

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 152

RESEARCH ARTICLE OPEN ACCESS

 Efficiency Analysis of Software Development Life Cycle Models

Pallab Banerjee [1], Biresh kumar [2], Amarnath singh [3]

 Arundhati Singh [4], Rupsi Kumari [5]

1Assistant Professor [1], [2], [3], B.Tech Scholar [4], [5]

 Department of Computer Science and Engineering

 Amity University, Ranchi Jharkhand

India

ABSTRACT

The development lifecycle of software comprises of five major stages namely Feasibility study, Requirement Elicitation,

Designing, Coding and Testing. A software process model is the basic framework which gives a workflow from one stage to the

next. This workflow is a guideline for successful planning, organization and final execution of the software project. Generally we

have many different techniques and methods used to software development life cycle. Project and most real word models are

customized adaptations of the generic models while each is designed for a specific purpose or reason, most have similar goals and

share many common tasks. This paper will explore the similarities and difference among these various software development life

cycle models.

Keywords: Software Management Processes, Software Development Process, Software Development Life Cycle, Comparative

analysis of Software development life cycle models.

I. INTRODUCTION

No one can deny the importance of computer in our

life, especially during the present time. In fact, computer has

become indispensable in today's life as it is used in many

fields of life such as industry, medicine, commerce, education

and even agriculture. The purpose of this paper is to provide

an understanding of the Software Development Lifecycle

(SDLC) models available to software developers. A Software

Project is instructions (computer programs) that, when

executed, provide desired features, function and performance;

data structures that enable the program to adequately

manipulate information and documents that describe the

operation and use of the program. Software engineers have to

face many challenges when they start developing a new

software project like developing techniques to build software

project that can easily cope with heterogeneous platforms and

execution environment. There are various software

development approaches defined and designed, which are

used/employed during development process of a software,

these approaches are also referred to as "Software

Development Process Models". Each process model follows a

particular life cycle in order to ensure success in the process

of software development. Note that the SDLC acronym is also

used to represent System Development Life Cycle. New

SDLC models are introduced on a regular basis as new

technology and new research requires new SDLC techniques.

Recent new SDLC models include Extreme Programming and

Agile Development. A Software Development Life Cycle

Model is a set of activities together with an ordering

relationship between activities performed in a manner that

satisfies the ordering relationship that will produce desired

product. A software development life cycle model is broken

down into distinct activities and specifies how these activities

are organized in the entire software development effort. This

paper looks at the most commonly known and used models

and compares their efficiency analysis.

II. PHASES INVOLVED IN SDLC

MODELS

The phases that are generally present in each and every

software development life cycle model are:

 Requirement Analysis: Requirement analysis is the

most important and fundamental stage in SDLC. This

information is then used to plan the basic project

approach and to conduct product feasibility study in the

economical, operational and technical areas.

 Design: A design approach clearly defines all the

architectural modules of the product along with its

communication and data flow representation with the

external and third party modules (if any). The internal

design of all the modules of the proposed architecture

should be clearly defined with the minutest of the

details in DDS (Design Document Specification).

 Implementation: In this stage of SDLC the actual

development starts and the product is built. The

programming code is generated as per DDS during this

stage. If the design is performed in a detailed and

organized manner, code generation can be

accomplished without much hassle.

 Testing: This stage is usually a subset of all the stages

as in the modern SDLC models, the testing activities

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 153

are mostly involved in all the stages of SDLC.

However, this stage refers to the testing only stage of

the product where product defects are reported, tracked,

fixed and retested, until the product reaches the quality

standards defined in the SRS (Software Requirement

Specification).

 Evolution: Once the product is tested and ready to be

deployed it is released formally in the appropriate

market. Sometimes product deployment happens in

stages as per the business strategy of that organization.

The product may first be released in a limited segment

and tested in the real business environment.

The common phases of an SDLC can be represented by the

following diagram:

Fig. 1 Phases involved in SDLC Models

III. SDLC MODLELS

There are various software development life cycle

models defined and designed which are followed during the

software development process. Each process model follows a

series of steps unique to its type to ensure success in the

process of software development.

