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ABSTRACT 
MapReduce is a programming paradigm and an affiliated Design for processing and making substantial data sets. It operates 

on a large cluster of specialty machines and is extremely scalable Across the past years, MapReduce and Spark have been 

offered to facilitate the job of generating big data programs and utilization. However, the tasks in these structures are roughly 

described and packaged as executable jars externally any functionality being presented or represented. This means that 

extended roles are not natively composable and reusable for consequent improvement. Moreover, it also impedes the 

capacity for employing optimizations on the data stream of job orders and pipelines. In this article, we offer the 

Hierarchically Distributed Data Matrix (HDM), which is a practical, strongly-typed data description for writing composable 

big data appeals. Along with HDM, a runtime composition is presented to verify the performance of HDM applications on 

dispersed infrastructures. Based on the practical data dependency graph of HDM, various optimizations are employed to 

develop the appearance of performing HDM jobs. The empirical outcomes show that our optimizations can deliver increases 

of between 30% to 80% of the Job-Completion-Time for various types of applications when associated with the current state 

of the art, Apache Spark. 
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I.     INTRODUCTION 

Big Data has become a popular term which is used 

to describe the exponential growth and availability of data. 

The growing demand for large-scale data processing and data 

analysis applications spurred the development of novel 

solutions to tackle this challenge. For about a decade, the 

Map Reduce framework has represented the defacto standard 

of big data technologies and has been widely utilized as a 

popular mechanism to harness the power of large clusters of 

computers. In general, the fundamental principle of the Map 

Reduce framework is to move analysis to the data, rather than 

moving the data to a system that can analyze it. It allows 

programmers data centric fashion transformations data details 

of distributed execution and fault tolerance by the framework 

[1]. However, in recent years, with the increasing 

applications’ requirements in the data analytics domain, 

various limitations of the Hadoop framework have been 

recognized and thus we have witnessed with new constituted 

wave of mostly domain-specific, optimized big data 

processing platforms. In recent years, several frameworks 

(e.g. Spark, Flink, Pregel, Storm) have been presented to 

tackle the ever larger datasets on using distributed clusters of 

commodity machines. However, in reality, many real-world 

scenarios require pipelining and integration of multiple big 

data jobs. There are more challenges when applying big data 

technology in practice [2]. However, in current big data 

platform such as Map Reduce and Spark, there is no proper 

way to share and expose a deployed and well-tuned online 

component to other developers. Therefore, there is massive 

and even unseen redundant development in big data 

applications. In addition, as the pipeline evolves, each of  

 

 

 

the online components might be updated and re-developed, 

new components can also be added in the pipeline [3]. As a 

result, it is very hard to track and check the effects during the 

evolving process. Google’s recent report shows the 

challenges and problems that they have encountered in 

managing and evolving large scale data analytic applications. 

Furthermore, as the pipeline become more and more 

complicated, it is almost impossible to manually optimize the 

performance for each component not mentioning the whole 

pipeline. To address the auto optimization problem, Tez and 

Flume-Java were introduced to optimize the DAG of Map 

Reduce-based jobs while Spark relies on Catalyst to optimize 

the execution plan of Spark-SQL. To sum up, the main 

challenges for current complicated analytic applications can 

be listed below: Many real-world applications require a chain 

of operations or even a pipeline of data processing programs. 

Optimizing a complicated job is difficult and optimizing 

pipelined ones are even harder [4]. 

 

A. Research Challenges  

1. Additionally, manual optimizations are time-

consuming and error prone and it is almost 

impossible to manually optimize every program. 

Integration, composition and interaction with big 

data programs/jobs are not natively supported: Many 

practical data analytics and machine learning 

algorithms require combination of multiple 

processing components each of which is responsible 

for a certain analytical functionality. 
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2. A key limitation for existing frameworks such as 

Map Reduce and Spark is that jobs are roughly 

defined and packaged as binary jars and executed as 

black-boxes without exposing any information about 

the functionalities. As a result of this, deployed jobs 

are not natively composable and reusable for 

subsequent development and integration. 

