
 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 106

Hierarchically Distributed Data Matrix Scheme for Modeling and

Building Data Processing Applications

P Chandrashaker Reddy [1], Yadala Sucharitha [2]

[1] Department of CSE, CMR College of Engineering & Technology,
[2] Department of CSE, CMR Institute of Technology, Hyderabad, TS – India.

ABSTRACT
MapReduce is a programming paradigm and an affiliated Design for processing and making substantial data sets. It operates

on a large cluster of specialty machines and is extremely scalable Across the past years, MapReduce and Spark have been

offered to facilitate the job of generating big data programs and utilization. However, the tasks in these structures are roughly

described and packaged as executable jars externally any functionality being presented or represented. This means that

extended roles are not natively composable and reusable for consequent improvement. Moreover, it also impedes the

capacity for employing optimizations on the data stream of job orders and pipelines. In this article, we offer the

Hierarchically Distributed Data Matrix (HDM), which is a practical, strongly-typed data description for writing composable

big data appeals. Along with HDM, a runtime composition is presented to verify the performance of HDM applications on

dispersed infrastructures. Based on the practical data dependency graph of HDM, various optimizations are employed to

develop the appearance of performing HDM jobs. The empirical outcomes show that our optimizations can deliver increases

of between 30% to 80% of the Job-Completion-Time for various types of applications when associated with the current state

of the art, Apache Spark.

Keywords: - Map Reduce, Apache Spark, HDM, Big data processing, Distributed system.

I. INTRODUCTION

Big Data has become a popular term which is used

to describe the exponential growth and availability of data.

The growing demand for large-scale data processing and data

analysis applications spurred the development of novel

solutions to tackle this challenge. For about a decade, the

Map Reduce framework has represented the defacto standard

of big data technologies and has been widely utilized as a

popular mechanism to harness the power of large clusters of

computers. In general, the fundamental principle of the Map

Reduce framework is to move analysis to the data, rather than

moving the data to a system that can analyze it. It allows

programmers data centric fashion transformations data details

of distributed execution and fault tolerance by the framework

[1]. However, in recent years, with the increasing

applications’ requirements in the data analytics domain,

various limitations of the Hadoop framework have been

recognized and thus we have witnessed with new constituted

wave of mostly domain-specific, optimized big data

processing platforms. In recent years, several frameworks

(e.g. Spark, Flink, Pregel, Storm) have been presented to

tackle the ever larger datasets on using distributed clusters of

commodity machines. However, in reality, many real-world

scenarios require pipelining and integration of multiple big

data jobs. There are more challenges when applying big data

technology in practice [2]. However, in current big data

platform such as Map Reduce and Spark, there is no proper

way to share and expose a deployed and well-tuned online

component to other developers. Therefore, there is massive

and even unseen redundant development in big data

applications. In addition, as the pipeline evolves, each of

the online components might be updated and re-developed,

new components can also be added in the pipeline [3]. As a

result, it is very hard to track and check the effects during the

evolving process. Google’s recent report shows the

challenges and problems that they have encountered in

managing and evolving large scale data analytic applications.

Furthermore, as the pipeline become more and more

complicated, it is almost impossible to manually optimize the

performance for each component not mentioning the whole

pipeline. To address the auto optimization problem, Tez and

Flume-Java were introduced to optimize the DAG of Map

Reduce-based jobs while Spark relies on Catalyst to optimize

the execution plan of Spark-SQL. To sum up, the main

challenges for current complicated analytic applications can

be listed below: Many real-world applications require a chain

of operations or even a pipeline of data processing programs.

Optimizing a complicated job is difficult and optimizing

pipelined ones are even harder [4].

A. Research Challenges

1. Additionally, manual optimizations are time-

consuming and error prone and it is almost

impossible to manually optimize every program.

Integration, composition and interaction with big

data programs/jobs are not natively supported: Many

practical data analytics and machine learning

algorithms require combination of multiple

processing components each of which is responsible

for a certain analytical functionality.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 107

2. A key limitation for existing frameworks such as

Map Reduce and Spark is that jobs are roughly

defined and packaged as binary jars and executed as

black-boxes without exposing any information about

the functionalities. As a result of this, deployed jobs

are not natively composable and reusable for

subsequent development and integration.

