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ABSTRACT 
The objective of this research is to propose a new method for estimating missing data during data analysis, which is based on 

the use of the multi-variable structure of available data by maximizing the value of the vector correlation coefficient expressed 

by a vector-based on all available data, and then demonstrating the effectiveness of the method by comparing results to the 

results of the previous studies. 
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I.   INTRODUCTION 
 

In a multi-variable statistical inference, we often 

encounter missing data, where missing data is: not 

responding to some items, data entry errors, or a lack of 

understanding of what the answer is. 

This missing data is a problem of analysis or inference, 

some statisticians find different solutions to this problem, 

the most important of which are: the removal of forms or 

individuals from the database, the deletion of the variable 

with the greatest loss, or other statistical techniques. 

 

II.    SOME STATISTICAL TECHNIQUES       

FOR PROCESSING MISSING DATA: 

First, the statisticians have to determine precisely the nature 

of this missing data whether it is for individual or variable, 

to determine whether there is independence between not 

answering the variable or the individual responding, that is, 

we want to distinguish between the complete loss of data or 

the loss by chances because the statistical processing varies 

by the nature of the estimate, we see that in (Simon et 

Simonoff 1986, Little 1988, Little and Rubin 2002, Dauide. 

Hawell 2007, Christyn E. Tannenbaum 2009) 

That means that we distinguish  between two types of 

unresponsive: 

 

1-Full nonresponse: 

This means that the individual has not responded to any 

paragraph of the test, which often occurs when an individual 

does not exist or refuses to participate for fear or not to 

appear because of age and health. 

 

 

 

 

 

 

 

 

2-failure to respond to the paragraph: 

the individual responded to some paragraphs and left some 

of them unresponsive, so we have some responsive partial 

data and missing partial data, which means that the 

individual is involved but does not respond to some 

paragraphs. 

We have to choose between two approaches: 

 

The basic procedure for this method is one of the 

following methods: 

a) Based on the arithmetic mean: missing values are 

replaced by the arithmetic mean of data (Bemaards 

and Sijtsma 2000, Banyawwad 2011). 

b) Based on simple or multiple regression: so, after we 

find the regression, we predict the value of missing 

data (Seber 1984, Little 2002, and Banyawwad 

2011). 

c) By modeling: Data is modeled by the normal 

distribution rules (Srivastava 1985, Little and 

Rubin 2002). 

d) Based on factor analysis (Kamakura and Wedel 

2000). 

 

III.      PREVIOUS STUDIES: 

When you go back to previous studies of the missing data 

problem, the first one to look at this problem is (Hancen and 

Horwitz 1946), then Frane (1976) suggested some solutions 

of a practiced research nature, returning to non-responsive 

individuals and changing the requirements for data 

collection, the little (2002) suggested a way of predicting 

linear regression. 

And Rubin (2002) replaced the missing data with an M 

value where (M>1) by creating an M table, and through 

these tables, an M estimate is created, and then estimates are 

analyzed and their impact is calculated on the missing data. 
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In( 2006), Allison did a study aimed at figuring out the 

effect of using different compensatory value calculation 

methods to address the missing data on the metadata, 

applying the entire random loss mechanism (MCAR) and 

the random loss mechanism (MAR). 

Frinch (2008) did a study that was aimed at showing the 

efficiency of the different methods of treating the missing 

data to estimate paragraph parameters in the paragraph 

response theory. 

In this article, we will present a new estimation technique 

for missing data: it uses the multivariate structure of the data 

and is based on the maximization of the RV coefficient 

introduced by Escoufier in 1973. The definition and 

properties of the RV and the new estimation method shall be 

considered, and then we will compare on a sample basis the 

main methods of imputation with the RV method to using 

two criteria defined by Gleason and Staelin in 1975. 

Probably the most commonly used method is the Buck 

method, which assigns to the missing value the prediction 

provided by regression of this variable on the other 

variables. It can be shown to be equivalent to estimating the 

missing data by the value that minimizes the distance of 

Mahalanobis between the individual vector containing the 

missing data and the mean vector.  

This minimization of The function of a vector standard gave 

us the idea of minimizing a function of a matrix standard to 

place itself in a general multivariate context. 

 

IV.      VECTOR CORRELATION 

COEFFICIENT: 

Let’s have 

(1)

(2)

X
X

X

 
=  
 

 is a random vector so it is: 

(1)X : is a vector ( 1)p   

(2)X : is a vector ( 1)q   

Splitting the vector X into two parts is done naturally for 

example (Males, Females) (works, does not work) or any 

other special that divides it into two parts. 

Where: 
(1)

(2)
( )E X






 
= =  

   is the mean  

11 12\

21 22

( )( )E X X
 

  
 

 
= − − =  

 
 is covariance 

matrix. 

We define the vector correlation coefficient V : 

 

(1) (2) 12 21

2 2

11 22

cov( )
( , )

cov( )cov( )
V V X X

 
 

 
= =    

(Escoufier, 1973). 

