
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 19

Enhancing Performance of Search Over Encrypted Data in Cloud

Computing
Nasrin Dalil Ali [1], Ahmed Kayed Ahmed [2]

Department of Computer Science and Information Technology [1]
 Sudan University of Science and Technology, Khartoum, Sudan,

Department of Computing and Information Technology [2]
 Sohar University, Sohar, Oman,

ABSTRACT
Order Preserving Encryption (OPE) scheme is an appealing method for database encryption as it allows execute sort and range
queries without decrypting data. Popa’s presented an ideal mutable order preserving encryption (mOPE), but their cost of
communications between the client and the server to process queries is very high. This paper introduces an OPE model
improved on mOPE model for reducing the rate of requests and responses between the client and the server and enhancing the
performance when querying the encrypted database. Our model presents a new indexing mechanism that will help to arrange the
encrypted data in the server. However, it uses two types of encryption techniques. The first type applies general encryption
technique and the second type follows the Popa’s mOPE and replacing the one OPE tree in mOPE scheme with a number of
OPE trees in the server. Further, it permits the server to accomplish part of works without revealing any information about
original data besides the order. We implement our scheme and evaluate it on simulation programs. We observe that in addition
to providing efficiency and security, our scheme achieves better performance than mOPE scheme.
Keywords :- Order preserving encryption, mOPE, base model.

I. INTRODUCTION

Outsourcing data to cloud service offers lower cost by sharing
hardware and elastic scaling [1] [2]. A key problem in
outsourcing storage is that the sensitive data may be subject to
unauthorized access not only from an unknown attacker but
also from curious service provider [3]. One possible approach
to protect outsourced data is encryption [3] [4]. But this
solution requires more decryption operations when there is a
need to process data. To face this limitation the cloud server
should be able to perform some computation over encrypted
data exactly as the same as for unencrypted one. The idea
behind this is to use encryption techniques that support
processing operations on encrypted data exactly and
efficiently as unencrypted one and without knowing any
information about it [5].

A practical approach that facilitates querying over encrypted
data is order-preserving encryption scheme (OPE) [6] [7].
OPE scheme is a common structure in which for cipher-text
values C1 and C2 corresponding to plaintext values P1 and P2,
if P1<P2 then C1<C2. OPE scheme permits the untrusted server
to process SQL queries over encrypted data especially
comparison queries and range queries [8] [9].

There has been significant work on OPE schemes, but mOPE
model in [10] is the first one that achieves ideal IND-OCPA
security (Indistinguishability under Ordered Chosen-Plaintext
Attack). IND-OCPA is the strongest security definition for
order-preserving schemes proposed in [6] in which the
adversary cannot learn anything about the plaintext values
except for their order.

The mOPE functions by building a balanced binary search
tree comprising all the encrypted data on the server. In such a
tree for each node v, all the nodes in the left subtree are
smaller than v and all the nodes in the right subtree are greater
than v. Fig. 1 shows the OPE tree which adapted from Popa’s
mOPE [10].

Fig. 1 The OPE tree in mOPE scheme. Each node contains the cipher-text, the
gray blocks show the corresponding plaintext value [10].

The following is an example used in [10] to illustrate the
structure of mOPE model and how the encrypted data is
arranged in the OPE tree. Consider the setting in which the
client inserts 55 into the server using the OPE tree shown in
Fig. 1In the beginning, the client demands the server for the
root node of the OPE tree, and then the server returns the
encrypted value x93d12a. Which the client decrypts to 32 and
compares 55 with 32 since 55 greater than 32 the client

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 20

demands the server for the right child of the root node. The
server responds with the encrypted value x27716c. The client
decrypts x27716c to 69 and compares 69 with 55 since 55
lesser than 69 then the client demands the server for the left
child of the new node. The server responds that there is no
such child. This means that the client can insert 55 in this
position [10].

One problem of mOPE is that; the server needs the client’s
help usually to move over the OPE tree. The dependence of
the server on the client causes more requests and responses
between them to find the right position in the OPE tree.
Unfortunately, the more data we store, the more requests and
response we generate. Hence, the system performance is a
slowdown.

This paper introduces a scheme follows the mOPE scheme
proposed in [10]. A key contribution of our scheme lies in
reducing the dependence of the server on the client by
permitting the server performs part of the search processes
without leaking any information about the original data
besides the order. More precise, we reduce the number of
requests and responses between the client and the server by
replacing the one OPE tree in mOPE scheme with the number
of OPE trees in the server. Besides that, we employ an
indexing mechanism to speed up the process of search
operations (section III). To show how our model reduces the
communication between client and server, we implement
simulation programs to perform insert operations and search
operations. We showed that our model provides a higher level
of security than mOPE model (section IV). Detailed
experiments show that the new model achieves a lower rate of
communication across the network compared with mOPE
model (section VII). Sequentially it provides higher
performance than mOPE model.

