
International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 19

Enhancing Performance of Search Over Encrypted Data in Cloud

Computing
Nasrin Dalil Ali [1], Ahmed Kayed Ahmed [2]

Department of Computer Science and Information Technology [1]

 Sudan University of Science and Technology, Khartoum, Sudan,

Department of Computing and Information Technology [2]

 Sohar University, Sohar, Oman,

ABSTRACT
Order Preserving Encryption (OPE) scheme is an appealing method for database encryption as it allows execute sort and range

queries without decrypting data. Popa’s presented an ideal mutable order preserving encryption (mOPE), but their cost of

communications between the client and the server to process queries is very high. This paper introduces an OPE model

improved on mOPE model for reducing the rate of requests and responses between the client and the server and enhancing the

performance when querying the encrypted database. Our model presents a new indexing mechanism that will help to arrange the

encrypted data in the server. However, it uses two types of encryption techniques. The first type applies general encryption

technique and the second type follows the Popa’s mOPE and replacing the one OPE tree in mOPE scheme with a number of

OPE trees in the server. Further, it permits the server to accomplish part of works without revealing any information about

original data besides the order. We implement our scheme and evaluate it on simulation programs. We observe that in addition

to providing efficiency and security, our scheme achieves better performance than mOPE scheme.

Keywords :- Order preserving encryption, mOPE, base model.

I. INTRODUCTION

Outsourcing data to cloud service offers lower cost by sharing

hardware and elastic scaling [1] [2]. A key problem in

outsourcing storage is that the sensitive data may be subject to

unauthorized access not only from an unknown attacker but

also from curious service provider [3]. One possible approach

to protect outsourced data is encryption [3] [4]. But this

solution requires more decryption operations when there is a

need to process data. To face this limitation the cloud server

should be able to perform some computation over encrypted

data exactly as the same as for unencrypted one. The idea

behind this is to use encryption techniques that support

processing operations on encrypted data exactly and

efficiently as unencrypted one and without knowing any

information about it [5].

A practical approach that facilitates querying over encrypted

data is order-preserving encryption scheme (OPE) [6] [7].

OPE scheme is a common structure in which for cipher-text

values C1 and C2 corresponding to plaintext values P1 and P2,

if P1<P2 then C1<C2. OPE scheme permits the untrusted server

to process SQL queries over encrypted data especially

comparison queries and range queries [8] [9].

There has been significant work on OPE schemes, but mOPE

model in [10] is the first one that achieves ideal IND-OCPA

security (Indistinguishability under Ordered Chosen-Plaintext

Attack). IND-OCPA is the strongest security definition for

order-preserving schemes proposed in [6] in which the

adversary cannot learn anything about the plaintext values

except for their order.

The mOPE functions by building a balanced binary search

tree comprising all the encrypted data on the server. In such a

tree for each node v, all the nodes in the left subtree are

smaller than v and all the nodes in the right subtree are greater

than v. Fig. 1 shows the OPE tree which adapted from Popa’s

mOPE [10].

Fig. 1 The OPE tree in mOPE scheme. Each node contains the cipher-text, the

gray blocks show the corresponding plaintext value [10].

The following is an example used in [10] to illustrate the

structure of mOPE model and how the encrypted data is

arranged in the OPE tree. Consider the setting in which the

client inserts 55 into the server using the OPE tree shown in

Fig. 1In the beginning, the client demands the server for the

root node of the OPE tree, and then the server returns the

encrypted value x93d12a. Which the client decrypts to 32 and

compares 55 with 32 since 55 greater than 32 the client

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 20

demands the server for the right child of the root node. The

server responds with the encrypted value x27716c. The client

decrypts x27716c to 69 and compares 69 with 55 since 55

lesser than 69 then the client demands the server for the left

child of the new node. The server responds that there is no

such child. This means that the client can insert 55 in this

position [10].

One problem of mOPE is that; the server needs the client’s

help usually to move over the OPE tree. The dependence of

the server on the client causes more requests and responses

between them to find the right position in the OPE tree.

Unfortunately, the more data we store, the more requests and

response we generate. Hence, the system performance is a

slowdown.

This paper introduces a scheme follows the mOPE scheme

proposed in [10]. A key contribution of our scheme lies in

reducing the dependence of the server on the client by

permitting the server performs part of the search processes

without leaking any information about the original data

besides the order. More precise, we reduce the number of

requests and responses between the client and the server by

replacing the one OPE tree in mOPE scheme with the number

of OPE trees in the server. Besides that, we employ an

indexing mechanism to speed up the process of search

operations (section III). To show how our model reduces the

communication between client and server, we implement

simulation programs to perform insert operations and search

operations. We showed that our model provides a higher level

of security than mOPE model (section IV). Detailed

experiments show that the new model achieves a lower rate of

communication across the network compared with mOPE

model (section VII). Sequentially it provides higher

performance than mOPE model.