3. Additionally, manual optimizations are time-

consuming and error prone and it is almost

impossible to manually optimize every program.

Integration, composition and interaction with big

data programs/jobs are not natively supported: Many

practical data analytics and machine learning

algorithms require combination of multiple

processing components each of which is responsible

for a certain analytical functionality.

4. A key limitation for existing frameworks such as

Map Reduce and Spark is that jobs are roughly

defined and packaged as binary jars and executed as

black-boxes without exposing any information about

the functionalities. As a result of this, deployed jobs

are not natively Composable and reusable for

subsequent development and integration.

5. Maintenance and management of evolving big data

applications are complex and tedious. In a realistic

data analytic process, data scientists need to explore

the datasets and tune the algorithms back and force

to find out a more optimal solution.

In order to tackle the above challenges, we believe

that by improving the basic data and task models, these

problems could be addressed to a great extent at the big data

execution engine level. In particular, we present the

Hierarchically Distributed Data Matrix (HDM) along with the

system implementation to support the writing and execution

of Composable and integrable big data applications [5, 6].

HDM is a light-weight, functional and strongly-typed meta-

data abstraction which contains complete information (such

as data format, locations, dependencies and functions

between input and output) to support parallel execution of

data driven applications. Exploiting the functional nature of

HDM enables deployed applications of HDM to be natively

integrable and reusable by other programs and applications.

The execution graph and functional semantics of multiple

optimizations are automatically improving the execution

performance of HDM data flows. Moreover, by drawing on

the comprehensive information maintained by HDM graphs,

the runtime execution engine of HDM is also able to provide

provenance and history management for submitted

applications [7, 8].

B. Objective of the Research

The frameworks such as Map Reduce and Spark

have been introduced to developing big data programs and

applications. However the jobs in these frameworks are

roughly defined and packaged as executable jars without any

functionality being exposed or described. Deployed jobs are

Composable and reusable for subsequent development. The

ability optimizations on the data flow of job sequences and

pipelines. We present the Hierarchically Distributed Data

Matrix which is a functional, strongly typed data

representation for writing Composable big data applications.

Frameworks provided an execution and integration and

management of HDM applications on distributed

infrastructures. Based on the functional data dependency

graph of HDM multiple optimizations are applied to improve

the performance of executing HDM jobs.

II. BACKGROUND

A. Big data processing frameworks

Several frameworks have been developed to provide

processing systems for large distributed records. MapReduce

is a large and widely used model for processing records and

has been a pioneer in this field. It uses major cost pairs

because simple statistics are coordinated during processing.

Map and Reduce are primitive and can be inherited from

practical programming [9]. In terms of overall performance,

Hadoop / Map-Reduce functions are not guaranteed to be fast.

All intermediate records during execution are written to a

dedicated garage to allow repair of accidents. This is a change

that sacrifices efficient use of memories and the

neighborhood garage. The Map-Reduce window is usually

not effective for instant and small functions where you may

remember the facts [10]. Spark uses memories because

important data is stored during execution. Therefore, it can

offer much higher performance, compared to the functions

running in MapReduce. Spark's basic programming

abstraction is called Flexible Distributed Data Sets (RDDs),

which are a logical grouping for dividing statistics between

machines. In addition, programs in Spark are divided as

DAGs mainly on Stage which can be separated with the help

of shuffle dependencies. In the activity rationalization process,

Spark also combines parallel processes into a single task,

where the experiment also achieves the same improved

feature integration as it did during HDM. However, similarly,

record chain improvements are not provided along with

reordering and rewriting within the Spark processing engine

[11].

B. Attributes of HDM

Basically, HDM is represented as HDM [T, R],

where T and R, are two facts to enter and exit, respectively.

The HDM itself represents a function that transforms

statistics Input to the output in addition to those basic features,

HDM addition Includes information such as statistical units,

neighborhood, and distribution to guide improvement and

implementation. HDM supports the following simple

functions: Functional: HDM is largely an illustration based of

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 108

the function that calculates the output Some HDM account

input is approx. Evaluate the property contained in the

income dataset. While calculating HDM, Appearance results

are not attributed. Strongly written: HDM consists of at least

clear facts Types and input type and output type, which can

be drawn of input and output formats based mainly closed

function. They are necessary to ensure compatibility of types

of information [12]. Portable: HDM is a neutral component

containing Complete Facts for a Computer Project. And so on,

in principle, HDMis removable and can be moved to any

node within the context of the executable HDM. Site aware:

HDMs consist of facts Proximity (represented by rich URL)

of entries and exits. Although some information about the

place is better available during runtime, it facilitates

application optimization for simultaneous information sites

around Develop level plans [13].