The study is organized as follows: Section (II) is dedicated for
to reports the related work. Section (III) introduces the model
scheme. Section (IV) shows the security evaluation. Section
(V) assesses the performance evaluation. Section (VI) is
dedicated to implementation. Section (VII) elaborates
experiments. Section (VIII) explains the results & discussion
and section (IX) concludes the study.

II. ACADEMIC STATE OF THE ART

Our work is mostly related to OPE schema. The notion of
OPE scheme was proposed earlier by Agrawal [7]. The first
formal study of the concept and its security was performed by
[6]. There has been a significant amount of work on OPE
schemes which allow querying over encrypted database
without any change on the database engine [11] [12] [13] [14]
[15] [16]. Despite the large body of works, the prior schemes
reveal more information about the plaintext besides the order.
The first ideal order-preserving encoding schema that
achieves IND-OCPA security presents in mOPE [10]. Since
the mOPE leaks order information for plaintext values as the

minimum needs for the order-preserving property, [17]
discuss approaches to limit the impact of this leakage.

Our work is also related to cryptographic schemes for
performing queries over encrypted data. In [3], it presents a
general framework for analysing and constructing searchable
public-key systems for various families of predicates. Then
they construct public-key systems that support comparison
queries, general subset queries, and conjunctions. [18] It
provides CryptDB, a system to protect data confidentiality
against threats by executing SQL queries over an encrypted
database. The architecture of CryptDB consists of a database
proxy which intercepts all the user’s queries and transforms
them into an understandable form for the DBMS server. It is
also responsible to perform all the encryption and decryption
processes. As the system users request order queries, they
apply the OPE technique by using AVL binary search trees
(an AVL tree is a self-balance tree that has advantages of the
binary search tree). Giang and Keong in [19] are investigating
certain types of complex queries namely multi-dimensional
range queries over encrypted data in cloud platforms (where
the plaintexts are multi-numerical attributes). Their solution
combines packetization based scheme with order-preserving
encryption-based techniques. Further, our work basically
related to mOPE introduces in [10]. Our scheme provides
ideal-security similar to Popa’s mOPE. We improve on their
structure and combine it with indexing technique to reduce the
amount of communication done globally. There are some
studies improve on Popa’s mOPE results and also provide
ideal-security [20] [21].

III. The DEVELOPED MODEL

The developed model based on Popa’s mOPE architecture
described in [10]. It consists of two main parts: the client (or
an enterprise) who is the owner of data to be outsourced, thus
the client is trusted; and the database server which provides
storage to the client’s data, it is untrusted.
Moreover, we introduce a trusted part at the client-side called
“trusted party” which acts as a connector between the client
and the database server. Also, we develop a structure called
“index table” and allocate it in the trusted party, as illustrated
in Fig. 2. The index table information plays a basic role in
both storing ordered encrypted data in the server and
retrieving exact results to the client.

Fig. 2 The architecture of the new model and the data flow between the client,
the trusted party, and the server. Q: query. EQ: encrypted query. ER:
encrypted result. R: result

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 21

In the next subsections, we explain the structure of our
model. Mainly, we describe the responsibilities of the trusted
party, the structure of the index table, how the encrypted data
is arranged in the database server, and how to access the
encrypted data in the database server.

A. Trusted Party

It acts as a communication channel between the client and the
database server. It allocates either near the client boundaries
or inside it. It intercepts all requests and responses between
the client and the server. The trusted party is responsible for
encrypts the client’s queries, rewrites queries in an
understandable form to the server, decrypts the returned
encrypted results, and gives the client exact results. Also, it
applies two different encryption techniques to the client’s data
as we explain in section III-C. Fig. 2 shows the
communication between the client, the trusted party, and the
server.

B. Index Table

It is the essential part of the developed model. We should
create it at the initialization stage of the database system. The
index table is built based on the expectation of the client’s
data that would be outsourced to the server. The total number
of expected client’s data (from the smallest one to the greatest
one in sequence) is dividing to groups of equal elements.
Actually, we divide the total number of expected client’s data
by a suggested number. As a result, we obtain a number of
groups, each one of them contains number of elements equal
to the suggested number that used to divide the expected
client’s data. Really, every group of elements implements a
part of the expected client’s data in sequence. Each group of
sequence elements is called “range” and the suggested number
of elements in the group is called “range value”.

