
 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 32

 RESEARCH ARTICLE OPEN ACCESS

Investigating on Web Server Load Balancing Using SSL

 Back-End Forwarding Method

Rayan Soqati

Department Of Computer Science and Engineering

ABSTRACT

The cluster-based data centres consist of three tiers (Web server, application server, and database server) are being used to

host complex Web services such as e-commerce applications. The application server handles dynamic and sensitive Web

contents that need protection from eavesdropping, tampering, and forgery. Although the Secure Sockets Layer (SSL) is

the most popular protocol to provide a secure channel between a client and a cluster-based network server, its high

overhead degrades the server performance considerably and, thus, affects the server scalability. Therefore, improving the

performance of SSL-enabled network servers is critical for designing scalable and high-performance data centres. To

improve the performance of application servers, the proposed back-end forwarding scheme can further enhance the

performance due to better load balancing. The SSL backend forward scheme can minimize the average latency by about

40 percent and improve throughput across a variety of workloads.

Keywords: - Secure Socket Layer, Web Clusters, Load balancing, Protection from eavesdropping

I. INTRODUCTION

Load balancing refers to efficiently distributing

incoming network traffic across a group of backend

servers, also known as a server farm or server

pool.Server load balancing provides scalability and high

availability for applications, Web sites and cloud

services by monitoring the health of servers, evenly

distributing loads across servers and maintaining

session persistence and a seamless user experience in

the event that one or more servers become

overburdened or unresponsive.

Fig1. Classic load balancer architecture (load

dispatcher)

Load balancing is a staple solution in virtually every

data centre. However, today’s application delivery

controllers (ADCs) represent a considerable evolution

from simple server load balancing methods.A load

balancer acts as the “traffic cop” sitting in front of your

servers and routing client requests across all servers

capable of fulfilling those requests in a manner that

maximizes speed and capacity utilization and ensures

that no one server is overworked, which could degrade

performance as shown in Fig 1. If a single server goes

down, the load balancer redirects traffic to the

remaining online servers. When a new server is added

to the server group, the load balancer automatically

starts to send requests to it. In this manner, a load

balancer performs the following functions:

• Distributes client requests or network load

efficiently across multiple servers

• Ensures high availability and reliability by

sending requests only to servers that are online

 Provides the flexibility to add or subtract

servers as demand dictates

To reach high availability, the load balancer must

monitor the servers to avoid forwarding requests to

overloaded or dead servers. Several different load

balancing methods are available to choose from. When

working with servers that differ significantly in

processing speed and memory, one might want to use a

method such as Ratio or Weighted Least Connections.

Load balancing calculations can be localized to each

pool (member-based calculation) or they may apply to

http://www.ijcstjournal.org/
http://www.javaworld.com/javaworld/jw-10-2008/images/load-balancing1-fig1.gif
https://www.arraynetworks.com/products-application-delivery-controllers-apv-series.html
https://www.nginx.com/solutions/load-balancing/
https://www.nginx.com/solutions/load-balancing/
https://www.nginx.com/solutions/load-balancing/
https://www.nginx.com/solutions/load-balancing/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 33

all pools of which a server is a member (node-based

calculation).
II. SERVER LOAD BALANCING

TECHNIQUES
2.1 Round Robin

This is the default load balancing method. Round Robin

mode passes each new connection request to the next

server in line, eventually distributing connections

evenly across the array of machines being load

balanced.

Usage:

Round Robin mode works well in most configurations,

especially if the equipment that you are load balancing

is roughly equal in processing speed and memory.

2.2 Ratio (member) and Ratio (Node)

The BIG-IP system distributes connections among pool

members or nodes in a static rotation according to ratio

weights that you define. In this case, the number of

connections that each system receives over time is

proportionate to the ratio weight you defined for each

pool member or node. You set a ratio weight when you

create each pool member or node.

Usage:

These are static load balancing methods, basing

distribution on user-specified ratio weights that are

proportional to the capacity of the servers.

2.3 Dynamic Ratio (member) Dynamic Ratio

(node)

The Dynamic Ratio methods select a server based on

various aspects of real-time server performance

analysis. These methods are similar to the Ratio

methods, except that with Dynamic Ratio methods, the

ratio weights are system-generated, and the values of

the ratio weights are not static. These methods are

based on continuous monitoring of the servers, and the

ratio weights are therefore continually changing.