Following are the most important and popular SDLC models

followed in the industry:

 Waterfall Model

 Iterative Model

 Spiral Model

 V-Model

 Big Bang Model

 Rapid Application Development Model

 Agile Model

A. Waterfall Model

Waterfall approach was first SDLC Model to be used

widely in Software Engineering to ensure success of the

project. In "The Waterfall" approach, the whole process of

software development is divided into separate phases. In this

Waterfall model, typically, the outcome of one phase acts as

the input for the next phase sequentially.

The following illustration is a representation of the different

phases of the Waterfall Model:

Fig 2. Waterfall Model

The sequential phases in Waterfall Model are:

 Requirement Gathering and Analysis - All possible

requirements of the system to be developed are captured

in this phase and documented in a requirement

specification document.

 System Design - The requirement specifications from

first phase are studied in this phase and the system design

is prepared. This system design helps in specifying

hardware and system requirements and helps in defining

the overall system architecture.

 Implementation - With inputs from the system design, the

system is first developed in small programs called units,

which are integrated in the next phase. Each unit is

developed and tested for its functionality, which is

referred to as Unit Testing.

 Integration and Testing - All the units developed in the

implementation phase are integrated into a system after

testing of each unit. Post integration the entire system is

tested for any faults and failures.

 Deployment of System - Once the functional and non-

functional testing is done; the product is deployed in the

customer environment or released into the market.

 Maintenance - There are some issues which come up in

the client environment. To fix those issues, patches are

released. Also to enhance the product some better

versions are released. Maintenance is done to deliver

these changes in the customer environment.

Waterfall Model – Application:

Every software developed is different and requires a suitable

SDLC approach to be followed based on the internal and

external factors. Some situations where the use of Waterfall

model is most appropriate are:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 154

 Requirements are very well documented, clear and

fixed.

 Product definition is stable and short.

 Technology is understood and is not dynamic.

 There are no ambiguous requirements.

 Ample resources with required expertise are

available to support the product.

Waterfall Model – Analysis:

Some of the major advantages of the Waterfall Model are as

follows

 Simple and easy to understand and use

 Easy to manage due to the rigidity of the model.

Each phase has specific deliverables and a review

process.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements

are very well understood.

 Clearly defined stages.

 Well understood milestones.

 Easy to arrange tasks.

 Process and results are well documented.

The major disadvantages of the Waterfall Model are as

follows

 No working software is produced until late during

the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented

projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are

at a moderate to high risk of changing. So, risk and

uncertainty is high with this process model.

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 Adjusting scope during the life cycle can end a

project.

 Integration is done as a "big-bang. at the very end,

which doesn't allow identifying any technological or

business bottleneck or challenges early.

B. Iterative Model

Iterative process starts with a simple implementation

of a subset of the software requirements and iteratively

enhances the evolving versions until the full system is

implemented.

At each iteration, design modifications are made and

new functional capabilities are added. The basic idea behind

this method is to develop a system through repeated cycles

(iterative) and in smaller portions at a time (incremental).

The following illustration is a representation of the

Iterative and Incremental model −

Fig 3. Iterative Model

In this incremental model, the whole requirement is divided

into various builds. During each iteration, the development

module goes through the requirements, design,

implementation and testing phases. Each subsequent release

of the module adds function to the previous release. The

process continues till the complete system is ready as per the

requirement. The key to a successful use of an iterative

software development lifecycle is rigorous validation of

requirements, and verification & testing of each version of the

software against those requirements within each cycle of the

model. As the software evolves through successive cycles,

tests must be repeated and extended to verify each version of

the software.

Iterative Model – Application:

Like other SDLC models, Iterative and incremental

development has some specific applications in the software

industry. This model is most often used in the following

scenarios

 Requirements of the complete system are clearly

defined and understood.

 Major requirements must be defined; however, some

functionalities or requested enhancements may

evolve with time.

 There is a time to the market constraint.

 A new technology is being used and is being learnt

by the development team while working on the

project.

 Resources with needed skill sets are not available

and are planned to be used on contract basis for

specific iterations.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 155

 There are some high-risk features and goals which

may change in the future.