3. Additionally, manual optimizations are time-

consuming and error prone and it is almost 

impossible to manually optimize every program. 

Integration, composition and interaction with big 

data programs/jobs are not natively supported: Many 

practical data analytics and machine learning 

algorithms require combination of multiple 

processing components each of which is responsible 

for a certain analytical functionality. 

4. A key limitation for existing frameworks such as 

Map Reduce and Spark is that jobs are roughly 

defined and packaged as binary jars and executed as 

black-boxes without exposing any information about 

the functionalities. As a result of this, deployed jobs 

are not natively Composable and reusable for 

subsequent development and integration. 

5. Maintenance and management of evolving big data 

applications are complex and tedious. In a realistic 

data analytic process, data scientists need to explore 

the datasets and tune the algorithms back and force 

to find out a more optimal solution. 

In order to tackle the above challenges, we believe 

that by improving the basic data and task models, these 

problems could be addressed to a great extent at the big data 

execution engine level. In particular, we present the 

Hierarchically Distributed Data Matrix (HDM) along with the 

system implementation to support the writing and execution 

of Composable and integrable big data applications [5, 6]. 

HDM is a light-weight, functional and strongly-typed meta-

data abstraction which contains complete information (such 

as data format, locations, dependencies and functions 

between input and output) to support parallel execution of 

data driven applications. Exploiting the functional nature of 

HDM enables deployed applications of HDM to be natively 

integrable and reusable by other programs and applications. 

The execution graph and functional semantics of multiple 

optimizations are automatically improving the execution 

performance of HDM data flows. Moreover, by drawing on 

the comprehensive information maintained by HDM graphs, 

the runtime execution engine of HDM is also able to provide 

provenance and history management for submitted 

applications [7, 8]. 

 

B. Objective of the Research  

The frameworks such as Map Reduce and Spark 

have been introduced to developing big data programs and 

applications. However the jobs in these frameworks are 

roughly defined and packaged as executable jars without any 

functionality being exposed or described. Deployed jobs are 

Composable and reusable for subsequent development. The 

ability optimizations on the data flow of job sequences and 

pipelines. We present the Hierarchically Distributed Data 

Matrix which is a functional, strongly typed data 

representation for writing Composable big data applications.  

Frameworks provided an execution and integration and 

management of HDM applications on distributed 

infrastructures. Based on the functional data dependency 

graph of HDM multiple optimizations are applied to improve 

the performance of executing HDM jobs. 

II.     BACKGROUND  

A. Big data processing frameworks  

Several frameworks have been developed to provide 

processing systems for large distributed records. MapReduce 

is a large and widely used model for processing records and 

has been a pioneer in this field. It uses major cost pairs 

because simple statistics are coordinated during processing. 

Map and Reduce are primitive and can be inherited from 

practical programming [9]. In terms of overall performance, 

Hadoop / Map-Reduce functions are not guaranteed to be fast. 

All intermediate records during execution are written to a 

dedicated garage to allow repair of accidents. This is a change 

that sacrifices efficient use of memories and the 

neighborhood garage. The Map-Reduce window is usually 

not effective for instant and small functions where you may 

remember the facts [10]. Spark uses memories because 

important data is stored during execution. Therefore, it can 

offer much higher performance, compared to the functions 

running in MapReduce. Spark's basic programming 

abstraction is called Flexible Distributed Data Sets (RDDs), 

which are a logical grouping for dividing statistics between 

machines. In addition, programs in Spark are divided as 

DAGs mainly on Stage which can be separated with the help 

of shuffle dependencies. In the activity rationalization process, 

Spark also combines parallel processes into a single task, 

where the experiment also achieves the same improved 

feature integration as it did during HDM. However, similarly, 

record chain improvements are not provided along with 

reordering and rewriting within the Spark processing engine 

[11].  

 

B. Attributes of HDM  

Basically, HDM is represented as HDM [T, R], 

where T and R, are two facts to enter and exit, respectively. 