Usage:

The Dynamic Ratio methods are used specifically for

load balancing traffic to Real Networks Real System

Server platforms, Windows platforms equipped with

Windows Management Instrumentation (WMI), or any

server equipped with an SNMP agent such as the UC

Davis SNMP agent or Windows 2000 Server SNMP

agent

2.4 Fastest (node) Fastest (Application)

The Fastest methods select a server based on the least

number of current sessions. The following rules apply

to the fastest load balancing methods:

• These methods require that you assign both a

Layer 7 and a TCP type of profile to the virtual server.

• If a Layer 7 profile is not configured, the

virtual server falls back to Least Connections

load balancing mode.

Usage:

The Fastest methods are useful in environments where

nodes are distributed across separate logical networks.

2.5 Least Connections (member) Least Connections

(node)

The Least Connections methods are relatively simple in

that the BIG-IP system passes a new connection to the

pool member or node that has the least number of active

connections.

Note: If the One Connect feature is enabled, the Least

Connections methods do not include idle connections in

the calculations when selecting a pool member or node.

The Least Connections methods use only active

connections in their calculations.

Usage:

The Least Connections methods function best in

environments where the servers have similar

capabilities. Otherwise, some amount of latency can

occur.

For example, consider the case where a pool has two

servers of differing capacities, A and B. Server A has

95 active connections with a connection limit of 100,

while server B has 96 active connections with a much

larger connection limit of 500. In this case, the Least

Connections method selects server A, the server with

the lowest number of active connections, even though

the server is close to reaching capacity. If you have

servers with varying capacities, consider using the

Weighted Least Connections methods instead.

2.6 Weighted Least Connections (member)

Weighted Least Connections (node)

Like the Least Connections methods, these load

balancing methods select pool members or nodes based

on the number of active connections. However, the

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 34

Weighted Least Connections methods also base their

selections on server capacity.

The Weighted Least Connections (member) method

specifies that the system uses the value you specify in

Connection Limit to establish a proportional algorithm

for each pool member. The system bases the load

balancing decision on that proportion and the number of

current connections to that pool member. For example,

member_a has 20 connections and its connection limit

is 100, so it is at 20% of capacity. Similarly, member_b

has 20 connections and its connection limit is 200, so it

is at 10% of capacity. In this case, the system select

selects member_b. This algorithm requires all pool

members to have a non-zero connection limit specified.

The Weighted Least Connections (node) method

specifies that the system uses the value you specify in

the node's Connection Limit setting and the number of

current connections to a node to establish a proportional

algorithm. This algorithm requires all nodes used by

pool members to have a non-zero connection limit

specified. If all servers have equal capacity, these load

balancing methods behave in the same way as the Least

Connections methods.

Note: If the One Connect feature is enabled, the

Weighted Least Connections methods do not include

idle connections in the calculations when selecting a

pool member or node. The Weighted Least Connections

methods use only active connections in their

calculations.

Usage:

Weighted Least Connections methods work best in

environments where the servers have differing

capacities. For example, if two servers have the same

number of active connections but one server has more

capacity than the other, the BIG-IP system calculates

the percentage of capacity being used on each server

and uses that percentage in its calculations.

2.7 Observed (member) Observed (node)

With the Observed methods, nodes are ranked based on

the number of connections. The Observed methods

track the number of Layer 4 connections to each node

over time and creates a ratio for load balancing. The

need for the Observed methods is rare, and they are not

recommended for large pools.

2.8 Predictive (member) Predictive (node)

The Predictive methods use the ranking methods used

by the Observed methods, where servers are rated

according to the number of current connections.

However, with the Predictive methods, the BIG-IP

system analyzes the trend of the ranking over time,

determining whether a nodes performance is currently

improving or declining. The servers with performance

rankings that are currently improving, rather than

declining, receive a higher proportion of the

connections. The need for the Predictive methods is

rare, and they are not recommended for large pools.

