nonparallel messages from the substitution. Side by side, we
design a unambiguous code of behavior to transfer a switch
from its initial controller to a novel controller.

It is taken for granted that we are not able to stage-
manage the switch in our resettlement protocol design,
while it is theoretically reasonable to update the OpenFlow
standard to put through our system. Nevertheless, there are
two extra events. Foremost, the OpenFlow standard
without a doubt says that a toggle may process messages
not automatically in the same guild as they are picked up,
first and foremost to allow multi-threaded implementations.
Second, the measure does not specify unambiguously
whether the order of messages sent by the switch remains
regular between two controllers that are in master or equal
mode.

Our code of behavior is built on the vital idea that we
need to first make a distinct trigger event to stop message
dispensation in the first controller and start a same
significance in the second one. We can exploit the fact that
Flow-Removed messages are sent to all controllers in commission
in the equatorial mode. We therefore simply insert a dummy flow into
the switch from the first controller and then remove the flow, which will
offer a single trigger event to both the controller in equatorial mode to
signal handoff . Our anticipated migration protocol for migrating
switch some of the initial organizer key to target controller cog
works in four forms as indicate under.

Phase 1: Change the role of intention cj to equal mode.
Here, controller cj is first transitional to the equal mode for
switch sm. Initially master ci initiate this phase by sending a
start migration message to cj on the controller-to-controller
channel. cj sends the Role-Request message to sm informing
that it is an equal. After cj receives a Role-Reply message
from sm, it informs the initial master ci that its role change
is completed. Since cj changes its role to equal, it can
receive asynchronous messages from other switches, but
will ignore them. During this phase, ci remains the only
master and processes all messages from the switch
guaranteeing liveness and safety.

Phase 2: Insert and remove a dressmaker's dummy flow.
To find an exact split second for the voyage, cue sends a dummy
Flow-Mod domination to seem to append a new flow table entry
that does not check any incoming packets. We presume that all
controller know this dummy flow entry a priori as part of the
protocol. And so, it sends another Flow-Mod command to
delete this entry. In reaction, the switch sends a Flow-
Removed message to both controllers since cog is in the
equatorial mode. This Flow-Removed event provide a time
point to transfer the tenure of switch sm from ci to cj, after
which only cj will process all messages transmit by sm. An
supplementary barrier message is taken after the insertion
of the dummy flow and before the dressmaker's dummy
flow is deleted to prevent any chance of processing the
delete message before the interleave. Note that we do not
assume that the Flow-Removed message is received by ci
and cj concurrently, since we assume that the message
order is unswerving between ci and cj after these controllers
enter the equal mode, meaning that all messages before
Flow-Removed will be process by ci and after this will be
processed by cj.

Phase 3: Flush pending requests with a barrier. While cj
has assumed the tenure of sm in the subsequent phase, the
protocol is not complete unless ci is connected from sm.
However, it cannot just be isolated immediately from sm
since there may be pending requests at ci that arrives before
the Flow-Removed message. This appears easily since we
assume the same ordering at ci and cj. So all ci needs to do
is processing all messages arrived before Flow-Removed,
and committing to sm.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 67

Even so, in that respect is no unambiguous appreciation
from the switch that these messages are obtainable. Thus,
in order to certification all these messages are steadfast, ci
hand on a Barrier Request and waits for the Barrier Reply,
only after which it signal end migration to the final master
cj.

Phase 4: Dispense controller cj as the final master of sm.
cj sets its role as the master of sm by sending a Role-
Request message to sm. It also updates the distributed
information store to argue this. The switch sets ci to slave
when it receive the Role-Request communication from cj.
Then cj remains active and process all messages from sm
for this segment.

The above movement protocol requires 6 round-trip
times to complete the migration. But notice that we need to
trigger migration only once in a while when the load
conditions change, as we discussed in the algorithm design
subsections.

V. PERFORMANCE EVALUATION

In this segment, we assess the execution of our centralized
and disseminated protocols. We look at the case where traffic
stipulate changes and test whether the metric of evenhanded
workload controllers is minimize. We likewise consider the
number of migrated switches into thoughtfulness. Furthermore,
we look into how different parameters will determine the
outcomes.