The HDM itself represents a function that transforms 

statistics Input to the output in addition to those basic features, 

HDM addition Includes information such as statistical units, 

neighborhood, and distribution to guide improvement and 

implementation. HDM supports the following simple 

functions: Functional: HDM is largely an illustration based of 
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the function that calculates the output Some HDM account 

input is approx. Evaluate the property contained in the 

income dataset. While calculating HDM, Appearance results 

are not attributed. Strongly written: HDM consists of at least 

clear facts Types and input type and output type, which can 

be drawn of input and output formats based mainly closed 

function. They are necessary to ensure compatibility of types 

of information [12]. Portable: HDM is a neutral component 

containing Complete Facts for a Computer Project. And so on, 

in principle, HDMis removable and can be moved to any 

node within the context of the executable HDM. Site aware: 

HDMs consist of facts Proximity (represented by rich URL) 

of entries and exits. Although some information about the 

place is better available during runtime, it facilitates 

application optimization for simultaneous information sites 

around Develop level plans [13].  

 

C. Optimizations for Big Data Applications  

Flume-Java It’s a Java library that Google recently 

delivered. Designed in Map-Reduce, it offers better stage 

setup and a host of improvements to higher implementation 

plans. The overall performance advantages of these enhanced 

plans are manually enhanced Map-Reduce functions, but 

Flume-Java has freed programmers from the refined 

optimization method and is often boring. Tez is a graphics-

based optimizer that can significantly improve Map-Reduce's 

work written in Pig and Hive [14]. Basically, Tez simplifies 

Map-Reduce tubes by combining a pair of specific distillation 

devices and redundant reducers. It also instantly links the 

results of previous work to subsequent work, which reduces 

the rate of writing the metadata in HDFS, and thus, can 

improve the overall performance of the work performed. 

Apache MRQL6 is a framework delivered as a framework for 

improving query performance and processing for extensive 

and distributed information analysis, and is based on Apache 

Hadoop, Spark, Hama and Flink [15]. Specifically, it offers a 

query language similar to SQL that can be devalued in neutral 

modes: Map-Reduce mode using Apache Hadoop, Spark 

mode with Apache Spark, BSP mode, Use Apache Hama and 

Flink mode with Apache Flink. The rest of the article is 

organized as follows. The third section describes related work 

and the subsequent section explains the proposed 

methodology adopted. The fifth section outlines the 

experimental outcomes and discussions while, the conclusion 

is given in the last section. 

III. RELATED WORKS 

 

Apache Tez has been fortunate to learn from the 

development and experiences of similar systems such as 

Dryad, Hyracks and Nephele. All of them share the concept 

of modeling data processing as DAGs with vertices 

representing application logic and edges or channels 

representing data transfer [16]. Tez makes this more fine-

grained by adding the concepts of inputs, processor and 

outputs to formally define the tasks executing the DAGs, 

leading to clear separation of concerns and allowing 

pluggable task composition. All of them participate to varied 

extents in the data plane and define some form of data format, 

which allows applications to define custom formats that 

derive from the base definition. All of them define on-disk, 

over-network and in-memory communication channels [17]. 

Tez, on the other hand, does not define any data format and is 

not part of the data plane at all. On a similar note, Hyracks 

defines an operator model for execution that allows it to 

understand the data flow better for scheduling. Tez treats 

processors as black boxes so that the application logic can be 

completely decoupled from the framework. Nephele is 

optimized for cloud environments where it can elastically 

increase or decrease resources and choose appropriate virtual 

machines. Tez also enables resource elasticity by acquiring 

and releasing resources in YARN [18].  

Dryad and Tez share the concept of vertex managers 

for dynamic graph re-configurations. Tez takes this concept a 

step further by formalizing an API that allows the managers 

to be written without knowing the internals of the framework 

and also defining an event based communication mechanism 

that enables application code in tasks to communicate with 

application code in vertex managers in order to actuate the re-

configurations [19]. In addition, Tez adds the concept of input 

initializers to formally model primary data sources and apply 

runtime optimizations while reading them. Dryad schedules 

tasks when all the inputs of the tasks are ready to be 

consumed, to prevent scheduling deadlocks. Tez allows out 

of order execution for performance reasons and has built-in 

preemption to resolve scheduling deadlocks. Overall, Tez 

differs from these systems in its modeling capabilities and the 

design goal of being a library to build engines rather than 

being an engine by itself. MapReduce is, of course, the 

incumbent engine in the Hadoop ecosystem [20].  