Of course, the total number of ranges depends on the length of
developed range. Thus, the smaller range value has a shorter
range and produces many ranges, whereas the greatest range
of value has longer range and produces a few ranges. Note
that, we construct our model for numeric data. For simplicity,
we implement the expected client’s data in forms of integer
values.

Moreover, the structure of the index table is based mainly on
the ranges of the expected client’s data. Once the range value
is determined then the ranges of the expected client’s data are
appearing clearly (also their start value and end value). We
use the ranges information to create the index table like the
following:

1. Specify the start value and the end value for
each range.

2. Give each range a unique id range.
3. Create the index table with three columns: id

range (key-value), start value, and an end value.

4. Insert the values of the id range, the start value,
and the end value for all ranges in the index
table and save them.

As a result, we have the index table in the trusted party with
the number of rows equal to the total number of ranges. And
each row contains unique values related to a specific range.

Table I shows an example of an index table. It implements the
expected client’s data in the form of integer values from 1 to
20 and the suggested range value=5. As we see in Table I, the
index table has four ranges as the following:

 The first range has an id range=1, a start value=1,
and an end value=5.

 The second range has an id range=2, a start value=6,
and an end value=10.

 The third range has an id range=3, a start value=11,
and an end value=15.

 The forth range has an id range=4, a start value=16,
and an end value=20.

Table I. The Index Table for Expected Client’s Values from 1 to

20 and the Range Value=5

Id range Start value End value
1 1 5
2 6 10
3 11 15
4 16 20

From all the above mentioned we can say that the two factors
affect the index table data are the expectation of the client data
to be outsourcing and the length of suggested range value. In
the next subsection, we explain how the client’s data is
organized in the database server.

C. Encrypted Data in the Database Server

Mainly, the arrangement of encrypted data in the database
server is directly related to the index table. The basic idea is to
have the client’s data organized at the server in two different
parts. One part uses encryption technique doesn’t preserve the
order of data and the other part uses encryption technique that
preserves the order of data. Based on the index table
information, the first part which might not preserve the order
of encrypted data is for the id ranges, and the second part
which preserves the order of encrypted data is for the client’s
data that reside in the same range (the values bounded from
start value up to end value for the exact id range in the index
table).

Furthermore, to encrypt the client’s data corresponding to the
index table in Table I the trusted party will apply the two
encryption techniques like the following:

 The id ranges: 1, 2, 3, and 4 are encrypting by using
an encryption technique doesn’t preserve the order.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 22

 The values from 1 to 5 are encrypting by using an
encryption technique that preserves the order of data.

 The values from 6 to 10 are encrypting by using an
encryption technique that preserves the order of data.

 The values from 11 to 15 are encrypting by using an
encryption technique that preserves the order of data.

 The values from 16 to 20 are encrypting by using an
encryption technique that preserves the order of data.

More importantly, all the encrypted id ranges of the index
table are storing in the server before sending the client’s
data. This is because the encrypted id ranges act as the
directories for the client’s data that will reside in the
different ranges. Every one of them is pointing to the part of
the client’s data that belongs to a specific range as declared
in the index table. As we said before, those id ranges are
encrypting by using an encryption technique doesn’t
preserve the order of them. Because of this, they are
presenting in the server as unordered. Moreover, we follow
Popa’s mOPE which described in [10] to order the
encrypted data in different ranges. That is, we use the AVL
tree to preserve the order of the client’s data that resides in
the same range. And every encrypted id range is pointing to
the root node of an AVL tree as declared in the index table.
As a result, we would have many AVL trees in the server
based on the index table knowledge. Every AVL tree
contains values related to a specific id range (values from
the start value to the end value as declared in the index
table).

Therefore, in the server, we preserve the order of encrypted
data that belongs to the same range, but we don’t preserve the
sequence of ranges. This provides some aspect of security to
user’s data in the database server.

Of course, the AVL tree has advantages of the binary search
tree, in an AVL tree for each node v, all the left subtree nodes
of v are smaller than v and all the right subtree nodes of v are
greater than v. Also it is a self-balance tree, so that after
balancing the OPE tree some nodes may change their
positions. Practically, the nodes of the tree are implementing
in the server as pre-ordered traversal (root node, left subtree
nodes and right subtree nodes respectively). This allows us to
restore the original tree construction from the database to
perform operations. Because of the tree balancing and the
need for maintaining the pre-order traversal implementation,
the server must update any storage related to the balanced
AVL tree. Note that, such update affects only the target AVL
tree not all the other AVL trees corresponding to the other
ranges.