The study is organized as follows: Section (II) is dedicated for

to reports the related work. Section (III) introduces the model

scheme. Section (IV) shows the security evaluation. Section

(V) assesses the performance evaluation. Section (VI) is

dedicated to implementation. Section (VII) elaborates

experiments. Section (VIII) explains the results & discussion

and section (IX) concludes the study.

II. ACADEMIC STATE OF THE ART

Our work is mostly related to OPE schema. The notion of

OPE scheme was proposed earlier by Agrawal [7]. The first

formal study of the concept and its security was performed by

[6]. There has been a significant amount of work on OPE

schemes which allow querying over encrypted database

without any change on the database engine [11] [12] [13] [14]

[15] [16]. Despite the large body of works, the prior schemes

reveal more information about the plaintext besides the order.

The first ideal order-preserving encoding schema that

achieves IND-OCPA security presents in mOPE [10]. Since

the mOPE leaks order information for plaintext values as the

minimum needs for the order-preserving property, [17]

discuss approaches to limit the impact of this leakage.

Our work is also related to cryptographic schemes for

performing queries over encrypted data. In [3], it presents a

general framework for analysing and constructing searchable

public-key systems for various families of predicates. Then

they construct public-key systems that support comparison

queries, general subset queries, and conjunctions. [18] It

provides CryptDB, a system to protect data confidentiality

against threats by executing SQL queries over an encrypted

database. The architecture of CryptDB consists of a database

proxy which intercepts all the user’s queries and transforms

them into an understandable form for the DBMS server. It is

also responsible to perform all the encryption and decryption

processes. As the system users request order queries, they

apply the OPE technique by using AVL binary search trees

(an AVL tree is a self-balance tree that has advantages of the

binary search tree). Giang and Keong in [19] are investigating

certain types of complex queries namely multi-dimensional

range queries over encrypted data in cloud platforms (where

the plaintexts are multi-numerical attributes). Their solution

combines packetization based scheme with order-preserving

encryption-based techniques. Further, our work basically

related to mOPE introduces in [10]. Our scheme provides

ideal-security similar to Popa’s mOPE. We improve on their

structure and combine it with indexing technique to reduce the

amount of communication done globally. There are some

studies improve on Popa’s mOPE results and also provide

ideal-security [20] [21].

III. The DEVELOPED MODEL

The developed model based on Popa’s mOPE architecture

described in [10]. It consists of two main parts: the client (or

an enterprise) who is the owner of data to be outsourced, thus

the client is trusted; and the database server which provides

storage to the client’s data, it is untrusted.

Moreover, we introduce a trusted part at the client-side called

“trusted party” which acts as a connector between the client

and the database server. Also, we develop a structure called

“index table” and allocate it in the trusted party, as illustrated

in Fig. 2. The index table information plays a basic role in

both storing ordered encrypted data in the server and

retrieving exact results to the client.

Fig. 2 The architecture of the new model and the data flow between the client,

the trusted party, and the server. Q: query. EQ: encrypted query. ER:

encrypted result. R: result

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 21

In the next subsections, we explain the structure of our

model. Mainly, we describe the responsibilities of the trusted

party, the structure of the index table, how the encrypted data

is arranged in the database server, and how to access the

encrypted data in the database server.

A. Trusted Party

It acts as a communication channel between the client and the

database server. It allocates either near the client boundaries

or inside it. It intercepts all requests and responses between

the client and the server. The trusted party is responsible for

encrypts the client’s queries, rewrites queries in an

understandable form to the server, decrypts the returned

encrypted results, and gives the client exact results. Also, it

applies two different encryption techniques to the client’s data

as we explain in section III-C. Fig. 2 shows the

communication between the client, the trusted party, and the

server.

B. Index Table

It is the essential part of the developed model. We should

create it at the initialization stage of the database system. The

index table is built based on the expectation of the client’s

data that would be outsourced to the server. The total number

of expected client’s data (from the smallest one to the greatest

one in sequence) is dividing to groups of equal elements.

Actually, we divide the total number of expected client’s data

by a suggested number. As a result, we obtain a number of

groups, each one of them contains number of elements equal

to the suggested number that used to divide the expected

client’s data. Really, every group of elements implements a

part of the expected client’s data in sequence. Each group of

sequence elements is called “range” and the suggested number

of elements in the group is called “range value”.