C. Optimizations for Big Data Applications

Flume-Java It’s a Java library that Google recently

delivered. Designed in Map-Reduce, it offers better stage

setup and a host of improvements to higher implementation

plans. The overall performance advantages of these enhanced

plans are manually enhanced Map-Reduce functions, but

Flume-Java has freed programmers from the refined

optimization method and is often boring. Tez is a graphics-

based optimizer that can significantly improve Map-Reduce's

work written in Pig and Hive [14]. Basically, Tez simplifies

Map-Reduce tubes by combining a pair of specific distillation

devices and redundant reducers. It also instantly links the

results of previous work to subsequent work, which reduces

the rate of writing the metadata in HDFS, and thus, can

improve the overall performance of the work performed.

Apache MRQL6 is a framework delivered as a framework for

improving query performance and processing for extensive

and distributed information analysis, and is based on Apache

Hadoop, Spark, Hama and Flink [15]. Specifically, it offers a

query language similar to SQL that can be devalued in neutral

modes: Map-Reduce mode using Apache Hadoop, Spark

mode with Apache Spark, BSP mode, Use Apache Hama and

Flink mode with Apache Flink. The rest of the article is

organized as follows. The third section describes related work

and the subsequent section explains the proposed

methodology adopted. The fifth section outlines the

experimental outcomes and discussions while, the conclusion

is given in the last section.

III. RELATED WORKS

Apache Tez has been fortunate to learn from the

development and experiences of similar systems such as

Dryad, Hyracks and Nephele. All of them share the concept

of modeling data processing as DAGs with vertices

representing application logic and edges or channels

representing data transfer [16]. Tez makes this more fine-

grained by adding the concepts of inputs, processor and

outputs to formally define the tasks executing the DAGs,

leading to clear separation of concerns and allowing

pluggable task composition. All of them participate to varied

extents in the data plane and define some form of data format,

which allows applications to define custom formats that

derive from the base definition. All of them define on-disk,

over-network and in-memory communication channels [17].

Tez, on the other hand, does not define any data format and is

not part of the data plane at all. On a similar note, Hyracks

defines an operator model for execution that allows it to

understand the data flow better for scheduling. Tez treats

processors as black boxes so that the application logic can be

completely decoupled from the framework. Nephele is

optimized for cloud environments where it can elastically

increase or decrease resources and choose appropriate virtual

machines. Tez also enables resource elasticity by acquiring

and releasing resources in YARN [18].

Dryad and Tez share the concept of vertex managers

for dynamic graph re-configurations. Tez takes this concept a

step further by formalizing an API that allows the managers

to be written without knowing the internals of the framework

and also defining an event based communication mechanism

that enables application code in tasks to communicate with

application code in vertex managers in order to actuate the re-

configurations [19]. In addition, Tez adds the concept of input

initializers to formally model primary data sources and apply

runtime optimizations while reading them. Dryad schedules

tasks when all the inputs of the tasks are ready to be

consumed, to prevent scheduling deadlocks. Tez allows out

of order execution for performance reasons and has built-in

preemption to resolve scheduling deadlocks. Overall, Tez

differs from these systems in its modeling capabilities and the

design goal of being a library to build engines rather than

being an engine by itself. MapReduce is, of course, the

incumbent engine in the Hadoop ecosystem [20].

Tez subsumes the MapReduce APIs such that it is

possible to write a fully functional MapReduce application

using Tez. Dremel [21] is a processing framework for

interactive analysis of large data sets based on multi-level

execution trees that is optimized for aggregation queries and

has motivated systems like Presto and Apache Drill [22].

These, and other SQL query engines like Impala or Apache

Tajo [23], differ from Tez by being engines optimized for

specific processing domains whereas Tez is a library to build

data processing applications. Spark is a new general purpose

data processing engine. It exposes a Resilient Distributed

Dataset (RDD) based computation model that eventually gets

executed on an in-memory storage and compute engine [24].