D. Access of Encrypted Data in the Database Server

The power of the index table is appearing clearly when we
need to access the data in the database server. The following
points describe the general algorithm that used to process the
encrypted data in the server:

1. The client sends v to the trusted party (to insert
or search for).

2. The trusted party determines the exact id range
for v from the index table.

3. The trusted party encrypt the id rang and sends
the Enc (id) to the server.

4. The server obtains the Enc (id), then:
a) It starts a sequential search for

matching value by performing
equality checks.

b) When finding the matching value it
tells the trusted party.

5. The trusted party asks the server for the
encrypted value cˉ at the root node of the AVL
tree which the Enc(id) point to.

6. The trusted party decrypts cˉ and obtains vˉ.
7. Compare the decrypted value vˉ with the client

value v:
a) If v < v ˉ the trusted party tells the

server go left.
b) If v > v ˉ, the trusted party tells the

server go right.
c) If v = v ˉ the trusted party tells the

server it is found.
8. The server returns the next encrypted value c” at

the tree node based on the trusted party’s
information, and goes back to step 6.

9. The algorithm stops when v is found, or when
the server achieves an empty node in the tree.

From the previous algorithm, we observe that to process
encrypted data in the OPE storage we require two search
operations into two different directions. Vertically, the first
search operation for the suitable id range to reach the target
AVL tree. Horizontally, the second search operation for the
appropriate location in the target AVL tree. More important,
the process of search for the encrypted id range is performing
locally in the server, whereas the search over the AVL tree is
performing globally across the network with the help of the
trusted party. So, instead of return to the trusted party in all
cases we just return when the encryption technique preserves
the order.

 For instance, suppose the actual client’s values are: 1, 3, 4, 13,
14, 15, 16, and 19 using the index table shown in Table I.
Table II illustrates the structure of the previous client’s data in
the database server. The grey blocks show the encrypted id
range, while the white one shows the encrypted client’s data.
Also, we use the label (“) to denote the part of data encrypted
by encryption technique that does not preserve the order of
data. And we use the label (ˉ) to denote the part of data which
encrypted by encryption technique that preserves the order of
data.

Table II. The Client Data in the Database

2“

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 23

4“ 16 ˉ 19 ˉ
1“ 3 ˉ 1 ˉ 4 ˉ
3“ 14 ˉ 13 ˉ 15 ˉ

As we see in Table II, the encrypted client’s values are
arranging in their suitable location as specified before in the
index table. Every encrypted id range is referencing to an
AVL tree that contains data of a specific range. And all of the
AVL trees are implementing in the form of pre-ordered
traversal tree.

For example, assume the client wants to insert 2 using the
database shown in Table II. Whenever the trusted party
receives the value it looks in the index table for the suitable id
range (the related index table is shown in Table I). It finds that
2 is in the id range=1. Next, it encrypts 1 by encryption
technique doesn’t preserve the order (the same one used
before storing all id ranges in the server) and obtains 1“. Then,
it asks the server to search for 1“. The server makes the first
check: 2“doesn’t match 1“, the second check: 4“doesn’t
match 1“, and the third check: 1“matches 1“. At this point, the
server reaches the target AVL tree.

After that, the server needs the help of the trusted party to
move over the target AVL tree to find an empty node. Fig. 3(a)
shows the target AVL tree. Firstly, the trusted party requests
the root node of the AVL tree, and the server returns 3ˉ, which
the trusted party decrypts to 3. Since 2 < 3, the trusted party
requests the left child of the root node, and the server responds
with 1ˉ, which the trusted party decrypts to 1. 2 >1, so the
trusted party requests the right child of the last node requested,
and the server responds that there is no such child. This means
that the trusted party can insert 2ˉ in this position. Fig. 3(b)
displays the AVL tree after inserting 2ˉ. Lastly, there is a need
to update the part of the database where the AVL tree is
storing. This is because we have to maintain the pre-order
traversal tree in the server. Fig. 3(c) shows the impact of
insertion on the database.

Fig. 3 The AVL tree pointed by the id range=1“ in the database server. (a)
The target AVL tree. (b) The AVL tree after inserting 2ˉ. (c) The part of the
database contains the target AVL tree after inserting 2.

From the above example, we observe that the server can
perform the search for the right id range without any trusted
party involvement, while it needs the help of the trusted party
to find the suitable location in the AVL tree where to insert 2ˉ.

Also, we see that the server makes three checks till it finds the
exact id range, after that, there are 6 requests and 6 responses
between the trusted party and the server before reach an empty
node to insert 2ˉ. Thus, the server is responsible to perform all
the tasks related to the encryption technique that does not
preserve the order independently. More importantly, the
trusted party told the server order information only for the
exact AVL tree and the interaction between them doesn’t
reveal anything else besides the order.