Of course, the total number of ranges depends on the length of

developed range. Thus, the smaller range value has a shorter

range and produces many ranges, whereas the greatest range

of value has longer range and produces a few ranges. Note

that, we construct our model for numeric data. For simplicity,

we implement the expected client’s data in forms of integer

values.

Moreover, the structure of the index table is based mainly on

the ranges of the expected client’s data. Once the range value

is determined then the ranges of the expected client’s data are

appearing clearly (also their start value and end value). We

use the ranges information to create the index table like the

following:

1. Specify the start value and the end value for

each range.

2. Give each range a unique id range.

3. Create the index table with three columns: id

range (key-value), start value, and an end value.

4. Insert the values of the id range, the start value,

and the end value for all ranges in the index

table and save them.

As a result, we have the index table in the trusted party with

the number of rows equal to the total number of ranges. And

each row contains unique values related to a specific range.

Table I shows an example of an index table. It implements the

expected client’s data in the form of integer values from 1 to

20 and the suggested range value=5. As we see in Table I, the

index table has four ranges as the following:

 The first range has an id range=1, a start value=1,

and an end value=5.

 The second range has an id range=2, a start value=6,

and an end value=10.

 The third range has an id range=3, a start value=11,

and an end value=15.

 The forth range has an id range=4, a start value=16,

and an end value=20.

Table I. The Index Table for Expected Client’s Values from 1 to

20 and the Range Value=5

Id range Start value End value

1 1 5

2 6 10

3 11 15

4 16 20

From all the above mentioned we can say that the two factors

affect the index table data are the expectation of the client data

to be outsourcing and the length of suggested range value. In

the next subsection, we explain how the client’s data is

organized in the database server.

C. Encrypted Data in the Database Server

Mainly, the arrangement of encrypted data in the database

server is directly related to the index table. The basic idea is to

have the client’s data organized at the server in two different

parts. One part uses encryption technique doesn’t preserve the

order of data and the other part uses encryption technique that

preserves the order of data. Based on the index table

information, the first part which might not preserve the order

of encrypted data is for the id ranges, and the second part

which preserves the order of encrypted data is for the client’s

data that reside in the same range (the values bounded from

start value up to end value for the exact id range in the index

table).

Furthermore, to encrypt the client’s data corresponding to the

index table in Table I the trusted party will apply the two

encryption techniques like the following:

 The id ranges: 1, 2, 3, and 4 are encrypting by using

an encryption technique doesn’t preserve the order.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 22

 The values from 1 to 5 are encrypting by using an

encryption technique that preserves the order of data.

 The values from 6 to 10 are encrypting by using an

encryption technique that preserves the order of data.

 The values from 11 to 15 are encrypting by using an

encryption technique that preserves the order of data.

 The values from 16 to 20 are encrypting by using an

encryption technique that preserves the order of data.

More importantly, all the encrypted id ranges of the index

table are storing in the server before sending the client’s

data. This is because the encrypted id ranges act as the

directories for the client’s data that will reside in the

different ranges. Every one of them is pointing to the part of

the client’s data that belongs to a specific range as declared

in the index table. As we said before, those id ranges are

encrypting by using an encryption technique doesn’t

preserve the order of them. Because of this, they are

presenting in the server as unordered. Moreover, we follow

Popa’s mOPE which described in [10] to order the

encrypted data in different ranges. That is, we use the AVL

tree to preserve the order of the client’s data that resides in

the same range. And every encrypted id range is pointing to

the root node of an AVL tree as declared in the index table.

As a result, we would have many AVL trees in the server

based on the index table knowledge. Every AVL tree

contains values related to a specific id range (values from

the start value to the end value as declared in the index

table).

Therefore, in the server, we preserve the order of encrypted

data that belongs to the same range, but we don’t preserve the

sequence of ranges. This provides some aspect of security to

user’s data in the database server.

Of course, the AVL tree has advantages of the binary search

tree, in an AVL tree for each node v, all the left subtree nodes

of v are smaller than v and all the right subtree nodes of v are

greater than v. Also it is a self-balance tree, so that after

balancing the OPE tree some nodes may change their

positions. Practically, the nodes of the tree are implementing

in the server as pre-ordered traversal (root node, left subtree

nodes and right subtree nodes respectively). This allows us to

restore the original tree construction from the database to

perform operations. Because of the tree balancing and the

need for maintaining the pre-order traversal implementation,

the server must update any storage related to the balanced

AVL tree. Note that, such update affects only the target AVL

tree not all the other AVL trees corresponding to the other

ranges.

D. Access of Encrypted Data in the Database Server

The power of the index table is appearing clearly when we

need to access the data in the database server. The following

points describe the general algorithm that used to process the

encrypted data in the server:

1. The client sends v to the trusted party (to insert

or search for).