Tez, again differs being a library and not a general purpose

engine. Tez does not provide any storage service but

applications can use existing inmemory stores, e.g. HDFS

memory storage, to get the advantage of in-memory

computing. The Spark notion of using RDDs as a means of

implicitly capturing lineage dependency between steps of

processing can be related to capturing that same dependency

explicitly via defining the DAG using Tez APIs. An

important category of systems to compare against are other

frameworks to build YARN-applications [25]. The two most

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 109

relevant in this space are Apache REEF [19] and Apache

Twill [31]. These systems focus on a much broader class of

applications (including services), than Tez, and thus provide a

lower-level API. Tez focuses on supporting data-flow driven

applications, and thus consciously chooses to provide a

structured DAG-based control-flow [26].

IV. METHODOLOGY

We present the Hierarchically Distributed Data

Matrix along with the system implementation to support the

writing and execution of compostable and integrable big data

applications. HDM is a light-weight, functional and strongly-

typed meta-data abstraction which contains complete

information to support parallel execution of data driven

applications. Exploiting the functional nature of HDM

enables deployed applications of HDM to be natively

integrable and reusable by other programs and applications.

In addition, by analyzing the execution graph and functional

semantics of HDMs, multiple optimizations are provided to

automatically improve the execution performance of HDM

data flows. Moreover, by drawing on the comprehensive

information maintained by HDM graphs, the runtime

execution engine of HDM is also able to provide provenance

and history management for submitted applications [27].

In particular, the main contributions of this paper

can be summarized as follows: HDM, a light, practical and

strongly written statistical representation of growth and

description of parallel information packets. A runtime

framework to support the implementation and integration of

HDM applications in distributed environments. A set of

enhancements that rely mainly on a dependency chart of

useful information to improve the performance of HDM

functions. An empirical evaluation of the performance of

HDM compared to the contemporary field of artwork for

large information processing structures, Apache Spark. HDM

programs are designed to be interactive at some point

Runtime asynchronously. Specifically, HDM Applications

can be written and integrated into other programs as a normal

code chipset. Then, by activating the motion. Interfaces,

functions are sent dynamically to the relevant implementation

context that can be either a group of multicenter yarns or a

group of workers.

A. Categorization of HDM

 In principle, HDM is an entire tree-based structure

consisting of node forms: Distributed Data Matrix: Paper

nodes in the HDM hierarchy preserve real information and

are responsible for the appearance of atomic processes in

information blocks. Distributed Functional Matrix (DFM):

Each non-paper node maintains the performance and

distribution of relationships for HDMs for children; during

implementation, it is also responsible for collecting and

adding secondary node results as necessary. From a useful

point of view, DDM is seen as a feature that maps a path to a

real data set. Basically, DDM can be represented as HDM

[Route, T]. During implementation, log parsers are

encapsulated to load information from the address

information according to their protocols and then rework the

entry to the expected outgoing DDM formats. DFM is

considered as a high-level representation that focuses on the

deliberate reliance of human development mechanisms on the

planning stages. Before implementation, DFM can be

similarly explained as DDM dependencies according to

realities and expected parallelism. The separation between

DFM and DDM provides different degrees of views to help in

the exclusive ranges of planning and optimization. In addition,

the hierarchy of DFM and DDM also ensures that a close

account in the truth node does not care about the transfer of

information and coordination between siblings, thus, leaving

the privileged nodes free to use the assembly steps are shown

in Figure 1.

 Fig. 1. Word-count after function fusion Data flow

In HDM, half of the parallel operations as a series of

Operations that start with One-To-One or N-To-One statistics

Count and give up the facts one by one or one to N

Accreditation. These parallel processes can be integrated into

HDM instead of being in a separate HDM. Parallel

Capabilities that include map, search, filter, neighborhood

drop / group It will be linked directly to the main nodes until

it reaches Root or trip through the dependency N-to-N and

One-To-N. The Parallel merge base in HDM can be as

accurate as: Parallel Fusion Rule: Assumed two associated

HDM 𝐻𝐷𝑀1[𝑇; 𝑅] with function 𝑓: 𝑇 → 𝑅 tracked by

𝐻𝐷𝑀2[𝑅;𝑈] with function 𝑔: 𝑅 → 𝑈 If the dependency

Between them they are one by one, then can be combined

𝐻𝐷𝑀𝑐[𝑇;𝑈] with function 𝑓 𝑔 : 𝑇 → 𝑈. This rule can be

applied repeatedly in a series of Parallel processes to obtain

the final combined HDM [28].