IV. SECURITY EVALUATION

Since the developed scheme is order-preserving encryption, it
reveals nothing in addition to order. The justification of why
the new model is secure can prove from the base model which
is mOPE. In the Popa’s mOPE, they prove that their OPE
model is ideal and it achieves IND-OCPA security where the
data is ordered in one AVL tree. Further, the server knows
nothing besides the order of data. Indifference to theirs, ours
order the data in more than one AVL tree based on the length
of the range. So, the server reveals only the order of data for
the target AVL tree not for all others AVL trees. An important
facet of the new model is that, when the length of range is
equivalent to the total number of expected client’s data then
the data is ordered in one AVL tree. This case is the same
structure as the mOPE model and has the same level of
security as it. Therefore, if we decrease the range value then
the depth of the AVL tree becomes smaller and the
information leakage becomes lower.

This means, the length of range mainly affects the level of
security provided by the model. We can conclude the
following:

1. The improved model is ideal and achieves IND-
OCPA security.

2. The smaller range value offers a better level of
security than the greater one.

3. The increasing of the range value results in
decreasing the level of security.

4. We reach the lowest level of security when all the
data is organizing in one AVL tree. This state
provides the same level of security as the Popa’s
mOPE.

V. PERFORMANCE EVALUATION

 Practically, we measure the performance of our model in
terms of calls between the trusted party and the server during
performing operations. We count the requests and responses
between the trusted party and the server to perform both of the
insert operation and the search operation. Besides that, we
compute the number of checks done by the server to reach the
target AVL tree. In order to make these two computations we
characterize two counters to compute in two different
directions. The first counter works in the area that doesn’t
preserve the order of id ranges. It concerns the checks

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 24

performed locally in the server. And it counts how many times
the server checks the encrypted id ranges to find the
appropriate one; this counter called “counter1”. The second
counter works in the direction that preserves the order of data.
It follows the calls performed globally throw network. And it
computes how many times the server asks the trusted party to
reach the right position in the AVL tree and receives answers;
this counter called “counter2”.
To evaluate the performance of our model we aim to answer
the following questions in the coming sections:

 Does the developed model enhance the performance
comparing with the Popa’s mOPE model?

 Is it better to apply small or great range value to
provide good performance?

 How much does the length of range affect the
outcomes of counter1 and countet2?

VI. IMPLEMENTATION

We implement our model including a simulation program in C
code to implement the three parts of the model (client, trusted
party, and server). We use user-defined functions to describe
all the scheme activities. Also, we implement the server-side
by adding Database environment.

VII. EXPERIMENTS

In order to answer the questions mentioned in section V, we
consider two scenarios. In the first scenario, the client sends
his data to store in the database server. In the second scenario,
the client retrieves his data from the database server. The
structure of the developed model and the based model are
implementing in both of the scenarios.

Furthermore, we compare the outcome of “counter1” and
“counter2” in the developed model with the Popa’s mOPE one
using the same arguments (counter1 and counter2 were
defined in section V). Unlike the proposed model, Popa’s
model involves only one counter to compute the numbers of
requests and responses between the client and the server. This
is because the server completely depends on the client to
perform its tasks [10]. Of course, the ones in the base model
has the same tasks as “counter2” in the new model and both of
them are work in the same area. Because of this, we use them
in order to make a comparison between the two models.

A. Insert Operation

In this set, we implement the structures of the developed
model and the base model in case of performing insert
operations. For simplicity, we use the client’s data in forms of
integer values in the two models. We generate random distinct
numbers from 1 to 100 for every experiment separately. We
don’t take into consideration the sequence of the generated
numbers for all experiments. More important, despite we use
100 numbers as client’s data, but we obtain the same results if
we use more.

1) Insert in the New Model: We perform eleven experiments
for the new model using a different range of values vary
from small to great. Our strategy is to start with a small
range of value and increasing it every time. In the
beginning, we choose 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100 to be the range values for our eleven
experiments. Then, every range value is used to create an
index table for a separate experiment. Of course, all of the
experiments have expected client’s data as numbers from
1 to 100.

Table III shows the index tables that we are created for
the eleven experiments. For each experiment, we explain
the selected range value, the specified id ranges, and the
start values and end values related to the id ranges. As we
see in Table III, in experiment no.1: the range value equal
to 5. The index table has twenty ranges and twenty id
ranges from 1 to 20 related to them. The start values and
the end values corresponding to those id ranges are: 1-5,
6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45,
46-50, 51-55, 56-60, 61-65, 66-70, 71-75, 76-80, 81-85,
86-90, 91-95, and 96-100 respectively. In experiment
no.2: the range value is equal to 10. The index table has
ten ranges and ten id ranges from 1 to 10 corresponds to
those ranges. The start values and the end values for the
ten id ranges are: 1-10, 11-20, 21-30, 31-40, 41-50, 51-60,
61-70, 71-80, 81-90, and 91-100 respectively. Table III
describes the details of the index tables for each
experiment separately.