Iterative Model – Analysis:

The advantages of the Iterative and Incremental SDLC Model

are as follows

 Some working functionality can be developed

quickly and early in the life cycle.

 Results are obtained early and periodically.

 Parallel development can be planned.

 Progress can be measured.

 Less costly to change the scope/requirements.

 Testing and debugging during smaller iteration is

easy.

 Risks are identified and resolved during iteration;

and each iteration is an easily managed milestone.

 Easier to manage risk - High risk part is done first.

 With every increment, operational product is

delivered.

 Issues, challenges and risks identified from each

increment can be utilized to the next increment.

 Risk analysis is better.

 It supports changing requirements.

 Initial Operating time is less.

 Better suited for large and mission-critical projects.

The disadvantages of the Iterative and Incremental SDLC

Model are as follows

 More resources may be required.

 Although cost of change is lesser, but it is not very

suitable for changing requirements.

 More management attention is required.

 System architecture or design issues may arise

because not all requirements are gathered in the

beginning of the entire life cycle.

 Defining increments may require definition of the

complete system.

 Not suitable for smaller projects.

 Management complexity is more.

 End of project may not be known which is a risk.

 Highly skilled resources are required for risk

analysis.

 Projects progress is highly dependent upon the risk

analysis phase.

C. Spiral Model

The spiral model, initially proposed by Boehm, is an

evolutionary software process model that couples the iterative

feature of prototyping with the controlled and systematic

aspects of the linear sequential model. It implements the

potential for rapid development of new versions of the

software. Using the spiral model, the software is developed in

a series of incremental releases. During the early iterations,

the additional release may be a paper model or prototype.

During later iterations, more and more complete versions of

the engineered system are produced.

The Spiral Model is shown in fig:

Fig 4. Spiral Model

The spiral model has four phases:

 Objective setting: Each cycle in the spiral starts with the

identification of purpose for that cycle, the various

alternatives that are possible for achieving the targets,

and the constraints that exists.

 Risk Assessment and reduction: The next phase in the

cycle is to calculate these various alternatives based on

the goals and constraints. The focus of evaluation in this

stage is located on the risk perception for the project.

 Development and validation: The next phase is to

develop strategies that resolve uncertainties and risks.

This process may include activities such as

benchmarking, simulation, and prototyping.

 Planning: Finally, the next step is planned. The project is

reviewed, and a choice made whether to continue with a

further period of the spiral. If it is determined to keep,

plans are drawn up for the next step of the project

Spiral Model – Application:

The following pointers explain the typical uses of a Spiral

Model

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 156

 When there is a budget constraint and risk evaluation

is important.

 For medium to high-risk projects.

 Long-term project commitment because of potential

changes to economic priorities as the requirements

change with time.

 Customer is not sure of their requirements which are

usually the case.

 Requirements are complex and need evaluation to

get clarity.

 New product line which should be released in phases

to get enough customer feedback.

 Significant changes are expected in the product

during the development cycle.

Spiral Model – Analysis:

The advantage of spiral lifecycle model is that it allows

elements of the product to be added in, when they become

available or known. This assures that there is no conflict with

previous requirements and design.

This method is consistent with approaches that have multiple

software builds and releases which allows making an orderly

transition to a maintenance activity. Another positive aspect

of this method is that the spiral model forces an early user

involvement in the system development effort.

On the other side, it takes a very strict management to

complete such products and there is a risk of running the

spiral in an indefinite loop. So, the discipline of change and

the extent of taking change requests is very important to

develop and deploy the product successfully.

The advantages of the Spiral SDLC Model are as follows

 Changing requirements can be accommodated.

 Allows extensive use of prototypes.

 Requirements can be captured more accurately.

 Users see the system early.

 Development can be divided into smaller parts and

the risky parts can be developed earlier which helps

in better risk management.

The disadvantages of the Spiral SDLC Model are as follows

 Management is more complex.

 End of the project may not be known early.

 Not suitable for small or low risk projects and could

be expensive for small projects.

 Process is complex

 Spiral may go on indefinitely.

 Large number of intermediate stages requires

excessive documentation.