5.1 Environment Setup

We construct simulations by Python 2.7 to assess the
routine of our intentions. We place 10,000 switches and

100 controllers in a 100 100m2 square. Switches are evenly
isolated in this square, sound out, each switch is 1m away
from any of its neighbors. The controllers are too similarly
spread and each controller is 10m away from its fellow
citizen. Each controller can check all the switch within
30m, and can exchange a few words with other controllers
within the range of 40m. We take on the weight of each switch
follows the Pareto distribution with its parameter αp = 3. We make
a small simulation to choose the most appropriate α, β and γ, so that
the environment we make can be very near to the actual situation,
in terms of the traffic condition, workload of controllers, and
migration frequency, etc. [13] –[15], [24]. Thus we set α = 0.7,
β = 1.5, γ = 1.3 as default configuration.

5.2 System Performance Visualization Results

We employ the default configuration described above to
examine the operation of the organization. We first apply
initialization and change the traffic demands dynamically
to emulate unpredictable user requests. And so we apply
naive LBDC-CM and other variants to alleviate

the spot congestion. We use relative weight deviation to
evaluate the functioning of our algorithms.

We analyze the performance of our four algorithms..
Consider a DCN with 10 10 controllers locating as a
straight array. At the start of a time slot, the weights of
switches are updated and then we play the migration
algorithms.The weight of switches follows Pareto
distribution with αp = 3. Figure 3 indicates the system
initial traffic states, Different color scale represents
different working state of a controller. The darker the color
is, the busier the controller works. Figure 4, Figure 5,
Figure 6 and Figure 7 illustrate the performance of the
naive LBDC- CM, limited LBDC-CM, Priori LBDC-CM
and LBDC- DM respectively. We can see that after the
migration, the whole system becomes more balanced.

Actually, the performance of LBDC-DM is poor when
the number of the controllers is relatively lim- ited. This
phenomenon is attributed to the system setting that one
controller can only cover switches within 30m. When the
number of controllers is few, more switches should be
controlled by one particular controller without many
choices. As the number of the controller increases, LBDC-
DM can achieve a better performance and a higher
improvement ratio.

Intuitively, increasing the number of controllers may
increase the deviation, but it may lead to less migration
frequency. To balance the number of controllers and the
migration frequency, we need to carefully set α, β, and γ
values. If there are sufficient controllers to manage the
whole system, we can adjust the three parameters such that
the system will maintain a stable state longer. While if the
number of controller reduces, we have to raise the
migration threshold to fully utilize controllers. The effect
on these parameters are further discussed in Sec. 5.4.

5.3 Horizontal Protocol Performance Comparison

We designed three variations of LBDC-CM: naive LBDC-
CM, which is the simplest and applicable to most of the
cases. While if the controllers are hetero- geneous or the
switches have a space priority to its closest controller
physically, then we can implement limited LBDC-CM or
LDBC-CM with switch priority respectively. Finally we
have a distributed LBDC-DM protocol. Now let us
compare the performance of the four migration protocols.

Comparison on number of controllers. Firstly, we vary
the number of controllers from 30 to 210 with a step of 20
and check the change of relative weight deviation of the
system. The simulation results are shown in Fig. 8 and Fig.
9. We compare the relative weight deviation of the initial
bursty traffic state and the state after the migration. We find
that after the migration, the relative weight deviation of all
the controllers decreases. It depicts that our four protocols
improve the system performance significantly com-

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 68

Fig. 3. Initial state Fig. 4. Naive LBDC-

CM migration

Fig. 5. Limited

LBDC-CM migration

Fig. 6. Priori LBDC-

CM migration

Fig. 7. LBDC-DM mi-

gration

Fig. 8. Relative weight deviation

protocol comparison

Fig. 11. Migrated switch without

traffic changes

Fig. 9. Performance improvement for

different protocols

Fig. 12. Relative weight deviation as

traffic changes

Fig. 10. Relative weight deviation without

traffic changes

Fig. 13. Migrated switch as traffic

changes

pared with the initial state, whether in the relative weight
deviation part or in the improvement part. As the number
of controllers increases, the improvement ratio is also
increasing. It is quite intuitive that more controllers will
share jobs to reach a balanced state. Both figures show that
our algorithm has a pretty good performance when the
number of controllers grows, which indicates that our
scheme is suitable for mega data centers.

The naive LBDC-CM performs the best because it
considers all possible migrations from a global prospective.
It is even better than the performance of the LBDC-DM,
but the difference between them is decreasing as the
number of the controllers increases. It is better if we add
more controllers to the network to achieve a balanced traffic
load. In reality we may only run the other protocols such as
the LBDC-DM, lim- ited LBDC-CM and LBDC-CM with
switch priority. For the limited LBDC-CM, the maximum
workload of controllers also follows Pareto distribution
with αp = 3, and we amplify it with a constant to make sure
the total traffic load not exceed the capacity of all
controllers. For LBDC-CM with switch priority, we allocate
a value to each mapping of a switch and a controller, which
is inversely proportional to their dis- tance, we can also see
that it has a significant growth as the number of controller
increases. Overall we can conclude that all of the four
protocols performs quite well in balancing the workload of
the entire system.