Table III. The Index Tables for the Eleven Experiments

Experiment
No.

Range
value

Id
range

Start
value

End
value

1 5

1 1 5
2 6 10
3 11 15
4 16 20
5 21 25
6 26 30
7 31 35
8 36 40
9 41 45

10 46 50
11 51 55
12 56 60
13 61 65
14 66 70
15 71 75
16 76 80
17 81 85
18 86 90
19 91 95
20 96 100

2 10 1 1 10
2 11 20

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 25

3 21 30
4 31 40
5 41 50
6 51 60
7 61 70
8 71 80
9 81 90

10 91 100

3 20

1 1 20
2 21 40
3 41 60
4 61 80
5 81 100

4 30

1 1 30
2 31 60
3 61 90
4 91 100

5 40
1 1 40
2 41 80
3 81 100

6 50 1 1 50
2 51 100

7 60 1 1 60
2 61 100

8 70 1 1 70
2 71 100

9 80 1 1 80
2 81 100

10 90 1 1 90
2 91 100

11 100 1 1 100

At the end of each experiment, we achieve the
number of local checks in the server for the right id
ranges (counter1) and the number of calls between
the trusted party and the server across the network
(counter2). The final results of “counter1” and
“counter2” for all experiments are illustrating in
Table IV.

Table IV. The Results of “counter1” and “counter2” after Inserting Random
Distinct Numbers from 1 to 100 in the New Model

The New Model

Insert random distinct numbers from 1 to
100

Exper.
No. Range

value Counter1 Counter2

1 5 1050 486

2 10 550 646

3 20 300 836

4 30 260 914

5 40 200 972

6 50 150 1066

7 60 160 1076

8 70 170 1104

9 80 180 1136

10 90 190 1176

11 100 100 1272

2) Insert in the Base Model: On the other hand, we
implement the structure of Popa’s mOPE model to insert
data in the database server. We use similar data to that
used for the insert in the new model (random distinct
numbers from 1 to 100).

As we know before, this model organizes all the
encrypted data in one AVL tree and the server totally
depends on the client to move over the tree. Because of
these two reasons, we establish only one counter called
“counter” to count the calls between the client and the
server during the insertion of data. Table V shows the
total requests and responses between the client and the
server after inserting the 100 numbers in the base model.

Table V. The Results of “counter” after Inserting Random Distinct Numbers
from 1 to 100 in the Base Model

The Base Model

Insert random distinct numbers
from 1 to 100

counter 1272

B. Search Operation

In this set, we examine our model in case of retrieving data
from the database server. We aim to search for the same
values with a fixed sequence in the two models (the new
model and the base model). Hence, we select random twenty
numbers between 1 and 100 to search for them in all of the
search experiments. The twenty numbers are: 95, 93, 40, 64,
26, 66, 19, 46, 3, 47, 91, 38, 12, 16, 8, 53, 56, 52, 99, and 24
sequentially. We use the databases those results from the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 26

insert operations in the new model to search for the twenty
numbers in the two models.

1) Search in the New Model: In order to evaluate the
performance of the search operations in the new model,
we perform the search operations on the databases that
resulted from the insert experiments in the new model.
That is, the resulting ordered database from each insert
experiment in a specific range value is using to search for
the twenty numbers in the same range value. Practically,
the first experiment of the search operations uses the
database resulted from the first experiment of the insert
operations, the second experiment of the search
operations uses the database resulted from the second
experiment of the insert operations, ………., the eleventh
experiment of the search operations uses the database
resulted from the eleventh experiment of the insert
operations.

Table VI shows the eleven experiments of search operations
in the new model. Each row describes details about an
experiment. The first column for the experiment numbers and
the second one for the range values that are used in the insert
experiments before. “Counter1” illustrates the total numbers
of checks for the right id ranges in the server. And “counter2”
shows the total numbers of requests and responses between
the trusted party and the server through the network.

Table VI. The Results of “counter1” and “counter2” after Searching for the
Twenty Numbers in the New Model

The New Model

Search for the 20 numbers

Exper.
No

Range
value Counter1 Counter2

1 5 170 88

2 10 131 116

3 20 62 146

4 30 59 146

5 40 42 172

6 50 31 204

7 60 34 200

8 70 36 220

9 80 36 204

10 90 36 190

11 100 20 224

2) Search in the Base Model: On the contrast, we
perform the search operations for the twenty
numbers in the base model. We use the database
that resulted from the insert experiment in the base
model. As we mentioned before, this model orders
all the data in one AVL tree and the server needs the
client’s help in all cases. Because of these reasons,
we initialize only one counter called “counter” to
compute the total requests and responses between
the client and the server while performing the search
operations.