D. V-Model

The V-model is an SDLC model where execution of

processes happens in a sequential manner in a V-shape. It is

also known as Verification and Validation model. Under the

V-Model, the corresponding testing phase of the development

phase is planned in parallel. So, there are Verification phases

on one side of the ‘V’ and Validation phases on the other side.

The Coding Phase joins the two sides of the V-Model.

The following illustration depicts the different phases in a V-

Model of the SDLC.

Fig 5. V-Model

Just like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must be

completed before the next phase begins. Testing is

emphasized in this model more than the waterfall model. The

testing procedures are developed early in the life cycle before

any coding is done, during each of the phases preceding

implementation. Requirements begin the life cycle model just

like the waterfall model. Before development is started, a

system test plan is created. The test plan focuses on meeting

the functionality specified in requirements gathering. The

high-level design phase focuses on system architecture and

design. An integration test plan is created in this phase in

order to test the pieces of the software systems ability to work

together. However, the low-level design phase lies where the

actual software components are designed, and unit tests are

created in this phase as well. The implementation phase is,

again, where all coding takes place. Once coding is complete,

the path of execution continues up the right side of the V

where the test plans developed earlier are now put to use.

V- Model ─ Application:

V- Model application is almost the same as the waterfall

model, as both the models are of sequential type.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 157

Requirements have to be very clear before the project starts,

because it is usually expensive to go back and make changes.

This model is used in the medical development field, as it is

strictly a disciplined domain.

The following pointers are some of the most suitable

scenarios to use the V-Model application.

 Requirements are well defined, clearly documented

and fixed.

 Product definition is stable.

 Technology is not dynamic and is well understood

by the project team.

 There are no ambiguous or undefined requirements.

 The project is short.

V-Model Analysis:

The advantages of the V-Model method are as follows −

 This is a highly-disciplined model and Phases are

completed one at a time.

 Works well for smaller projects where requirements

are very well understood.

 Simple and easy to understand and use.

 Easy to manage due to the rigidity of the model.

Each phase has specific deliverables and a review

process.

The disadvantages of the V-Model method are as follows −

 High risk and uncertainty.

 Not a good model for complex and object-oriented

projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are

at a moderate to high risk of changing.

 Once an application is in the testing stage, it is

difficult to go back and change functionality.

 No working software is produced until late during

the life cycle.

E. Big Bang Model

The Big Bang Model comprises of focusing all the

possible resources in the software development and coding,

with very little or no planning. The requirements are

understood and implemented as they come. Any changes

required may or may not need to revamp the complete

software.

Fig 6. Big Bang Model

This model is ideal for small projects with one or two

developers working together and is also useful for academic

or practice projects. It is an ideal model for the product where

requirements are not well understood and the final release

date is not given.

Big Bang Model – Analysis:

The advantage of this Big Bang Model is that it is very simple

and requires very little or no planning. Easy to manage and no

formal procedure are required. However, the Big Bang Model

is a very high risk model and changes in the requirements or

misunderstood requirements may even lead to complete

reversal or scraping of the project. It is ideal for repetitive or

small projects with minimum risks.

The advantages of the Big Bang Model are as follows −

 This is a very simple model

 Little or no planning required

 Easy to manage

 Very few resources required

 Gives flexibility to developers

 It is a good learning aid for new comers or students.

The disadvantages of the Big Bang Model are as follows −

 Very High risk and uncertainty.

 Not a good model for complex and object-oriented

projects.

 Poor model for long and ongoing projects.

 Can turn out to be very expensive if requirements are

misunderstood.

F. Rapid Application Development (RAD) Model

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 158

RAD is a linear sequential software development

process model that emphasizes a concise development cycle

using an element based construction approach. If the

requirements are well understood and described, and the

project scope is a constraint, the RAD process enables a

development team to create a fully functional system within a

concise time period.

Fig 7. RAD Model

The various phases of RAD are as follows:

 Business Modelling: The information flow among

business functions is defined by answering questions like

what data drives the business process, what data is

generated, who generates it, where does the information

go, who process it and so on.

 Data Modelling: The data collected from business

modeling is refined into a set of data objects (entities)

that are needed to support the business. The attributes

(character of each entity) are identified, and the relation

between these data objects (entities) is defined.