 

Tez subsumes the MapReduce APIs such that it is 

possible to write a fully functional MapReduce application 

using Tez. Dremel [21] is a processing framework for 

interactive analysis of large data sets based on multi-level 

execution trees that is optimized for aggregation queries and 

has motivated systems like Presto and Apache Drill [22]. 

These, and other SQL query engines like Impala or Apache 

Tajo [23], differ from Tez by being engines optimized for 

specific processing domains whereas Tez is a library to build 

data processing applications. Spark is a new general purpose 

data processing engine. It exposes a Resilient Distributed 

Dataset (RDD) based computation model that eventually gets 

executed on an in-memory storage and compute engine [24]. 

Tez, again differs being a library and not a general purpose 

engine. Tez does not provide any storage service but 

applications can use existing inmemory stores, e.g. HDFS 

memory storage, to get the advantage of in-memory 

computing. The Spark notion of using RDDs as a means of 

implicitly capturing lineage dependency between steps of 

processing can be related to capturing that same dependency 

explicitly via defining the DAG using Tez APIs. An 

important category of systems to compare against are other 

frameworks to build YARN-applications [25]. The two most 
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relevant in this space are Apache REEF [19] and Apache 

Twill [31]. These systems focus on a much broader class of 

applications (including services), than Tez, and thus provide a 

lower-level API. Tez focuses on supporting data-flow driven 

applications, and thus consciously chooses to provide a 

structured DAG-based control-flow [26]. 
 

IV. METHODOLOGY 

We present the Hierarchically Distributed Data 

Matrix along with the system implementation to support the 

writing and execution of compostable and integrable big data 

applications. HDM is a light-weight, functional and strongly-

typed meta-data abstraction which contains complete 

information to support parallel execution of data driven 

applications. Exploiting the functional nature of HDM 

enables deployed applications of HDM to be natively 

integrable and reusable by other programs and applications. 

In addition, by analyzing the execution graph and functional 

semantics of HDMs, multiple optimizations are provided to 

automatically improve the execution performance of HDM 

data flows. Moreover, by drawing on the comprehensive 

information maintained by HDM graphs, the runtime 

execution engine of HDM is also able to provide provenance 

and history management for submitted applications [27]. 

In particular, the main contributions of this paper 

can be summarized as follows: HDM, a light, practical and 

strongly written statistical representation of growth and 

description of parallel information packets. A runtime 

framework to support the implementation and integration of 

HDM applications in distributed environments. A set of 

enhancements that rely mainly on a dependency chart of 

useful information to improve the performance of HDM 

functions. An empirical evaluation of the performance of 

HDM compared to the contemporary field of artwork for 

large information processing structures, Apache Spark. HDM 

programs are designed to be interactive at some point 

Runtime asynchronously. Specifically, HDM Applications 

can be written and integrated into other programs as a normal 

code chipset. Then, by activating the motion. Interfaces, 

functions are sent dynamically to the relevant implementation 

context that can be either a group of multicenter yarns or a 

group of workers.  

 

A. Categorization of HDM 

  In principle, HDM is an entire tree-based structure 

consisting of node forms: Distributed Data Matrix: Paper 

nodes in the HDM hierarchy preserve real information and 

are responsible for the appearance of atomic processes in 

information blocks. Distributed Functional Matrix (DFM): 

Each non-paper node maintains the performance and 

distribution of relationships for HDMs for children; during 

implementation, it is also responsible for collecting and 

adding secondary node results as necessary. From a useful 

point of view, DDM is seen as a feature that maps a path to a 

real data set. Basically, DDM can be represented as HDM 

[Route, T]. During implementation, log parsers are 

encapsulated to load information from the address 

information according to their protocols and then rework the 

entry to the expected outgoing DDM formats. DFM is 

considered as a high-level representation that focuses on the 

deliberate reliance of human development mechanisms on the 

planning stages. Before implementation, DFM can be 

similarly explained as DDM dependencies according to 

realities and expected parallelism. The separation between 

DFM and DDM provides different degrees of views to help in 

the exclusive ranges of planning and optimization. In addition, 

the hierarchy of DFM and DDM also ensures that a close 

account in the truth node does not care about the transfer of 

information and coordination between siblings, thus, leaving 

the privileged nodes free to use the assembly steps are shown 

in Figure 1.  