B. Runtime Engine

Basic commitment to additives at run time the

engine is coordination and collaboration between tasks so that

Unique functions like HDM can be effectively complete.

Fig.2 Runtime Executing process of HDM Jobs Fig.2,

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 110

demonstrates the main process of implementing HDM

functions within its Machine runtime as described, the main

levels of implementation HDM works consist of plans for

logical creation, improvement, and physics Develop plans,

programming and implementation. Before implementation,

HDMs must be defined as executable the responsibilities of

executives. The rationalization system is particularly divided

into two sub-steps: logical and construction plans Body

layout is shown in Figure 2.

 Fig. 2. Runtime Executing process of HDM Jobs

V. EXPERIMENTAL RESULTS

Experiments are conducted on vast scale and results are

displayed in Figure 3, 4, 5 and 6.

 Fig. 3. Registration form

 Fig. 4. HDFS files design output

Fig. 5. HDM will take less time to perform when compared to

Map reducer

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 111

 Fig. 6. Job completion chart

VI. CONCLUSION

In this paper, we have performed HDM as a practical

and strongly-typed data description, simultaneously with a

runtime system implementation to maintain the execution,

optimization, and administration of HDM applications. Based

on the scientific nature, apps signed in HDM are natively

composable and can be combined with current applications.

At the same time, HDM functionality streams are

automatically optimized before they can be achieved in the

runtime system. In addition, HDM programming frees

builders from the tedious allocation of integration and

improves information-based application guides so that they

can focus on good software governance and log analysis

algorithms. Finally, the overall performance evaluation refers

to the sharp performance of HDM in the Spark evaluation

specifically for targeted operations that contain groups and

filters. However, HDM is still at its initial level of

improvement, as some limitations must be resolved in our

target work: 1) disk-based processing wants to be supported if

the group's general memory is not retrieved for terribly large

functions; 2) fault tolerance should be considered a condition

Critical for practical use; 3) The long-term challenge we plan

to solve is to develop improvements to address units of ad hoc

records in a heterogeneous manner, which usually cause

heavy outliers and seriously slow down the time of glory

crowning action in general and smashing the use of global aid.

REFERENCES

1. Alexander Alexandrov, Rico Bergmann, Stephan Ewen,

JohannChristoph Freytag, Fabian Hueske, Arvid Heise,

Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix

Naumann, Mathias Peters, Astrid Rheinlander, Matthias J.

Sax, Sebastian Schelter, Mareike ¨ Hoger, Kostas

Tzoumas, and Daniel Warneke. The Stratosphere ¨

platform for big data analytics. VLDB J., 23(6), 2014.

2. Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin

Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,

Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and

Matei Zaharia. Spark SQL: Relational Data Processing in

Spark. In SIGMOD, pages 1383– 1394, 2015.

3. Craig Chambers, Ashish Raniwala, Frances Perry,

Stephen Adams, Robert R. Henry, Robert Bradshaw,

and Nathan Weizenbaum. FlumeJava: easy, efficient

data-parallel pipelines. In PLDI, 2010.

4. Jeffrey Dean and Sanjay Ghemawat. Map Reduce:

simplified data processing on large clusters.

Commun. ACM, 51(1), 2008.

5. Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther

Hagleitner, ¨ Eric N. Hanson, Owen O’Malley,

Jitendra Pandey, Yuan, Rubao Lee, and Xiaodong

Zhang. Major technical advancements in Apache

Hive. In SIGMOD, pages 1235–1246, 2014.

6. Mohammad Islam, Angelo K. Huang, Mohamed

Battisha, Michelle Chiang, Santhosh Srinivasan,

Craig Peters, Andreas Neumann, and Alejandro

Abdelnur. Oozie: towards a scalable workflow

management system for Hadoop. In SIGMOD

Workshops, 2012.

7. Grzegorz Malewicz, Matthew H. Austern, Aart J. C.

Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and

Grzegorz Czajkowski. Pregel: a system for large-

scale graph processing. In SIGMOD Conference,

2010.