Run-Time performance w.r.t static traffic loads.

Figure 10 and Figure 11 show the relative weight deviation
and migrated switch number w.r.t. the four protocols at
different time slot under the condition that the global traffic
load is not changed all the time (the weight of each
switch is constant). We can see that the relative weight
deviation is decreasing, but the values of limited LBDC-
CM and LBDC-CM with switch priority are higher than
that of the naive LBDC-CM. This is because through
limited LBDC-CM and LBDC-CM with switch priority,
each controller has a different upper bound, which will
influence the migration. For example, if some switches can
only be monitored by a certain controller, and that
controller is overloaded, then it will cause a high relative
weight deviation since we cannot remove the switches to
other controllers. In addition, controllers in LBDC- CM
with switch priority even have a preference when choosing
potential switches. In terms of migrated switch numbers,
we can see that with time goes by, all four protocols
remain stable on the number of migrated switches. LBDC-
DM has the lowest number of migrated switches because of
its controllers can only obtain a local traffic situation,
resulting in the relatively low frequency in migrating
switches.

Run-Time performance w.r.t. dynamic traffic loads.
Figure 12 and Figure 13 show the relative weight deviation
and migrated switch number w.r.t. the four protocols at
different time slot under the condition that the global traffic
load is changed dynamically (the weight of each switch
is dynamic). Even if the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 69

traffic load is changing at different time slots, the migrated
switch number stays in a relatively stable status. If
controller c1 is overloaded, it will release some dominating
switches to its nearby controllers. However, if in the next
round, the switches that monitored by those controllers
gain higher traffic load and make the nearby controllers
overloaded, then the switches may be sent back to
controller c1. Thus, to avoid such frequent swapping
phenomenon, we can set an additional parameter for each
switch. If its role has been changed in the previous slot,
then it will be stable at current state.

We may also consider the deviation of load bal- ancing
among switches to better improve the sys- tem
performance. Since we consider the balancing problem
among controllers, which is like the “higher level” of
balancing problem among switches, we can implement
some load balancing strategies among switches [25]–[28]
and combine the two-layers to- gether to achieve a better
solution.

5.4 Parameter Specification

Next we explore the impact of the threshold parame- ters α,
β, γ. Here α is a parameter to balance conser- vativeness
and radicalness, β is a crucial parameter which decides
whether to migrate switches or not in four protocols, and
γ is used in Step 4 of LBDC- CM. We examine the impact
of changing α, β and γ altogether. TABLE 2 lists the
statistics for α ranging between 0.25 and 0.75, β ranging
between 1.15 and
1.35, γ ranging between 1.15 and 1.35. The improve- ment
rate and the number of migrated switches is mostly
decreasing as β increases, which is actually correct
according to the definition of the threshold.

TABLE 2

Influence of α, β and γ factor

α β γ Initial LBDC-CM Rate Switch #
0.25 1.15 1.15 181.87 14.41 92.08 6344
0.25 1.15 1.35 188.54 16.90 91.04 6236
0.25 1.35 1.15 193.81 11.83 93.90 6536
0.25 1.35 1.35 182.76 16.18 91.15 6224
0.75 1.15 1.15 196.73 12.01 93.90 6705
0.75 1.15 1.35 187.62 17.29 90.79 6244
0.75 1.35 1.15 178.77 15.46 91.35 6305

0.75 1.35 1.35 181.01 14.29 92.11 6231

VI. RELATED WORK

As data center becomes more important in industries, there
have been tremendous interests in designing efficient
DCNs [1], [2], [29]–[32]. Also, the effects of traffic
engineering have been proposed as one of the most crucial
issues in the area of cloud computing.

The existing DCN usually adapts a centralized controller
for aggregation, coordination and resource management
[1], [2], [10], [31], which can be energy efficient and can
leverage the failure of using a global

view of traffic to make routing decisions. Actually, us- ing a
centralized controller makes the design simpler and
sufficient for a fairly large DCN.