 

 
       Fig. 1. Word-count after function fusion Data flow 

In HDM, half of the parallel operations as a series of 

Operations that start with One-To-One or N-To-One statistics 

Count and give up the facts one by one or one to N 

Accreditation. These parallel processes can be integrated into 

HDM instead of being in a separate HDM. Parallel 

Capabilities that include map, search, filter, neighborhood 

drop / group It will be linked directly to the main nodes until 

it reaches Root or trip through the dependency N-to-N and 

One-To-N. The Parallel merge base in HDM can be as 

accurate as: Parallel Fusion Rule: Assumed two associated 

HDM 𝐻𝐷𝑀1[𝑇; 𝑅] with function 𝑓: 𝑇 → 𝑅 tracked by 

𝐻𝐷𝑀2[𝑅;𝑈] with function 𝑔: 𝑅 → 𝑈 If the dependency 

Between them they are one by one, then can be combined 

𝐻𝐷𝑀𝑐[𝑇;𝑈] with function 𝑓 𝑔 : 𝑇 → 𝑈. This rule can be 

applied repeatedly in a series of Parallel processes to obtain 

the final combined HDM [28].  

 

B. Runtime Engine 
 

Basic commitment to additives at run time the 

engine is coordination and collaboration between tasks so that 

Unique functions like HDM can be effectively complete. 

Fig.2 Runtime Executing process of HDM Jobs Fig.2, 
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demonstrates the main process of implementing HDM 

functions within its Machine runtime as described, the main 

levels of implementation HDM works consist of plans for 

logical creation, improvement, and physics Develop plans, 

programming and implementation. Before implementation, 

HDMs must be defined as executable the responsibilities of 

executives. The rationalization system is particularly divided 

into two sub-steps: logical and construction plans Body 

layout is shown in Figure 2. 

 
      Fig. 2. Runtime Executing process of HDM Jobs 

 

V.        EXPERIMENTAL RESULTS 

Experiments are conducted on vast scale and results are 

displayed in Figure 3, 4, 5 and 6. 

 

             Fig. 3. Registration form 

 
             Fig. 4. HDFS files design output 

 

 
Fig. 5. HDM will take less time to perform when compared to 

Map reducer 
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           Fig. 6.  Job completion chart 

 

VI. CONCLUSION 

 

In this paper, we have performed HDM as a practical 

and strongly-typed data description, simultaneously with a 

runtime system implementation to maintain the execution, 

optimization, and administration of HDM applications. Based 

on the scientific nature, apps signed in HDM are natively 

composable and can be combined with current applications. 

At the same time, HDM functionality streams are 

automatically optimized before they can be achieved in the 

runtime system. In addition, HDM programming frees 

builders from the tedious allocation of integration and 

improves information-based application guides so that they 

can focus on good software governance and log analysis 

algorithms. Finally, the overall performance evaluation refers 

to the sharp performance of HDM in the Spark evaluation 

specifically for targeted operations that contain groups and 

filters. However, HDM is still at its initial level of 

improvement, as some limitations must be resolved in our 

target work: 1) disk-based processing wants to be supported if 

the group's general memory is not retrieved for terribly large 

functions; 2) fault tolerance should be considered a condition 

Critical for practical use; 3) The long-term challenge we plan 

to solve is to develop improvements to address units of ad hoc 

records in a heterogeneous manner, which usually cause 

heavy outliers and seriously slow down the time of glory 

crowning action in general and smashing the use of global aid. 
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