2.9 Least Sessions

The Least Sessions method selects the server that

currently has the least number of entries in the

persistence table. Use of this load balancing method

requires that the virtual server reference a type of

profile that tracks persistence connections, such as the

Source Address Affinity or Universal profile type.

The Least Sessions method works best in environments

where the servers or other equipment

Which the user is load balancing have similar

capabilities.

2.10 L3 Address

This method functions in the same way as the Least

Connections methods. It is not recommended for large

pools and incompatible with cookie persistence.

III. PROBLEM ISSUES

Usually at this point, a problem arises like how does a

load balancer decide which host to send the connection

to? And what happens if the selected host is not

working? If the selected host is not working it doesn't

respond to the client request and the connection attempt

eventually times out and fails. This is obviously not a

preferred circumstance, as it doesn't ensure high

availability. That's why most load balancing technology

includes some level of health monitoring that

determines whether a host is actually available before

attempting to send connections to it. There are multiple

levels of health monitoring, each with increasing

granularity and focus. A basic monitor would simply

PING the host itself. If the host does not respond to

PING, it is a good assumption that any services defined

on the host are probably down and should be removed

from the cluster of available services. Unfortunately,

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 35

even if the host responds to PING, it doesn't necessarily

mean the service itself is working. Therefore most

devices can do "service PINGs" of some kind, ranging

from simple TCP connections all the way to interacting

with the application via a scripted or intelligent

interaction. These higher-level health monitors not only

provide greater confidence in the availability of the

actual services (as opposed to the host), but they also

allow the load balancer to differentiate between

multiple services on a single host. The load balancer

understands that while one service might be

unavailable, other services on the same host might be

working just fine and should still be considered as valid

destinations for user traffic. While load balancer

decides which host to send a connection request, each

virtual server has a specific dedicated cluster of services

(listing the hosts that offer that service) which makes up

the list of possibilities as shown in Fig 2. Additionally,

the health monitoring modifies that list to make a list of

"currently available" hosts that provide the indicated

service. It is this modified list from which the load

balancer chooses the host that will receive a new

connection.

Fig 2: Load balancing comprises four basic concepts-

virtual servers, clusters, services and hosts

Deciding the exact host depends on the load balancing

algorithm associated with that particular cluster. The

most common is simple round-robin where the load

balancer simply goes down the list starting at the top

and allocates each new connection to the next host;

when it reaches the bottom of the list, it simply starts

again at the top. While this is simple and very

predictable, it assumes that all connections will have a

similar load and duration on the back-end host, which is

not always true. More advanced algorithms use things

like current-connection counts, host utilization, and

even real-world response times for existing traffic to the

host in order to pick the most appropriate host from the

available cluster services. Sufficiently advanced load

balancing systems will also be able to synthesize health

monitoring information with load balancing algorithms

to include an understanding of service dependency.

This is the case when a single host has multiple

services, all of which are necessary to complete the

user's request. A common example would be in e-

commerce situations where a single host will provide

both standard HTTP services (port 80) as well as

HTTPS (SSL/TLS at port 443). In many of these

circumstances, you don't want a user going to a host

that has one service operational, but not the other. In

other words, if the HTTPS services should fail on a

host, you also want that host's HTTP service to be taken

out of the cluster list of available services. This

functionality is increasingly important as HTTP-like

services become more differentiated with XML and

scripting.

Connection maintenance

If the user is trying to utilize a long-lived TCP

connection (telnet, FTP, and more) that doesn't

immediately close, the load balancer must ensure that

multiple data packets carried across that connection do

not get load balanced to other available service hosts.

This is connection maintenance and requires two key

capabilities:

1) the ability to keep track of open connections and the

host service they belong to; and 2) the ability to

continue to monitor that connection so the connection

table can be updated when the connection closes. This

is rather standard fare for most load balancers.

Persistence

Increasingly more common, however, is when the client

uses multiple short-lived TCP connections (for

example, HTTP) to accomplish a single task. In some

cases, like standard web browsing, it doesn't matter and

each new request can go to any of the back-end service

hosts; however, there are many more instances (XML,

ecommerce "shopping cart," HTTPS, and so on) where

it is extremely important that multiple connections from

the same user go to the same back-end service host and

not be load balanced. This concept is called persistence,

or server affinity. There are multiple ways to address

this depending on the protocol and the desired results.