Table VII shows the total requests and responses between the
client and the server to perform the search operation in the
base model.

Table VII. The Result of “counter” after Searching for the Twenty Numbers
in the Base Model

The Base Model

Search for the 20 numbers

Counter 246

VIII. RESULTS and DISCUSSIONS

Back to Table IV (the results of the insert in the new model)
we observe that our scheme behaves better for the small range
values than the greater one. We see that the increase of the
range value produces significant increasing in “counter2”
besides decreasing in “counter1”. This is not surprising since
the great range value generates a few ranges in the index table.
Consequently, the size of the AVL tree is growing and hence
its height. For the same reasons, we observe that those
experiments of the range values are greater than 50 have a
lower change in “counter1” and “counter2” than those of the
range values are less than or equal to 50. We reach the
greatest value of “counter2” when the range value is
equivalent to the client’s data expectation (experiment no 11).
In this case, all the data organized in one AVL tree,
“counter1” records the lowest result, and “counter2” records
the highest result. This case is the worst case of our model
since it records the highest communications rate throw the
network.

Return to Table V (the results of the insert in the base model),
we observe that the insertion of data costs the system 1272
requests and responses between the client and the server.
Remember that, this model is the same as experiment no 11 of
the insert in the new model since both of them are organizing
the encrypted data in one AVL tree. Moreover, both the base

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 27

model and the last experiment of the insert in the new model
are executing 1272 calls throw the network to complete the
insert operations. Recall from the previous mentioned that, the
order of encrypted data in one AVL tree represents the worst
case of our model. This means, our model gets the same result
as the Popa’s mOPE model in it is worst-case otherwise it
behaves better than the Popa’s mOPE model.

Moreover, in Table VI (the results of the search in the new
model) we observe that the greater range value produces few
checks in the server (counter1) and more communications
between the trusted party and the server (counter2) than the
smaller one to retrieve data. The more range value decreases,
the higher rate “counter1” gets and lower rate “counter2”
obtains. We attribute this to the fact that the small range value
produces more ranges in the index table and hence lower tree
depth in the server than the greater range value. This is
appearing clearly in Table VI in experiments no 1, 2, 3, 4, 5,
and 6. They record significant decreasing in “counter1” and
significant increases in “counter2” due to the range value
increasing. Whereas in experiments no 7, 8, 9, 10, and 11 we
see that: “counter1” and “counter2” record a few changes
despite the increase of the range value. Experiment no 11
registers the lowest value in “counter1” and the highest value
in “counter2”.

In Table VII (the results of the search in the base model) we
observe that the search operations for the target numbers cost
the system 246 requests and responses between the client and
the server. Remember that, this experiment is the same as
experiment no 11 in Table VI since both of them search for
the same elements in the same database structure (search over
one AVL tree). Despite the similarity between the two
experiments, there are differences in their results. This is
because the data was generated randomly for the two
experiments not in a fixed sequence.

Generally, in the developed model the small range values
result in fewer calls globally but produce higher overload at
the server. Of course, the greater range value results in the
opposite. We concern about the calls across the network
(requests and responses between the trusted party and the
server) because they face more problems than performing
tasks locally in the server (checks for the right id ranges).
Further, our suggestion is to use a small range of values. The
overload in the server can be solved by providing equipment
at the server side (high processers).

From all the above mentioned we can say that, the developed
model succeeds in providing better performance than the
Popa’s mOPE. Moreover, the model behaves better when
using small range value to speed up the system performance.
Take into account, our choice for the range value should
respect the balance between the communication accomplished
across the network and the tasks performed in the server.

IX. CONCLUSION

We present an efficient order-preserving encryption model
improved from Popa’s mOPE model. Our model succeeds in
reducing the rate of requests and responses throw the network
to perform queries over an encrypted database. We show that
the use of small range values reflects significant performance
enhancement. Moreover, the use of small range value has a
positive impact on the model security compared with mOPE.
Also, the model doesn’t only achieve IND-OCPA security, but
more than that it reveals nothing except for the order of data in
the target AVL tree.

REFERENCES

[1] B. Sosinsky, Cloud Computing Bible, John Wiley &
Sons, 2010.

[2] A. B. a. S. (. M. Rahman, "AN OVERVIEW OF THE
SECURITY CONCERNS IN ENTERPRISE CLOUD
COMPUTING," vol. 3, 2011.