 Process Modelling: The information object defined in the

data modeling phase are transformed to achieve the data

flow necessary to implement a business function.

Processing descriptions are created for adding,

modifying, deleting, or retrieving a data object.

 Application Generation: Automated tools are used to

facilitate construction of the software; even they use the

4th GL techniques.

 Testing & Turnover: Many of the programming

components have already been tested since RAD

emphasis reuse. This reduces the overall testing time. But

the new part must be tested, and all interfaces must be

fully exercised.

RAD Model – Application:

RAD model can be applied successfully to the projects in

which clear modularization is possible. If the project cannot

be broken into modules, RAD may fail.

The following pointers describe the typical scenarios where

RAD can be used −

 RAD should be used only when a system can be

modularized to be delivered in an incremental

manner.

 It should be used if there is a high availability of

designers for modeling.

 It should be used only if the budget permits use of

automated code generating tools.

 RAD SDLC model should be chosen only if domain

experts are available with relevant business

knowledge.

 Should be used where the requirements change

during the project and working prototypes are to be

presented to customer in small iterations of 2-3

months.

RAD Model – Analysis:

RAD model enables rapid delivery as it reduces the overall

development time due to the reusability of the components

and parallel development. RAD works well only if high

skilled engineers are available and the customer is also

committed to achieve the targeted prototype in the given time

frame. If there is commitment lacking on either side the

model may fail.

The advantages of the RAD Model are as follows −

 Changing requirements can be accommodated.

 Progress can be measured.

 Iteration time can be short with use of powerful RAD

tools.

 Productivity with fewer people in a short time.

 Reduced development time.

 Increases reusability of components.

 Quick initial reviews occur.

 Encourages customer feedback.

 Integration from very beginning solves a lot of

integration issues.

The disadvantages of the RAD Model are as follows −

 Dependency on technically strong team members for

identifying business requirements.

 Only system that can be modularized can be built

using RAD.

 Requires highly skilled developers/designers.

 High dependency on modeling skills.

 Inapplicable to cheaper projects as cost of modeling

and automated code generation is very high.

 Management complexity is more.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 159

 Suitable for systems that are component based and

scalable.

 Requires user involvement throughout the life cycle.

 Suitable for project requiring shorter development

times.

G. Agile Model

The meaning of Agile is swift or versatile. “Agile

process model" refers to a software development approach

based on iterative development. Agile methods break tasks

into smaller iterations, or parts do not directly involve long

term planning. The project scope and requirements are laid

down at the beginning of the development process. Plans

regarding the number of iterations, the duration and the scope

of each iteration are clearly defined in advance.

Here is a graphical illustration of the Agile Model –

Fig 8. Agile Model

The phases in the Agile Model are as follows:

 Requirements gathering: In this phase, you must define

the requirements. You should explain business

opportunities and plan the time and effort needed to build

the project. Based on this information, you can evaluate

technical and economic feasibility.

 Design the requirements: When you have identified the

project, work with stakeholders to define requirements.

You can use the user flow diagram or the high-level

UML diagram to show the work of new features and

show how it will apply to your existing system.

 Construction/ iteration: When the team defines the

requirements, the work begins. Designers and developers

start working on their project, which aims to deploy a

working product. The product will undergo various

stages of improvement, so it includes simple, minimal

functionality.

 Testing: In this phase, the Quality Assurance team

examines the product's performance and looks for the

bug.

 Deployment: In this phase, the team issues a product for

the user's work environment.

 Feedback: After releasing the product, the last step is

feedback. In this, the team receives feedback about the

product and works through the feedback.

Agile Testing Methods:

 Scrum

 Crystal

 Dynamic Software Development Method(DSDM)

 Feature Driven Development(FDD)

 Lean Software Development

 eXtreme Programming(XP)

When to use the Agile Model?

 When frequent changes are required.

 When a highly qualified and experienced team is

available.

 When a customer is ready to have a meeting with a

software team all the time.

 When project size is small.

Agile Model – Analysis:

Agile methods are being widely accepted in the software

world recently. However, this method may not always be

suitable for all products. Here are some pros and cons of the

agile model.