For example, in modern HTTP transactions, the server

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 36

can specify a "keep-alive" connection, which turns

those multiple short-lived connections into a single

long-lived connection that can be handled just like the

other longlived connections. However, this provides

little relief. Even worse, as the use of web services

increases, keeping all of these connections open longer

than necessary would strain the resources of the entire

system. In these cases, most load balancers provide

other mechanisms for creating artificial server affinity.

One of the most basic forms of persistence is

sourceaddress affinity. This involves simply recording

the source IP address of incoming requests and the

service host they were load balanced to, and making all

future transaction go to the same host. This is also an

easy way to deal with application dependency as it can

be applied across all virtual servers and all services. In

practice however, the wide-spread use of proxy servers

on the Internet and internally in enterprise networks

renders this form of persistence almost useless; in

theory it works, but proxy-servers inherently hide many

users behind a single IP address resulting in none of

those users being load balanced after the first user's

request— essentially nullifying the load balancing

capability. Today, the intelligence of load balancer–

based devices allows organizations to actually open up

the data packets and create persistence tables for

virtually anything within it. This enables them to use

much more unique and identifiable information, such as

user name, to maintain persistence. However,

organizations one must take care to ensure that this

identifiable client information will be present in every

request made, as any packets without it will not be

persisted and will be load balanced again, most likely

breaking the application. Server load balancing is

essential to keep resources properly distributed in a

virtual infrastructure. If the infrastructure is expanding

to a private cloud, which is an automated environment,

virtual machine load balancing becomes even more

critical.

With any virtualization platform, a private cloud

requires virtual machines (VMs) that can live-migrate

anywhere to balance resource loads. The most common

load-balancing services are Microsoft System Center

Virtual Machine Manager's Performance and Resource

Optimization feature and VMware's Distributed

Resource Scheduler (DRS).

Most virtualization administrators already rely on some

degree of server load balancing in their infrastructure,

so you're probably closer to private cloud computing

than you may think.

But when server load balancing doesn't work correctly,

a virtual infrastructure can suffer from painful

performance problems. There will be a check box with

a connected option next to the disk drives inside VM

configuration screen to select the box unless you have

disk data transferred to a VM.

But connecting the disk drive creates a dependency

between a VM and the physical disk, which can in turn

cause load balancing to fail. When disk drivers are not

used, disconnect them, or server loads may not be

balanced.

Affinity and anti-affinity

Affinity in the virtual world refers to how VMs can be

configured to always (or never) collocate on the same

virtual host. By configuring affinity rules, we prevent

both domain controllers from residing on the same host

and, if a host experiences a failure, both from going

down.

VMware and Microsoft allow configuring VMs to

follow (or not follow) one another as they live migrate.

But user shouldn't use these features unless they're

absolutely necessary, because affinity rules create

dependencies between VMs that can affect server load

balancing. It is advisable to steer clear of affinity unless

if it is absolutely needed.

Resource restrictions

Resource restrictions protect virtual machines from

others that overuse resources. One can limit the

resources that a VM is allowed to consume. It can also

reserve a minimum quantity of resources that a VM

must always have available. Both settings are great

when resources are tight, but they also create

dependencies that can cause server load balancing to

fail -- or make it more difficult for a load-balancing

service to do its job.

Unnecessarily powerful VMs

This one's a rookie mistake. Most of us are used to the

notion of nearly unlimited physical resources for

Windows. It's been years since servers lacked the

processing power or RAM to support a workload. The

idea of "Just give it lots of RAM and plenty of

processors" tends to seep into our virtual infrastructure

as well.

The problem with this line of thinking is that

unnecessarily powerful VMs consume lots of resources.