 

 

V.     BASIC PROPERTIES OF THE 

VECTOR CORRELATION 

COEFFICIENT: 

1) If we have 1p q= =  then 
2V =  so, it is the 

simple linear correlation squared. 

2) If we have 0 1V   then: 

a) 0V =  if and only if 12 0 =  

b) If (2) (1)X AX b= +  then 1V =  

Where A is a matrix (p*q) so that A A KI =  

where (K) a positive number. 

c) 
(1) (2) (1) (2)( , ) ( , )......(*)V AX X V X X =

 

If we have a sample 1 2, ,..., nX X X , we’ll define the 

sample vector correlation coefficient by within (*) replacing 

coefficients. 

With normal estimates in (*) in order to get:  

(1) (2) 12 21

2 2

11 22

cov( )
( , )

cov( )cov( )

s s
RV RV X X

s s
= =

   
 

Where   ( )( )( ) ( )
( ) ( )1

1

i j
i j

ijs X X X X
n

  


= − −

−
  

, 1,2i j =  

 
( ) ( )

,
i j

X X : is a vector mean for both (i) and (j) values 

calculated from values 
( ) ( ),i jX X   where (1 )n  . 

We define the matrix 1Y : 

( )(1) (1) (1)
(1) (1) (1)

1 1 2, ,......, :nY X X X X X X p n= − − − 

 

( )(2) (2) (2)
(2) (2) (2)

2 1 2, ,......, :nY X X X X X X q n= − − − 

 

Using Norm E where covE E E=  

We get 
(1) (2)

1 2( , ) 1 ( , )dist Y Y RV X X= −  

1 1 2 2
1 2

2 2

1 1 2 2

( , )

cov( ) cov( )

Y Y Y Y
dist Y Y

Y Y Y Y

 
= −

 
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VI.    THE METHOD IT DEPENDS ON RV : 

Let’shave 
(1) (1) (1)

11 2

1 2 (2) (2) (2)
21 2

, ,....,
( , ,..., )

, ,....,

n

n

n

YX X X
X X X X

YX X X

   
= = =   

  
 

Is a data matrix formed by a vector of individuals of 

dimensions (n). 

Now we are going to assume that part of the first set of a 

variable for the vector nX  contain missing data, we are 

going to call this unknown vector ( )x , then we get 

( , , )nX x y z   =  where y   is the full part of the first 

set of variables. 

The suggested method is to replace ( )x  with a vector that 

reduces distance 1 2( , )dist Y Y , which means reducing 

distance 
(1) (2)( , )RV X X  

1 11

2 1
( )( )

1
n nn n n n

n
S S X X X X

n n
− −−

−
= + − −

−
 

Let’s have: 1

1
( )nn

u

v X X
n

w

−

 
 

= −
 
 
 
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So: 

11 12 13

21 22 23

31 32 33

n

A A A uu uv uw

A A A vu vv vw
S

A A A wu wv ww

     
     
   = +

     
   
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11 12

11

21 22

A uu A uv
S

A vu A vv

 + + 
=   + + 

 

13

12

23

A uw
S

A vw

+ 
=  + 

 

22 33S A ww = +  

Since 
(1) (2)( , )RV X X  depends on unknown ( )x , we 

can rely on ( )u  writing: 

31

2

11 21

2
( )

( ) 2 ( ) 4

w A u w wu u
RV u

u u u A Iv v u v A u



 

  + +
=

   + + + +

 

( )( ) 13 31 23 32cov A A A uw A wv  = + + +  

13 31 32 23 32cov( 2 )A A A A w A v w wuu  = + + +  

( ) ( )( )22 2

11 12 21 22 22cov 2 2A A A A v A v v v  = + + + +  

( )  ( ) ( ) 2 22

33 33 33cov cov 2A ww A w A w w w   = + = + +

Example: 

We are going to show the method through an example (5 

individuals and 4 variables). 

We will use a structure of 2Y  to estimate the missing data in 

the last individual. 

1 4 6 5

3 4 3 1 1

1 4 8 5 7

5 6 5 3 1

X

 
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− =
 
 
 

 

In this case: 
2

4 2 4

4.062 11.739 41.563

9.076 12 625 3.35 28.752
u

u u
RV

u u u

+ +
=

+ − + +
 

Where 
( 4)

5

x
u

−
=  

max

max

max

0.9257

6.07

0.935

u

x

RV

=

=

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 results of the example 

 

VII. NOTES: 
1- If individual vectors have missing data, each 

incomplete vector is treated separately and 

sequentially with the complete n r−  vector. 

2- If the separation of the data into two groups of 

variables is not imposed by the context, a 
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separation may be chosen so that the missing data 

appear only in the first group and possibly even so 

that the entire missing vector represents the first 

group. The formulas are simplified. 