The advantages of the Agile Model are as follows −

 It is a very realistic approach to software

development.

 Promotes teamwork and cross training.

 Functionality can be developed rapidly and

demonstrated.

 Resource requirements are minimum.

 Suitable for fixed or changing requirements

 Delivers early partial working solutions.

 Good model for environments that change steadily.

 Minimal rules, documentation easily employed.

 Enables concurrent development and delivery within

an overall planned context.

 Little or no planning required.

 Easy to manage.

 Gives flexibility to developers.

The disadvantages of the Agile Model are as follows −

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 160

 Not suitable for handling complex dependencies.

 More risk of sustainability, maintainability and

extensibility.

 An overall plan, an agile leader and agile PM

practice is a must without which it will not work.

 Strict delivery management dictates the scope,

functionality to be delivered, and adjustments to

meet the deadlines.

 Depends heavily on customer interaction, so if

customer is not clear, team can be driven in the

wrong direction.

 There is a very high individual dependency, since

there is minimum documentation generated.

 Transfer of technology to new team members may be

quite challenging due to lack of documentation.

IV. COMPARATIVE ANALYSIS

Waterfall Model is easy to manage due to the rigidity

of the model as each phase has specific deliverables and a

review process. It works well for smaller projects where

requirements are very well understood.

V-shaped Model has higher chance of success over

the waterfall model due to the development of test plans

during the life cycle. It works well for small projects where

requirements are easily understood.

Iterative model is at the heart of a cyclic software

development process. It starts with an initial planning and

ends with deployment with the cyclic interactions in between.

Easier to test and debug during a smaller iteration. Easier to

manage risk because risky pieces are identified and handled

during its iteration.

Spiral model is good for large and mission-critical

projects where high amount of risk analysis is required like

launching of satellites.

In contrast to traditional SDLC, the Agile SDLC

avoids ‘up-front’ requirement gathering as stakeholders often

could not provide all requirements in sufficient details for

implementation to occur at the beginning of a project.

It can be conferred that Agile SDLC excels

traditional SDLC.

TABLE 1: Comparison of Agile and Traditional Approaches:

 Agile Traditional

User

Requirement

Iterative

acquisition

Detailed user

requirements are well-

defined before

coding/implementation

Rework cost Low High

Development

direction

Readily

changeable
Fixed

Testing
On every

iteration

After coding phase

completed

Customer

involvement
High Low

Extra quality

required

for

developers

Interpersonal

skills &

basic

business

knowledge

Nothing in particular

Suitable

Project scale

low to

medium-

scaled

Large-scaled

One major difference between agile development

and conventional development methods is that the former

methodology possesses the ability to successfully deliver

result quickly and inexpensively on complex projects with ill-

defined requirements. Agile methods emphasize on teams,

working software, customer collaboration, and responding to

change; while the conventional methods stress on contracts,

plans, processes, documents, and tools.

Agile development methods take business Return of

Investment (ROI) as its utmost priority. In traditional

development life cycle, the development teams usually hold a

meeting with the stakeholders and obtain every detailed

requirement during early phases of development process.

Then the development teams would start the design phase,

followed by the actual coding phase. The testing phase will

only start when the entire coding process is completed. Then

only will the end-product be presented to stakeholders after

there is no issue arises in the testing phase. The shortcoming

of this traditional methodology is that the development teams

build the system in “one-shot” fashion. Assume that an issue

arises during the testing phase; the worst case scenario would

be the entire module would have to be reverted to rectify the

issue. Another problem with the traditional SDLC is that in

most cases, stakeholders will not know what they really want

to implement in the system, therefore the requirement model

engineered at the earlier phases might not necessarily be the

actual features that need to be implemented. Users’ or

stakeholders’ change requests might flow in after the end-

product is presented and released on the market. This would

further speed up the deterioration of the software as multiple

change requests from different parties that implemented into

the system would cause various compatibility and software

integrity issues. These problems are even more apparent in

larger system. Hence, from a business perspective, the

traditional SDLC is not an adequately efficient methodology.