When machines use too many processors or too much

RAM, target host servers aren't powerful enough to

http://www.ijcstjournal.org/
http://searchservervirtualization.techtarget.com/tip/The-benefits-of-blade-enclosures-for-virtual-server-load-balancing
http://searchservervirtualization.techtarget.com/tip/The-benefits-of-blade-enclosures-for-virtual-server-load-balancing
http://searchservervirtualization.techtarget.com/tip/The-benefits-of-blade-enclosures-for-virtual-server-load-balancing
http://searchservervirtualization.techtarget.com/tip/The-benefits-of-blade-enclosures-for-virtual-server-load-balancing
http://technet.microsoft.com/en-us/library/cc917965.aspx
http://technet.microsoft.com/en-us/library/cc917965.aspx
http://technet.microsoft.com/en-us/library/cc917965.aspx
https://www.vmware.com/products/drs/
https://www.vmware.com/products/drs/
https://www.vmware.com/products/drs/
https://www.vmware.com/products/drs/
http://searchdatacenter.techtarget.com/tip/Getting-the-most-out-of-a-server-load-balancer
http://searchdatacenter.techtarget.com/tip/Getting-the-most-out-of-a-server-load-balancer
http://searchservervirtualization.techtarget.com/feature/Answers-to-your-burning-DRS-load-balancing-questions
http://searchservervirtualization.techtarget.com/feature/Answers-to-your-burning-DRS-load-balancing-questions
http://searchservervirtualization.techtarget.com/feature/Answers-to-your-burning-DRS-load-balancing-questions
http://searchservervirtualization.techtarget.com/feature/Answers-to-your-burning-DRS-load-balancing-questions
http://searchvmware.techtarget.com/answer/VMware-load-balancing-gets-tricky-with-large-VMs
http://searchvmware.techtarget.com/answer/VMware-load-balancing-gets-tricky-with-large-VMs
http://searchvmware.techtarget.com/answer/VMware-load-balancing-gets-tricky-with-large-VMs
http://searchvmware.techtarget.com/answer/VMware-load-balancing-gets-tricky-with-large-VMs
http://searchvmware.techtarget.com/answer/VMware-load-balancing-gets-tricky-with-large-VMs
http://searchvmware.techtarget.com/answer/VMware-load-balancing-gets-tricky-with-large-VMs

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 37

support the VM's configuration. As a result, the

machine can't fail over or is limited to specific targets

where it can fail over.

Start with one processor per virtual machine and as

little RAM as possible, then work upward. That way

server load-balancing service can allocate resources

only where they're most needed -- and none go to

waste.

Most of us remember that it's necessary to have storage

for VM files themselves, but we sometimes forget about

the other storage requirements: Raw Device Mappings

for a VMware virtual machine or pass-through drives

for a Hyper-V machine. Storage connections are always

on a per-host basis, which means that every host must

be correctly masked and zoned so VMs can see their

storage. If not, server load balancing suffers, because

VMs and their resources can't migrate to the target host.

Disabling load balancing

Some admins don't realize that VM load balancing is

still considered an advanced capability. As a result, they

haven't created a cluster in their vSphere data center or

haven't enabled DRS.

For a Hyper-V infrastructure, both System Center

Virtual Machine Manager and System Center

Operations Manager are required for automated server

load balancing to work.

My final and somewhat tongue-in-cheek

recommendation: If we intend to use server load

balancing, then capability should be turned on.

IV. RELATED WORK

Anoop Reddy [1] developed a system to protect

applications from session stealing/hijacking attacks by

tracking and blocking anomalies in end point

characteristics. In this proposal Systems and methods

for protection against session stealing is described. In

embodiments of the present solution, a device

intermediary to the client and the server may identify

first properties of the client and associate the first

properties with the session key. When the device

receives subsequent request comprising the session key,

the device matches the associated first properties with

second properties of the second device that is sending

the subsequent request. If there is a match, the

subsequent request transmitted to the server. Otherwise,

the subsequent request is rejected.

 Dipesh Gupta, Hardeep Singh [2] proposed SSL

session sharing based web cluster load balancing.

Internet users increase the traffic on the servers and

server security is the major concern with which the

user’s privacy needs to be protect. TLS (Transport

Layer Security) is a widely deployed protocol that

establishes a secure channel between communicating

parties over the internet. But TLS/SSL has huge impact

on webserver’s performance by degrading it to a

considerable amount. When TLS/SSL session is

generated it is broadcasted to all servers in the cluster

with which session reuse can be used to save time in

negotiation. TLS Handshake and Session resume is

occur at the server end so in future if client requests

again and its session is not expired then it can again

joins that its own session without renegotiating which

saves the session initialization time. Ultimately a new

load balancing cluster design is proposed that can share

TLS sessions in the cluster to effectively improve the

performance of TLS web cluster. The web cluster

server shares the sessions of users within the cluster.