However, using a single omniscient controller in-
troduces scalability concerns when the scale of DCN grows
dramatically. To address these issues, re- searchers installed
multiple controllers across DCN by introducing devolved
controllers [4]–[8], [33] and used dynamic flow as an
example [5] to illustrate the detailed configuration. The
introduction of devolved controllers alleviates the
scalability issue, but still introduce some additional
problems.

Meanwhile, several literatures in devising dis- tributed
controllers [6]–[8] have been proposed for SDN [34] to
address the issues of scalability and reliability, which a
centralized controller suffers from. Software-Defined
Networking (SDN) is a new net- work technology that
decouples the control plane logic from the data plane and
uses a programmable software controller to manage
network operation and the state of network components.

The SDN paradigm has emerged over the past few years
through several initiatives and standards. The leading SDN
protocol in the industry is the OpenFlow protocol. It is
specified by the Open Networking Foundation (ONF) [35],
which regroups the major net- work service providers and
network manufacturers. The majority of current SDN
architectures, OpenFlow- based or vendor-specific, relies
on a single or mas- ter/slave controllers, which is a
physically centralized control plane. Recently, proposals
have been made to physically distribute the SDN control
plane, either with a hierarchical organization [36] or with a
flat or- ganization [7]. These approaches avoid having a
SPOF and enable to scale up sharing load among several
controllers. In [34], the authors present a distributed NOX-
based controllers interwork through extended GMPLS
protocols. Hyperflow [7] is, to our best knowl- edge, the
only work so far also tackling the issue of distributing
the OpenFlow control plane for the sake of scalability. In
contrast to our approach based on designing a traffic load
balancing scheme with well designed migration protocol
under the Open- Flow framework, HyperFlow proposes to
push (and passively synchronize) all state (controller
relevant events) to all controllers. This way, each controller
thinks to be the only controller at the cost of requiring
minor modifications to applications.

HyperFlow [7], Onix [34], and Devolved Con- trollers
[4] try to distribute the control plane while maintaining
logically centralized using a distributed file system, a
distributed hash table and a pre- computation of all possible
combinations respectively. These approaches, despite their
ability to distribute the SDN control plane, impose a strong
requirement: a consistent network-wide view in all the
controllers. On the contrary, Kandoo [36] proposes a
hierarchical distribution of the controllers based on two
layers of controllers.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 70

Meanwhile, DevoFlow [37] and DAIM [38] also solve
these problems by devolving network control to switches.

In addition, [39] analyzes the trade-off between
centralized and distributed control states in SDN, while
[40] proposes a method to optimally place a single
controller in an SDN network. Authors in [41] also
presented a low cost network emulator called Distributed
OpenFlow Testbed (DOT), which can em- ulate large SDN
deployments. Recently, Google has presented their
experience with B4 [42], a global SDN deployment
interconnecting their data centers. In B4, each site hosts a
set of master/slave controllers that are managed by a
gateway. The different gateways communicate with a
logically centralized Traffic Engi- neering (TE) service to
decide on path computations. Authors in [6] implemented
migration protocol on current OpenFlow standard. Thus
switch migration become possible and we are able to
balance the workload dynamically by presenting the
following schemes to overcome the shortcomings as well
as improve system performance from many aspects.

VII. CONCLUSION

With the evolution of data center networks (DCNs), the
usage of a centralized controller has become the bottleneck
of the entire system, and the traffic management problem
also becomes serious. In this paper, we explored the
implementation of devolved controllers, used it to manage
the DCN effectively and alleviate the imbalanced load
issues.

We first defined the Load Balancing problem for
Devolved Controllers (LBDC) and proved its NP-
completeness. We then proposed an f -approximation
solution, and developed applicable schemes for both
centralized and distributed conditions. The feature of
traffic load balancing ensures scaling efficiently. Our
performance evaluation validates the efficiency of our
designs, which dynamically balances traffic load among
controllers, thus becoming a solution to monitor, manage,
and coordinate mega data centers.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N.
Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data
center networks,” in USENIX NSDI, 2010, pp. 19–19.

[2] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J.
Mogul, “Spain: Cots data-center ethernet for
multipathing over arbi- trary topologies,” in USENIX
NSDI, 2010, pp. 265–280.

[3] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On
scalability of software-defined networking,”
Communications Magazine, pp. 136–141, 2013.

[4] A.-W. Tam, K. Xi, and H. Chao, “Use of devolved
controllers in data center networks,” in IEEE INFOCOM,
2011, pp. 596–601.

[5] ——, “Scalability and resilience in data center networks:
Dy- namic flow reroute as an example,” in IEEE
GLOBECOM, 2011, pp. 1–6.