[3] Dan Boneh, Brent Waters, "Conjunctive, Subset, and
Range Queries on Encrypted Data," in In Theory of

Cryptography, 2007.

[4] Manpreet Kaur, Rajbir Singh, "Implementing Encryption
Algorithms to Enhance Data Security of Cloud in Cloud
Computing," International Journal of Computer

Applications, vol. 70, no. 18, p. 0975 – 8887, 2013.

[5] O. G. Sergei Evdokimov, "Encryption Techniques for
Secure Database Outsourcing," in Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, 2007,
pp. 327-342.

[6] Alexandra Boldyreva, Nathan Chenette, Younho Lee and
Adam O'Neill, "Order-Preserving Symmetric
Encryption," in Annual International Conference on the

Theory and Application of Cryptographic Techniques,
Cologne, Germany, 2009.

[7] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant,
Yirong Xu, "Order Preserving Encryption for Numeric
Data," in SIGMOD, Paris, France, 2004.

[8] Hakan Hacıg¨um¨us, Bala Iyer, Chen Li, Sharad
Mehrotra, "Executing SQL over Encrypted Data in the
DatabaseServiceProvider," in ACM SIGMOND, 2002.

[9] Hasan KADHEM, Toshiyuki AMAGASA, Hiroyuki
KITAGAWA, "Optimization Techniques for Range
Queries in the Multivalued-Partial Order Preserving
Encryption Scheme," in International Joint Conference

on Knowledge Discovery, Knowledge Engineering, and

Knowledge Management, 2010.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 28

[10] Raluca Ada Popa, Frank H. Li, Nickolai Zeldovich, "An
Ideal-Security Protocol for Order-Preserving Encoding,"
in IEEE Symposium on Security and Privacy, 2013.

[11] Hasan KADHEM, Toshiyuki AMAGASA, Hiroyuki
KITAGAWA, "MV-OPES: Multivalued-Order
Preserving Encryption Scheme: A Novel Scheme for
Encrypting Integer Value to Many Different Values,"
IEICE TRANS. INF. & SYST, vol. E93–D , no. 9, 2010.

[12] H. Kadhem, "A SECURE AND EFFICIENT ORDER
PRESERVING ENCRYPTION SCHEME FOR
RELATIONAL DATABASES," in International

Conference on Knowledge Management and Information

Sharing, 2010.

[13] Seungmin LEE, Tae-Jun PARK, Donghyeok LEE,
Taekyong NAM, Nonmembers, Sehun KIM, "Chaotic
order preserving encryption for efficient and secure
queries on databases," IEICE Trans. on Info. and

Systems, vol. E92.D(11), 2009.

[14] Gultekin Ozsoyoglu, David A. Singer, Sun S. Chung,
"Anti-Tamper Databases: Querying Encrypted
Databases," in IFIP Advances in Information and

Communication Technology, 2003.

[15] Liangliang Xiao, I-Ling Yen, Dung T. Huynh,
"Extending Order Preserving Encryption for Multi-User
Systems," Cryptology ePrint Archive, Report 2012/192,
2012.

[16] Liangliang Xiao, I-Ling Yen, "A Note for the Ideal
Order-Preserving Encryption Object and Generalized

Order-Preserving Encryption," Cryptology ePrint
Archive, Report 2012/350, 2012.

[17] Vladimir Kolesnikov, Abdullatif Shikfa, "On The Limits
of Privacy Provided by Order- Preserving Encryption,"
Bell Labs Technical Journal 17(3), 2012.

[18] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan, "CryptDB: Protecting
Confidentiality with Encrypted Query Processing," in
ACM SOSP, 2011.

[19] Do Hoang Giang, Ng Wee Keong, "Multi-dimensional
Range Query on Outsourced Database with Strong
Privacy Guarantee," I. J. Computer Network and

Information Security, no. 10, pp. 13-23, 2017.

[20] Florian Kerschbaum, Axel Schröpfer, "Optimal Average-
Complexity Ideal-Security Order-Preserving
Encryption," in ACM, 2014.

[21] K. Srinivasa Reddy, S. Ramachandram, "A New
Randomized Order Preserving Encryption Scheme,"
International Journal of Computer Applications, vol.

 108, no. 12, p. 0975 – 8887, 2014.

 [22] B Prasanalakshmi, A Kannammal "Secure credential
 federation for hybrid cloud environment with SAML
 enabled multifactor authentication using biometrics"
 International Journal of Computer Applications, (2012),
 Vol.53, Issue.18.

http://www.ijcstjournal.org/