In contrast to traditional SDLC, the Agile SDLC

avoids ‘up-front’ requirement gathering as stakeholders often

could not provide all requirements in sufficient details for

implementation to occur at the beginning of a project. It is a

common phenomenon that customers could not decide the

features to be included in the system. Therefore, the frequent

demonstration and release of software in common agile

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 161

practices allow customers to acquire sufficient details on the

current release of the system upon actual interaction with

system and thus providing feedback to refine the requirements

provided earlier before the current release. The iterative

approach in agile practices also allows customers to delay

decisions, where decisions may be delayed to some future

iteration when better information or technology is available to

optimize the choice. It is also the one of the advantages that

agile SDLC triumphs traditional SDLC by the fact that in

agile SDLC, development can begin even before all the

requirements are known.

Taking the fact that customers’ requirements are

acquired iteratively as context, agile development is able to

deliver an end-product that better meets customer needs. For

every short run of iteration, completed modules are presented

to customers for review. These modules are by no means

integrated as a full system and thus any rework or additional

features would not marginally increase the development cost.

Taking this advantage developers are always ready to include

any features that customer desire, and the system integration

will only occur when customers have no further additional

requirements. Apparently, this approach could greatly satisfy

customers with a complete system containing all desired

functions.

It is also highly possible for stakeholders to

maximize their business return on investment by practicing

agile methods in system development. The direction of the

development is always readily changeable and the cost of

change is low, as the stakeholders are given the opportunity to

revise the business factors at the beginning of each iteration to

include additional features into the system according to

business ROI. However, it is also the responsibilities of the

development team to inform the stakeholders of the technical

risk of the change. This attribute of agile methodology is

known as modular and lean which allows mobility of

particular features or components in the system or process

depending on specific needs of stakeholders.

Although agile methodologies triumph traditional

methodologies in many aspects, there exist several difficulties

in putting it into practice. One among these is that agile

methods significantly reduce the amount of documentation,

and even claim that the code itself should act as a document.

This causes developers who are accustomed to agile methods

have a tendency to place more comments in the code as

explanation and clarification. However, it is difficult for

novice developers or new team members to complete tasks

when they could not adequately comprehend the project. They

thus pose numerous questions for the experienced developers

and this could cause the delivery of iteration to be delayed,

which in turn may cause an increase in development cost.

Traditional methods on the other hand, stress on the

importance of documentation in providing guidelines and

clarification on the project for development team, thus has no

relevant concern of developers not being knowledgeable of

the project detail or the availability of a knowledgeable

developer.

Agile methodologies are well-known for

emphasizing in communication and customer involvement.

For every deliverable iteration, the development team and

customers will hold a meeting, where the team members will

communicate and summarize their work done in this iteration;

whereas customers will provide feedback on the delivered

software to refine current features or include additional

features in the system. Most of the time, developers will find

the regular meetings, mostly on weekly basis, are tedious and

tiring as they would have to present to other members and

customers of their responsible modules repeatedly, and upon

each iteration, various changes to the modules will most likely

to happen due to change in requirements. Furthermore, the

time frame allocated for each iteration is typically short,

which usually in the range of weeks.

Developers would often find that the schedule is

tight for them to develop each of the modules, this is even

more so if the particular module involves complicated

processing algorithms. This draws the delivery of each

iteration behind the schedule and thus an efficient

communication between the team members and with the

customers could not be established. On the other hand,

traditional methodologies have a well-defined requirement

model before the implementation and coding process starts, in

which this model would act as a reference for development

team during the coding process. Customers are not likely to

participate in this phase of development life cycle, while

development team will do the coding according to the

documentation provided by business analysts until the entire

system is completed and integrated, then only will the

integrated system be presented to customers as end-product.

In this case, developers will not have to concern about the

frequent iteration meetings and could be allowed a wider time

frame to complete the system, thus allowing them to provide a

better result.