2. The trusted party determines the exact id range

for v from the index table.

3. The trusted party encrypt the id rang and sends

the Enc (id) to the server.

4. The server obtains the Enc (id), then:

a) It starts a sequential search for

matching value by performing

equality checks.

b) When finding the matching value it

tells the trusted party.

5. The trusted party asks the server for the

encrypted value cˉ at the root node of the AVL

tree which the Enc(id) point to.

6. The trusted party decrypts cˉ and obtains vˉ.

7. Compare the decrypted value vˉ with the client

value v:

a) If v < v ˉ the trusted party tells the

server go left.

b) If v > v ˉ, the trusted party tells the

server go right.

c) If v = v ˉ the trusted party tells the

server it is found.

8. The server returns the next encrypted value c” at

the tree node based on the trusted party’s

information, and goes back to step 6.

9. The algorithm stops when v is found, or when

the server achieves an empty node in the tree.

From the previous algorithm, we observe that to process

encrypted data in the OPE storage we require two search

operations into two different directions. Vertically, the first

search operation for the suitable id range to reach the target

AVL tree. Horizontally, the second search operation for the

appropriate location in the target AVL tree. More important,

the process of search for the encrypted id range is performing

locally in the server, whereas the search over the AVL tree is

performing globally across the network with the help of the

trusted party. So, instead of return to the trusted party in all

cases we just return when the encryption technique preserves

the order.

 For instance, suppose the actual client’s values are: 1, 3, 4, 13,

14, 15, 16, and 19 using the index table shown in Table I.

Table II illustrates the structure of the previous client’s data in

the database server. The grey blocks show the encrypted id

range, while the white one shows the encrypted client’s data.

Also, we use the label (“) to denote the part of data encrypted

by encryption technique that does not preserve the order of

data. And we use the label (ˉ) to denote the part of data which

encrypted by encryption technique that preserves the order of

data.

Table II. The Client Data in the Database

2“

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 23

4“ 16 ˉ 19 ˉ

1“ 3 ˉ 1 ˉ 4 ˉ

3“ 14 ˉ 13 ˉ 15 ˉ

As we see in Table II, the encrypted client’s values are

arranging in their suitable location as specified before in the

index table. Every encrypted id range is referencing to an

AVL tree that contains data of a specific range. And all of the

AVL trees are implementing in the form of pre-ordered

traversal tree.

For example, assume the client wants to insert 2 using the

database shown in Table II. Whenever the trusted party

receives the value it looks in the index table for the suitable id

range (the related index table is shown in Table I). It finds that

2 is in the id range=1. Next, it encrypts 1 by encryption

technique doesn’t preserve the order (the same one used

before storing all id ranges in the server) and obtains 1“. Then,

it asks the server to search for 1“. The server makes the first

check: 2“doesn’t match 1“, the second check: 4“doesn’t

match 1“, and the third check: 1“matches 1“. At this point, the

server reaches the target AVL tree.

After that, the server needs the help of the trusted party to

move over the target AVL tree to find an empty node. Fig. 3(a)

shows the target AVL tree. Firstly, the trusted party requests

the root node of the AVL tree, and the server returns 3ˉ, which

the trusted party decrypts to 3. Since 2 < 3, the trusted party

requests the left child of the root node, and the server responds

with 1ˉ, which the trusted party decrypts to 1. 2 >1, so the

trusted party requests the right child of the last node requested,

and the server responds that there is no such child. This means

that the trusted party can insert 2ˉ in this position. Fig. 3(b)

displays the AVL tree after inserting 2ˉ. Lastly, there is a need

to update the part of the database where the AVL tree is

storing. This is because we have to maintain the pre-order

traversal tree in the server. Fig. 3(c) shows the impact of

insertion on the database.

Fig. 3 The AVL tree pointed by the id range=1“ in the database server. (a)

The target AVL tree. (b) The AVL tree after inserting 2ˉ. (c) The part of the

database contains the target AVL tree after inserting 2.

From the above example, we observe that the server can

perform the search for the right id range without any trusted

party involvement, while it needs the help of the trusted party

to find the suitable location in the AVL tree where to insert 2ˉ.

Also, we see that the server makes three checks till it finds the

exact id range, after that, there are 6 requests and 6 responses

between the trusted party and the server before reach an empty

node to insert 2ˉ. Thus, the server is responsible to perform all

the tasks related to the encryption technique that does not

preserve the order independently. More importantly, the

trusted party told the server order information only for the

exact AVL tree and the interaction between them doesn’t

reveal anything else besides the order.