11 13

31 33

n

A uu A uw
S

A wu A ww

 + + 
=   + + 

 

31
( )

2

11

2

( ) 2 ( )
u

w A u w wu u
RV

u u u A u



 

  + +
=

 + +
 

With: 13 31cov( )A A =   ,
2

11cov( )A =  

And: 
2 2

33 33cov( ) 2 ( )A w A w w w  = + +  

If on other hand, separation is imposed a prior and 

unfortunately data is missing in both sets of variables, the 

principle of maximizing RV is still applicable. Only the 

expression of the RV in relation to missing parts is more 

complicated. 

In the particular case of bivariate data 

1 1 2( 1 ( , ))np q andX c c−= = =  , ( )RV u becomes: 

2

13

2 2

33 11

( )
( )

( )( )

wu A
RV u

w A u A

+
=

+ +
 

And by the property (a) of v  is equal to the square of the 

simple correlation. 

The maximization of this function provides the estimates. 

11
1 3

13

( )
A

x c z c
A

= + −  

Whereas Buck’s method estimates by: 

13
1 3

33

( )
A

x c z c
A

= + −  

RV method therefore uses the regression of z on x and 

Buck’s method of x on z. 

Properties (b) and (c) make it possible to ensure the 

invariance of the RV method for orthogonal 

transformations. 

 

VIII.     EXAMPLE AND COMPARISON: 

We will deal with the “Heads” data collected by Frets and 

processed in the book by Mardia, Kent, and Bibby (1979). 

They form an x data matrix of 25 individuals and 4 variables 

(2 groups of 2 variables each). 

We randomly decree 4 missing values: 

(23,1)X  , (24,2)X  , (25,1)X  and (25,2)  

For the direct estimation approach of missing data, we 

compare the RV method with four methods each using as 

much information as possible. The first method estimates the 

missing data by the mean (MEAN).The next three are based 

on regression: multiple regression mostly variables (REGR), 

simple regression on the most correlated variable (SINGLE), 

and step-by-step regression (STEP). 

For the parameter estimation approach, we will compare the 

estimate of the correlation matrix after the estimates of 

missing values of the previous five methods and that of three 

new methods. 

The first is based on the EM algorithm (ML), the second 

uses all the information available for calculation of the 

correlation matrix (ALLVALUE) and the last takes into 

account only the complete data (COMPLETE). 

After from the RV method, all result was obtained with 

BMDP. 

We can therefore refer to the BMDP manual for a precise 

description in parentheses brackets correspond to BMDP 

terminology. The comparison will be made using two 

criteria defined by Gleason and Staelinen 1975: 

The first Q  represents a distance between the real value 

and imputed value, the second D  represents a distance 

between the real correlation and estimated correlation. 

Direct estimation approach: 

( ) 2

2

( )ij ij

j

X X
Q

np




 

−
=   

Parameter estimation approach: 

( ) 2( )

( 1)

ij ijR R
D

p p





−
=

−
  

In this formulas, p is the number of variables, n the number 

of individuals, π the percentage of missing data, 

. )( ijij resp XR the correlation matrix (resp. Real data), 

) ( )( . )( ijij resp XR 
the correlation matrix (resp. of the data) 

obtained by method α and 
2

j the real variance of variable j. 

The table below makes it possible to make the following 

observations:  

 

1- The RV method gives a good results which can 

be explained by a fairly high RV value on the real 

data ( 0.5998)RV = . 

2- The percentage of missing data in our example is 

low ( 4%) = . Despite this, the Mean method is 

much less efficient than the Buck type methods 

(REGR, SINGLE, STEP). The importance of 

variables being an optimality criterion of Buck type 

methods, their good behavior here is not surprising: 

indeed we have max 0.8392ijR =  and min 

0.6932ijR = . 
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3- Surprisingly, specific methods of parameter 

estimation have a poorer D  than those that 

estimate parameters after imputation. 

Can this be seen as a condemnation of the first approach?? 

4- To see the influence of the hypothesis of random 

distribution of the missing data, we created non-

DMCH data (the data is missing if 1 200X   or 

 2 160X  ). 

The Q  coefficient increases by a factor ranging from 1.2 

to 1.8 compared to the DMCH data but the classification of 

the methods remain identical RV method at the head 

followed by regression type methods than by method based 

on the mean. 

Thus the RV method showed in this example that it 

resisted the violation of this hypothesis better than the other 

methods. 

Processing of other real data confirmed these observations 

and corroborated the good imputation quality of the 

RV method. 

TABLE 1 

Comparison Results 

Method  D  Q  

RV 0.01034 0.73959 

MEAN 0.04280 1.56021 

REGR 0.01043 1.11445 

SINGLE 0.00896 1.21326 

STEP 0.01053 1.12060 

ML 0.01172  

ALLVALUE 0.02398  

COMPLETE 0.02208  

 

IX.      CONCLUSION 

in this research, we introduced a new method to estimate 

missing data by taking advantage of the vector correlation 

coefficient, and we made sure that it's effective by 

comparing it to previous standard methods and studies, 

which in turn helps improve the sample estimates for a 

better representation for the population, which gives us more 

accurate and closer results to reality. 
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