8. Christopher Olston, Benjamin Reed, Utkarsh

Srivastava, Ravi Kumar, and Andrew Tomkins. Pig

latin: a not-so-foreign language for data processing.

In SIGMOD, 2008.

9. Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal

Vijayaraghavan, Arun C. Murthy, and Carlo Curino.

Apache Tez: A Unifying Framework for Modeling

and Building Data Processing Applications. In

SIGMOD, 2015.

10. Sherif Sakr and Mohamed Medhat Gaber, editors.

Large Scale and Big Data - Processing and

Management. Auerbach Publications, 201

11. Dongyao, Liming Zhu, 2015, “Composable and

Efficient Functional Big Data Processing

Framework”.

12. Matei Zaharia, Michael J. Franklin, 2010, “Spark:

Cluster Computing with Working Sets”, pp.1-7.

13. Bikas Saha, Arun C. Murthy, and Carlo Curino,

2015, “Apache Tez: A Unifying Framework for

Modeling and Building Data Processing

Applications”,pp. 1357-1369.

14. Reddy PC, Sureshbabu A. An applied time series

forecasting model for yield prediction of agricultural

crop. InInternational Conference on Soft Computing

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 8 Issue 6, Nov-Dec 2020

ISSN: 2347-8578 www.ijcstjournal.org Page 112

and Signal Processing 2019 Jun 21 (pp. 177-187).

Springer, Singapore.

15. Alexander Alexandrov, Odej Kao, Matthias J, 2014,”

The Stratosphere platform for big data analytics”

VLDB J.,23(6).

16. Reddy PC, Babu AS. Survey on weather prediction

using big data analystics. In2017 Second

International Conference on Electrical, Computer and

Communication Technologies (ICECCT) 2017 Feb

22 (pp. 1-6). IEEE.

17. Grzegorz Malewicz, Matthew H. Austern, Aart J. C.

Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and

Grzegorz Czajkowski. Pregel: a system for large-

scale graph processing. In SIGMOD Conference,

2010.

18. Reddy PC, Sureshbabu A. An applied time series

forecasting model for yield prediction of agricultural

crop. InInternational Conference on Soft Computing

and Signal Processing 2019 Jun 21 (pp. 177-187).

Springer, Singapore.

19. Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. The

family of map reduce and large-scale data processing

systems. ACM CSUR, 46(1):11, 2013.

20. Reddy PC, Sureshbabu A. An Adaptive Model for

Forecasting Seasonal Rainfall Using Predictive

Analytics. InInternational Journal of Intelligent

Engineering and Systems 2019 (pp. 22-32).

21. Grzegorz Malewicz, Naty Leiser, and Grzegorz

Czajkowski, 2010, “Pregel: a system for large-scale

graph processing”, pp.135-145.

22. Reddy PC, Babu AS. A novel approach to analysis

district level long scale seasonal forecasting of

monsoon rainfall in Andhra Pradesh and Telangana.

International Journal of Advanced Research in

Computer Science. 2017 Nov 1;8(9).

23. Matei Zaharia, Murphy McCauly, and Ion Stoica,

2012, Resilient Distributed Datasets: A Fault-

Tolerant Abstraction for In-Memory Cluster

Computing”.

24. M. Zaharia, J. Sen Sarma, and I. Stoica, 2010, “Delay

scheduling: A simple technique for achieving locality

and fairness in cluster scheduling.”

25. Sucharitha Y, Vijayalata Y, Prasad VK. Analysis of

Early Detection of Emerging Patterns from Social

Media Networks: A Data Mining Techniques

Perspective. InSoft Computing and Signal Processing

2019 (pp. 15-25). Springer, Singapore.

26. D. G. Murray, M. Schwarzkopf, S. Hand, 2011,”

Ciel: a universal execution engine for distributed

data-flow computing”.

27. Sucharitha Y, Prasad VK, Vijayalatha Y. Emergent

Events Identification in Micro-Blogging Networks

Using Location Sensitivity.

28. Norin S, inventor; Microsoft Corp, assignee. System

and method for the distribution of hierarchically

structured data. United States patent US 5,812,773.

1998 Sep 22.

http://www.ijcstjournal.org/