IV. SECURITY EVALUATION

Since the developed scheme is order-preserving encryption, it

reveals nothing in addition to order. The justification of why

the new model is secure can prove from the base model which

is mOPE. In the Popa’s mOPE, they prove that their OPE

model is ideal and it achieves IND-OCPA security where the

data is ordered in one AVL tree. Further, the server knows

nothing besides the order of data. Indifference to theirs, ours

order the data in more than one AVL tree based on the length

of the range. So, the server reveals only the order of data for

the target AVL tree not for all others AVL trees. An important

facet of the new model is that, when the length of range is

equivalent to the total number of expected client’s data then

the data is ordered in one AVL tree. This case is the same

structure as the mOPE model and has the same level of

security as it. Therefore, if we decrease the range value then

the depth of the AVL tree becomes smaller and the

information leakage becomes lower.

This means, the length of range mainly affects the level of

security provided by the model. We can conclude the

following:

1. The improved model is ideal and achieves IND-

OCPA security.

2. The smaller range value offers a better level of

security than the greater one.

3. The increasing of the range value results in

decreasing the level of security.

4. We reach the lowest level of security when all the

data is organizing in one AVL tree. This state

provides the same level of security as the Popa’s

mOPE.

V. PERFORMANCE EVALUATION

 Practically, we measure the performance of our model in

terms of calls between the trusted party and the server during

performing operations. We count the requests and responses

between the trusted party and the server to perform both of the

insert operation and the search operation. Besides that, we

compute the number of checks done by the server to reach the

target AVL tree. In order to make these two computations we

characterize two counters to compute in two different

directions. The first counter works in the area that doesn’t

preserve the order of id ranges. It concerns the checks

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 24

performed locally in the server. And it counts how many times

the server checks the encrypted id ranges to find the

appropriate one; this counter called “counter1”. The second

counter works in the direction that preserves the order of data.

It follows the calls performed globally throw network. And it

computes how many times the server asks the trusted party to

reach the right position in the AVL tree and receives answers;

this counter called “counter2”.

To evaluate the performance of our model we aim to answer

the following questions in the coming sections:

 Does the developed model enhance the performance

comparing with the Popa’s mOPE model?

 Is it better to apply small or great range value to

provide good performance?

 How much does the length of range affect the

outcomes of counter1 and countet2?

VI. IMPLEMENTATION

We implement our model including a simulation program in C

code to implement the three parts of the model (client, trusted

party, and server). We use user-defined functions to describe

all the scheme activities. Also, we implement the server-side

by adding Database environment.

VII. EXPERIMENTS

In order to answer the questions mentioned in section V, we

consider two scenarios. In the first scenario, the client sends

his data to store in the database server. In the second scenario,

the client retrieves his data from the database server. The

structure of the developed model and the based model are

implementing in both of the scenarios.

Furthermore, we compare the outcome of “counter1” and

“counter2” in the developed model with the Popa’s mOPE one

using the same arguments (counter1 and counter2 were

defined in section V). Unlike the proposed model, Popa’s

model involves only one counter to compute the numbers of

requests and responses between the client and the server. This

is because the server completely depends on the client to

perform its tasks [10]. Of course, the ones in the base model

has the same tasks as “counter2” in the new model and both of

them are work in the same area. Because of this, we use them

in order to make a comparison between the two models.

A. Insert Operation

In this set, we implement the structures of the developed

model and the base model in case of performing insert

operations. For simplicity, we use the client’s data in forms of

integer values in the two models. We generate random distinct

numbers from 1 to 100 for every experiment separately. We

don’t take into consideration the sequence of the generated

numbers for all experiments. More important, despite we use

100 numbers as client’s data, but we obtain the same results if

we use more.

1) Insert in the New Model: We perform eleven experiments

for the new model using a different range of values vary

from small to great. Our strategy is to start with a small

range of value and increasing it every time. In the

beginning, we choose 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,

and 100 to be the range values for our eleven

experiments. Then, every range value is used to create an

index table for a separate experiment. Of course, all of the

experiments have expected client’s data as numbers from

1 to 100.

Table III shows the index tables that we are created for

the eleven experiments. For each experiment, we explain

the selected range value, the specified id ranges, and the

start values and end values related to the id ranges. As we

see in Table III, in experiment no.1: the range value equal

to 5. The index table has twenty ranges and twenty id

ranges from 1 to 20 related to them. The start values and

the end values corresponding to those id ranges are: 1-5,

6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45,

46-50, 51-55, 56-60, 61-65, 66-70, 71-75, 76-80, 81-85,

86-90, 91-95, and 96-100 respectively. In experiment

no.2: the range value is equal to 10. The index table has

ten ranges and ten id ranges from 1 to 10 corresponds to

those ranges. The start values and the end values for the

ten id ranges are: 1-10, 11-20, 21-30, 31-40, 41-50, 51-60,

61-70, 71-80, 81-90, and 91-100 respectively. Table III

describes the details of the index tables for each

experiment separately.