The another technique for improving the latency and

throughput of the server SSL/TLS with backend

forwarding technique is compare and is analysed. The

traditional method has flaws in the load balancing of the

server but with the new implanted technique on the

server improves the performance during the high load

.The results are reviewed with 16 and 32 node cluster

system. With new technique the latency of system has

been decreased by the 40 % and throughput of the

system is extremely better than classical balancing

technique.

 According to De Grande [3] dynamic balancing of

computation and communication load is vital for the

execution stability and performance of distributed,

parallel simulations deployed on shared, unreliable

resources of large-scale environments. High Level

Architecture (HLA) based simulations can experience a

decrease in performance due to imbalances that are

produced initially and/or during run-time. These

imbalances are generated by the dynamic load changes

of distributed simulations or by unknown, non-managed

background processes resulting from the non-dedication

of shared resources. Due to the dynamic execution

characteristics of elements that compose distributed

simulation applications, the computational load and

interaction dependencies of each simulation entity

change during run-time. These dynamic changes lead to

an irregular load and communication distribution,

which increases overhead of resources and execution

delays. A static partitioning of load is limited to

deterministic applications and is incapable of predicting

the dynamic changes caused by distributed applications

or by external background processes. Due to the

http://www.ijcstjournal.org/
http://pubs.vmware.com/vsp40u1_i/wwhelp/wwhimpl/js/html/wwhelp.htm
http://pubs.vmware.com/vsp40u1_i/wwhelp/wwhimpl/js/html/wwhelp.htm
http://pubs.vmware.com/vsp40u1_i/wwhelp/wwhimpl/js/html/wwhelp.htm
http://searchservervirtualization.techtarget.com/tip/How-to-solve-disk-I-O-performance-problems-with-pass-through-disks
http://searchservervirtualization.techtarget.com/tip/How-to-solve-disk-I-O-performance-problems-with-pass-through-disks
http://searchservervirtualization.techtarget.com/tip/How-to-solve-disk-I-O-performance-problems-with-pass-through-disks
http://searchservervirtualization.techtarget.com/tip/How-to-solve-disk-I-O-performance-problems-with-pass-through-disks
http://searchservervirtualization.techtarget.com/tip/How-to-solve-disk-I-O-performance-problems-with-pass-through-disks

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 38

relevance in dynamically balancing load for distributed

simulations, many balancing approaches have been

proposed in order to offer a sub-optimal balancing

solution, but they are limited to certain simulation

aspects, specific to determined applications, or unaware

of HLA-based simulation characteristics. Therefore,

schemes for balancing the communication and

computational load during the execution of distributed

simulations are devised, adopting a hierarchical

architecture. First, in order to enable the development

of such balancing schemes, a migration technique is

also employed to perform reliable and low-latency

simulation load transfers. Then, a centralized balancing

scheme is designed; this scheme employs local and

cluster monitoring mechanisms in order to observe the

distributed load changes and identify imbalances, and it

uses load reallocation policies to determine a

distribution of load and minimize imbalances. As a

measure to overcome the drawbacks of this scheme,

such as bottlenecks, overheads, global synchronization,

and single point of failure, a distributed redistribution

algorithm is designed. Extensions of the distributed

balancing scheme are also developed to improve the

detection of and the reaction to load imbalances. These

extensions introduce communication delay detection,

migration latency awareness, self-adaptation, and load

oscillation prediction in the load redistribution

algorithm. Such developed balancing systems

successfully improved the use of shared resources and

increased distributed simulations' performance.

K Kungumaraj, T Ravichandran proposed A distributed

system consists of independent workstations connected

usually by a local area network. [4] Load balancing

system puts forward to a new proposal to balance the

server load in the distributed system. The load

balancing system is a set of substitute buffer to share

the server load, when their load exceeds its limit. The

proposed technique gives an effective way to overcome

the load balancing problem. Serving to more number of

client requests is the main aim of every web server, but

due to some unexpected load, the server performance

may degrade. To overcome these issues, network

provides an efficient way to distribute their work with

the sub servers which is also known as proxy servers.