As mentioned previously, agile development focuses

on communication and customer involvement, in which by

this premise it implies that interpersonal and social skills are

crucial for the entire development team so that during each

iteration, the completed modules can be efficiently delivered

to customers and enlighten them of the current progress of the

development and, if there is any, issues that developers

encountered during implementation and coding phase. It is

also important for the development team to be fully

understand about the requirements and changes proposed by

customers, where this ultimately require effective

communication skills. It is however, not every developer

would possess good social skills. Whenever a developer

within the team has poor social skill, relevant parties will

have difficulties obtaining information on the particular

module progress, where this in turn causes customers to be

unable to provide accurate requirement for subsequent

iteration. While developers could not understand what exactly

is required by customers, it is very likely that the completed

module contains unwanted features. Thus this further

increases the cost of development by reworking the module,

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 2, Mar-Apr 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 162

and the increased reliance on social skills of developers would

increases the instability of the development process.

The fact that agile development open to incremental

requirement changes has gave rise to two dependency issues

in design, which are namely rigidity and mobility. Rigidity

refers to a change in the system implies a cascade of changes

in other modules; while mobility refers to inability of the

system to encapsulate components that can be reused, because

it implies too much effort or risk. If these issues are all over

the system, high-level restructuring is required to remove

unwanted dependencies. One immediate consequence of these

dependency issues is the violation of the Interface Segregation

Principle, explaining most of the difficulties in the

deployment stage

V. CONCLUSION

Software Development Life Cycle is a methodology

that depicts the entire development process, in which a

software development organization ought to utilize to ensure a

successful software development. While modern SDLC are

divided into two main categories, which are traditional SDLC

and agile SDLC.

As discussed earlier, agile SDLC excels traditional

SDLC. However, agile SDLC also has its disadvantages.

While agile SDLC is more suitable for small-medium project

development, it is still better to adopt traditional SDLC for

large-scale project. Therefore, it is important that

development team select a SDLC that best suits the project.

There are some criteria that development team could

use to identify the desired SDLC, these include size of team,

geographical situation, size and complexity of software, type

of project, business strategy, engineering capability, and

others where it may be found appropriate. It is also crucial for

the team to study the differences, advantages, and

disadvantages of each SDLC before hammer down the

decision. In addition, the team must study the business

context, industry requirements, and business strategy to be

able to assess the candidate SDLC against the selection

criteria.

A SDLC selection and adoption process is crucial

that it ensures the organization to maximize their chance to

deliver their software successfully, therefore selecting and

adopting the right SDLC is a management decision with long

term implications.

REFERENCES

[1] Ian Sommerville, "Software Engineering", Addison

Wesley, 7th edition, 2004.

[2] Steve Easterbrook, "Software Lifecycles", University

of Toronto Department of Computer Science, 2001.

[3] National Instruments Corporation, "Lifecycle

Models", 2006 , http://zone.ni.com.

[4] JJ Kuhl, "Project Lifecycle Models: How They Differ

and When to Use Them",2002 www.business-

esolutions.com.

[5] Karlm, "Software Lifecycle Models', KTH,2006 .

[6] Rlewallen, "Software Development Life Cycle

Models", 2005, http://codebeter.com.

[7] Barry Boehm, "Spiral Development: Experience,

Principles, and Refinements", edited by Wilfred J.

Hansen, 2000.

[8] Wysocki R. K., McGary R., Effective Project

Management, Third Edition, John Wiley & Sons ©

2003

[9] Szalvay, Victor. An Introduction to Agile Software

Development. Danube Technologies Inc. 2004.

[10] Systems Development Lifecycle: Objectives and

Requirements. Bender RPT Inc. 2003.

[11] Dyba, Tore. Empirical studies of agile software

development: A systematic review. 24 January 2008.

[12] Peterson, Kai. A Comparison of Issues and

Advantages in Agile and Incremental Development

between State of the Art and an Industrial

 Case. Journal of System and Software. 2009.

[13] Abrahamsson, Pekka. Agile Software Development

Methods: Review and Analysis. Julkaisua-Utgivare-

Publisher 2002.

[14] Rico, David F. What is the ROI of agile vs.

traditional Methods. 2008.

[15] Carayannis, E.G. Agile Project Management for IT

Project. Greenwood Press / Quorum Books. 2002

[16] Cho, Juyun. Issues and Challenges of agile software

development with SCRUM. Issues in Information

System. VOL IX, No. 2. 2008.

http://www.ijcstjournal.org/