Table III. The Index Tables for the Eleven Experiments

Experiment

No.

Range

value

Id

range

Start

value

End

value

1 5

1 1 5

2 6 10

3 11 15

4 16 20

5 21 25

6 26 30

7 31 35

8 36 40

9 41 45

10 46 50

11 51 55

12 56 60

13 61 65

14 66 70

15 71 75

16 76 80

17 81 85

18 86 90

19 91 95

20 96 100

2 10
1 1 10

2 11 20

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 25

3 21 30

4 31 40

5 41 50

6 51 60

7 61 70

8 71 80

9 81 90

10 91 100

3 20

1 1 20

2 21 40

3 41 60

4 61 80

5 81 100

4 30

1 1 30

2 31 60

3 61 90

4 91 100

5 40

1 1 40

2 41 80

3 81 100

6 50
1 1 50

2 51 100

7 60
1 1 60

2 61 100

8 70
1 1 70

2 71 100

9 80
1 1 80

2 81 100

10 90
1 1 90

2 91 100

11 100 1 1 100

At the end of each experiment, we achieve the

number of local checks in the server for the right id

ranges (counter1) and the number of calls between

the trusted party and the server across the network

(counter2). The final results of “counter1” and

“counter2” for all experiments are illustrating in

Table IV.

Table IV. The Results of “counter1” and “counter2” after Inserting Random

Distinct Numbers from 1 to 100 in the New Model

The New Model

Insert random distinct numbers from 1 to

100

Exper.

No. Range

value
Counter1 Counter2

1
5 1050 486

2
10 550 646

3
20 300 836

4
30 260 914

5
40 200 972

6
50 150 1066

7
60 160 1076

8
70 170 1104

9
80 180 1136

10
90 190 1176

11
100 100 1272

2) Insert in the Base Model: On the other hand, we

implement the structure of Popa’s mOPE model to insert

data in the database server. We use similar data to that

used for the insert in the new model (random distinct

numbers from 1 to 100).

As we know before, this model organizes all the

encrypted data in one AVL tree and the server totally

depends on the client to move over the tree. Because of

these two reasons, we establish only one counter called

“counter” to count the calls between the client and the

server during the insertion of data. Table V shows the

total requests and responses between the client and the

server after inserting the 100 numbers in the base model.

Table V. The Results of “counter” after Inserting Random Distinct Numbers

from 1 to 100 in the Base Model

The Base Model

Insert random distinct numbers

from 1 to 100

counter 1272

B. Search Operation

In this set, we examine our model in case of retrieving data

from the database server. We aim to search for the same

values with a fixed sequence in the two models (the new

model and the base model). Hence, we select random twenty

numbers between 1 and 100 to search for them in all of the

search experiments. The twenty numbers are: 95, 93, 40, 64,

26, 66, 19, 46, 3, 47, 91, 38, 12, 16, 8, 53, 56, 52, 99, and 24

sequentially. We use the databases those results from the

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 26

insert operations in the new model to search for the twenty

numbers in the two models.

1) Search in the New Model: In order to evaluate the

performance of the search operations in the new model,

we perform the search operations on the databases that

resulted from the insert experiments in the new model.

That is, the resulting ordered database from each insert

experiment in a specific range value is using to search for

the twenty numbers in the same range value. Practically,

the first experiment of the search operations uses the

database resulted from the first experiment of the insert

operations, the second experiment of the search

operations uses the database resulted from the second

experiment of the insert operations, ………., the eleventh

experiment of the search operations uses the database

resulted from the eleventh experiment of the insert

operations.

Table VI shows the eleven experiments of search operations

in the new model. Each row describes details about an

experiment. The first column for the experiment numbers and

the second one for the range values that are used in the insert

experiments before. “Counter1” illustrates the total numbers

of checks for the right id ranges in the server. And “counter2”

shows the total numbers of requests and responses between

the trusted party and the server through the network.

Table VI. The Results of “counter1” and “counter2” after Searching for the

Twenty Numbers in the New Model

The New Model

Search for the 20 numbers

Exper.

No

Range

value
Counter1 Counter2

1
5 170 88

2
10 131 116

3
20 62 146

4
30 59 146

5
40 42 172

6
50 31 204

7
60 34 200

8
70 36 220

9
80 36 204

10
90 36 190

11
100 20 224

2) Search in the Base Model: On the contrast, we

perform the search operations for the twenty

numbers in the base model. We use the database

that resulted from the insert experiment in the base

model. As we mentioned before, this model orders

all the data in one AVL tree and the server needs the

client’s help in all cases. Because of these reasons,

we initialize only one counter called “counter” to

compute the total requests and responses between

the client and the server while performing the search

operations.