[6] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R.
Kompella, “Towards an elastic distributed sdn
controller,” in ACM SIG- COMM, 2013, pp. 7–12.

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A
distributed control plane for openflow,” in USENIX
INM/WREN (NSDI Workshop), 2010, pp. 1–6.

[8] C. Macapuna, C. Rothenberg, and M. Magalhaes, “In-
packet bloom filter based data center networking with
distributed openflow controllers,” in IEEE GLOBECOM,
2010, pp. 584– 588.

[9] J. Lavaei and A. Aghdam, “Decentralized control design
for interconnected systems based on a centralized
reference con- troller,” in IEEE CDC, 2006, pp. 1189–
1195.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Open- flow: enabling innovation in campus networks,”
in ACM SIGCOMM, 2008, pp. 69–74.

[11] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A
survey on software-defined networking,” IEEE
Communication surveys & Tutorials, vol. 17, no. 1, pp.
27–51, 2015.

[12] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros,
“Scalable traffic-aware virtual machine management for
cloud data centers,” in ICDCS, 2014, pp. 238–247.

[13] J. Cao, R. Xia, P. Yang, C. Guo, G. Li, L. Yuan, Y.
Zheng,
H. Wu, Y. Xiong, and D. Maltz, “Per-packet load-
balanced, low-latency routing for clos-based data center
networks,” in CoNEXT’13, 2013, pp. 49–60.

[14] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable,
optimal flow routing in datacenters via local link
balancing,” in CoNEXT’13, 2013, pp. 151–162.

[15] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren,
and
Z. Liu, “Energy-efficient flow scheduling and routing
with hard deadlines in data center networks,” in
ICDCS’14, 2014.

[16] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A.
McCann, “Ubiflow: Mobility management in urban-scale
software de- fined iot,” in INFOCOM, 2015.

[17] W. Liang, X. Gao, F. Wu, G. Chen, and W. Wei,
“Balancing traffic load for devolved controllers in data

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 5, Sep - Oct 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 71

center networks,” in GLOBECOM, 2014, pp. 2258–
2263.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang,
“Microte: fine grained traffic engineering for data
centers,” in ACM CoNEXT, 2011, pp. 1–12.

[19] R. Karp, Reducibility among Combinatorial
Problems. Springer US, 1972.

[20] D. Williamson and D. Shmoys, The design of
approximation algorithms. Cambridge University
Press, 2011.

[21] T. Benson, A. Akella, and D. Maltz, “Network
traffic charac- teristics of data centers in the wild,”
in ACM SIGCOMM, 2010, pp. 267–280.

[22] D. Corner, Internetworking with TCP/IP (Vol.1
Principles, Proto- cols, and Architecture). Prentice
Hall (4th edition), 2000.

[23] N. Lynch, Distributed algorithms. Morgan
Kaufmann, 1996.

[24] S. Brandt, K. Foerster, and R. Wattenhofer, “On
consistent migration of flows in sdns,” in
INFOCOM, 2016.

[25] J. Guo, F. Liu, X. Huang, J. Lui, M. Hu, Q. Gao,
and H. Jin, “On efficient bandwidth allocation for
traffic variability in datacenters,” in IEEE
INFOCOM, 2014, pp. 1572–1580.

[26] J. Guo, F. Liu, Z. D, J. Lui, and H. Jin, “A
cooperative game based allocation for sharing data
center networks,” in IEEE INFORCOM, 2013, pp.
2139–2147.

[27] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and J. C.
Lui, “Falloc: Fair network bandwidth allocation in
iaas datacenters via a bargaining game approach,”
in ICNP, 2013.

[28] J. Guo, F. Liu, J. Lui, and H. Jin, “Fair network
bandwidth al- location in iaas datacenters via a
cooperative game approach,” in IEEE/ACM
Transactions on Networking, 2015.

[29] M. Al-Fares, A. Loukissas, and A. Vahdat, “A
scalable, com- modity data center network
architecture,” in ACM SIGCOMM, 2008, pp. 63–74.

S.Ravi Kumar is presently pursuing M.Tech

(CSE) Department of Computer Science

Engineering from Visakha Institute of

Engineering and Technology ,Visakhapatnam.

Yarraguntla Jayalakshmi , M.Tech ,(Phd) is

working as an Assistant Professor in the

Department of Computer Science and

Engineering in Visakha Institute of

Engineering and Technology ,Visakhapatnam.

http://www.ijcstjournal.org/