Table VII shows the total requests and responses between the

client and the server to perform the search operation in the

base model.

Table VII. The Result of “counter” after Searching for the Twenty Numbers

in the Base Model

The Base Model

Search for the 20 numbers

Counter 246

VIII. RESULTS and DISCUSSIONS

Back to Table IV (the results of the insert in the new model)

we observe that our scheme behaves better for the small range

values than the greater one. We see that the increase of the

range value produces significant increasing in “counter2”

besides decreasing in “counter1”. This is not surprising since

the great range value generates a few ranges in the index table.

Consequently, the size of the AVL tree is growing and hence

its height. For the same reasons, we observe that those

experiments of the range values are greater than 50 have a

lower change in “counter1” and “counter2” than those of the

range values are less than or equal to 50. We reach the

greatest value of “counter2” when the range value is

equivalent to the client’s data expectation (experiment no 11).

In this case, all the data organized in one AVL tree,

“counter1” records the lowest result, and “counter2” records

the highest result. This case is the worst case of our model

since it records the highest communications rate throw the

network.

Return to Table V (the results of the insert in the base model),

we observe that the insertion of data costs the system 1272

requests and responses between the client and the server.

Remember that, this model is the same as experiment no 11 of

the insert in the new model since both of them are organizing

the encrypted data in one AVL tree. Moreover, both the base

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 27

model and the last experiment of the insert in the new model

are executing 1272 calls throw the network to complete the

insert operations. Recall from the previous mentioned that, the

order of encrypted data in one AVL tree represents the worst

case of our model. This means, our model gets the same result

as the Popa’s mOPE model in it is worst-case otherwise it

behaves better than the Popa’s mOPE model.

Moreover, in Table VI (the results of the search in the new

model) we observe that the greater range value produces few

checks in the server (counter1) and more communications

between the trusted party and the server (counter2) than the

smaller one to retrieve data. The more range value decreases,

the higher rate “counter1” gets and lower rate “counter2”

obtains. We attribute this to the fact that the small range value

produces more ranges in the index table and hence lower tree

depth in the server than the greater range value. This is

appearing clearly in Table VI in experiments no 1, 2, 3, 4, 5,

and 6. They record significant decreasing in “counter1” and

significant increases in “counter2” due to the range value

increasing. Whereas in experiments no 7, 8, 9, 10, and 11 we

see that: “counter1” and “counter2” record a few changes

despite the increase of the range value. Experiment no 11

registers the lowest value in “counter1” and the highest value

in “counter2”.

In Table VII (the results of the search in the base model) we

observe that the search operations for the target numbers cost

the system 246 requests and responses between the client and

the server. Remember that, this experiment is the same as

experiment no 11 in Table VI since both of them search for

the same elements in the same database structure (search over

one AVL tree). Despite the similarity between the two

experiments, there are differences in their results. This is

because the data was generated randomly for the two

experiments not in a fixed sequence.

Generally, in the developed model the small range values

result in fewer calls globally but produce higher overload at

the server. Of course, the greater range value results in the

opposite. We concern about the calls across the network

(requests and responses between the trusted party and the

server) because they face more problems than performing

tasks locally in the server (checks for the right id ranges).

Further, our suggestion is to use a small range of values. The

overload in the server can be solved by providing equipment

at the server side (high processers).

From all the above mentioned we can say that, the developed

model succeeds in providing better performance than the

Popa’s mOPE. Moreover, the model behaves better when

using small range value to speed up the system performance.

Take into account, our choice for the range value should

respect the balance between the communication accomplished

across the network and the tasks performed in the server.

IX. CONCLUSION

We present an efficient order-preserving encryption model

improved from Popa’s mOPE model. Our model succeeds in

reducing the rate of requests and responses throw the network

to perform queries over an encrypted database. We show that

the use of small range values reflects significant performance

enhancement. Moreover, the use of small range value has a

positive impact on the model security compared with mOPE.

Also, the model doesn’t only achieve IND-OCPA security, but

more than that it reveals nothing except for the order of data in

the target AVL tree.

REFERENCES

[1] B. Sosinsky, Cloud Computing Bible, John Wiley &

Sons, 2010.

[2] A. B. a. S. (. M. Rahman, "AN OVERVIEW OF THE

SECURITY CONCERNS IN ENTERPRISE CLOUD

COMPUTING," vol. 3, 2011.

[3] Dan Boneh, Brent Waters, "Conjunctive, Subset, and

Range Queries on Encrypted Data," in In Theory of

Cryptography, 2007.

[4] Manpreet Kaur, Rajbir Singh, "Implementing Encryption

Algorithms to Enhance Data Security of Cloud in Cloud

Computing," International Journal of Computer

Applications, vol. 70, no. 18, p. 0975 – 8887, 2013.

[5] O. G. Sergei Evdokimov, "Encryption Techniques for

Secure Database Outsourcing," in Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, 2007,

pp. 327-342.

[6] Alexandra Boldyreva, Nathan Chenette, Younho Lee and

Adam O'Neill, "Order-Preserving Symmetric

Encryption," in Annual International Conference on the

Theory and Application of Cryptographic Techniques,

Cologne, Germany, 2009.

[7] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant,

Yirong Xu, "Order Preserving Encryption for Numeric

Data," in SIGMOD, Paris, France, 2004.

[8] Hakan Hacıg¨um¨us, Bala Iyer, Chen Li, Sharad

Mehrotra, "Executing SQL over Encrypted Data in the

DatabaseServiceProvider," in ACM SIGMOND, 2002.

[9] Hasan KADHEM, Toshiyuki AMAGASA, Hiroyuki

KITAGAWA, "Optimization Techniques for Range

Queries in the Multivalued-Partial Order Preserving

Encryption Scheme," in International Joint Conference

on Knowledge Discovery, Knowledge Engineering, and

Knowledge Management, 2010.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 7 Issue 6, Nov - Dec 2019

ISSN: 2347-8578 www.ijcstjournal.org Page 28

[10] Raluca Ada Popa, Frank H. Li, Nickolai Zeldovich, "An

Ideal-Security Protocol for Order-Preserving Encoding,"

in IEEE Symposium on Security and Privacy, 2013.

[11] Hasan KADHEM, Toshiyuki AMAGASA, Hiroyuki

KITAGAWA, "MV-OPES: Multivalued-Order

Preserving Encryption Scheme: A Novel Scheme for

Encrypting Integer Value to Many Different Values,"

IEICE TRANS. INF. & SYST, vol. E93–D , no. 9, 2010.

[12] H. Kadhem, "A SECURE AND EFFICIENT ORDER

PRESERVING ENCRYPTION SCHEME FOR

RELATIONAL DATABASES," in International

Conference on Knowledge Management and Information

Sharing, 2010.

[13] Seungmin LEE, Tae-Jun PARK, Donghyeok LEE,

Taekyong NAM, Nonmembers, Sehun KIM, "Chaotic

order preserving encryption for efficient and secure

queries on databases," IEICE Trans. on Info. and

Systems, vol. E92.D(11), 2009.

[14] Gultekin Ozsoyoglu, David A. Singer, Sun S. Chung,

"Anti-Tamper Databases: Querying Encrypted

Databases," in IFIP Advances in Information and

Communication Technology, 2003.

[15] Liangliang Xiao, I-Ling Yen, Dung T. Huynh,

"Extending Order Preserving Encryption for Multi-User

Systems," Cryptology ePrint Archive, Report 2012/192,

2012.

[16] Liangliang Xiao, I-Ling Yen, "A Note for the Ideal

Order-Preserving Encryption Object and Generalized

Order-Preserving Encryption," Cryptology ePrint

Archive, Report 2012/350, 2012.

[17] Vladimir Kolesnikov, Abdullatif Shikfa, "On The Limits

of Privacy Provided by Order- Preserving Encryption,"

Bell Labs Technical Journal 17(3), 2012.

[18] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai

Zeldovich, and Hari Balakrishnan, "CryptDB: Protecting

Confidentiality with Encrypted Query Processing," in

ACM SOSP, 2011.

[19] Do Hoang Giang, Ng Wee Keong, "Multi-dimensional

Range Query on Outsourced Database with Strong

Privacy Guarantee," I. J. Computer Network and

Information Security, no. 10, pp. 13-23, 2017.

[20] Florian Kerschbaum, Axel Schröpfer, "Optimal Average-

Complexity Ideal-Security Order-Preserving

Encryption," in ACM, 2014.

[21] K. Srinivasa Reddy, S. Ramachandram, "A New

Randomized Order Preserving Encryption Scheme,"

International Journal of Computer Applications, vol. 108,

no. 12, p. 0975 – 8887, 2014.

[22] Satish, Karuturi S R V, and M Swamy Das. "Review
of Cloud Computing and Data Security." IJAEMA (The
International Journal of Analytical and Experimental
Modal Analysis) 10, no. 3 (2018): 1-8, 2018.

http://www.ijcstjournal.org/