Allocating work to the sub server by their response time

is the proposed technique. The secure socket layer with

Load balancing scheme has been introduced to

overcome those server load problems. Storing and

serving effectively and securely is more important so

that desired algorithm is going to implement for load

distribution and security enhancement named as Secure

Socket Layer with Load Balancing and RSA Security

algorithm respectively. Calculating response time of

each request from the clients has been done by sending

an empty packet over the networking to all the sub

servers and response time for each sub server is

calculated using the Queuing theory. In this Load

Balancing system, the SSL based load distribution

schemes have been introduced for better performance.

In systems and methods for supporting a SNMP request

over a cluster [5] the present disclosure is directed

towards systems and methods for supporting Simple

Network Management Protocol (SNMP) request

operations over clustered networking devices. The

system includes a cluster that includes a plurality of

intermediary devices and an SNMP agent executing on

a first intermediary device of the plurality of

intermediary devices. The SNMP agent receives an

SNMP

GETNEXT request for an entity. Responsive to receipt

of the SNMP GETNEXT request, the SNMP agent

requests a next entity from each intermediary device of

the plurality of intermediary devices of the cluster. To

respond to the SNMP request, the SNMP agent selects a

lexicographically minimum entity. The SNMP agent

may select the lexicographically minimum entity from a

plurality of next entities received via responses from

each intermediary device of the plurality of

intermediary devices.

Branko Radojević [6] analysed issues with Load

Balancing Algorithms in Hosted (Cloud) Environments.

In order to provide valuable information and influence

the decision-making process of a load balancer, thus

maintaining optimal load balancing in hosted (or cloud)

environments, it is not enough just to provide

information from networking part of the computer

system or from external load balancer. Load balancing

models and algorithms proposed in the literature or

applied in open-source or commercial load balancers

rely either on session-switching at the application layer,

packet-switching mode at the network layer or

processor load balancing mode. The analysis of

detected issues for those load balancing algorithms is

presented in this paper, as a preparation phase for a new

load balancing model (algorithm) proposition. The new

algorithm incorporates information from virtualized

computer environments and end user experience in

order to be able to proactively influence load balancing

decisions or reactively change decision in handling

critical situations.

Archana B.Saxena1 and Deepti Sharma [7] proposed

Analysis of Threshold Based Centralized Load

Balancing Policy for Heterogeneous Machines.

Heterogeneous machines can be significantly better

than homogeneous machines but for that an effective

workload distribution policy is required. Maximum

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 39

realization of the performance can be achieved when

system designer will overcome load imbalance

condition within the system. Load distribution and load

balancing policy together can reduce total execution

time and increase system throughput. In this paper; we

provide algorithm analysis of a threshold based job

allocation and load balancing policy for heterogeneous

system where all incoming jobs are judiciously and

transparently distributed among sharing nodes on the

basis of jobs’ requirement and processor capability for

the maximization of performance and decline in

execution time. A brief discussion of job allocation,

transfer and location policy is given with explanation of

how load imbalance condition is solved within the

system. A flow of scheme is given with essential code

and analysis of present algorithm is given to show how

this algorithm is better.

P Rafiq, J Kann [8] proposed methods for self-loading

balancing access gateways. The present invention is

directed towards systems and methods for self-load

balancing access gateways. The systems and methods

include a master access gateway that receives load

metrics and capabilities from a plurality of access

gateways. The master access gateway also receives

requests to determine if a request to start a new session

is to be redirected to access gateways. The master

access gateways uses the load metrics and capabilities

to select an access gateway to service the request.

D Goel, JR Kurma [9] proposed systems and methods

are described for link load balancing, by a multi-core

intermediary device, a plurality of Internet links. The

method may include load balancing, by a multi-core

device intermediary to a plurality of devices and a

plurality of Internet links, network traffic across the

plurality of Internet links. The multi-core device

providing persistence of network traffic to a selected

Internet link based on a persistence type. A first core of

the multi-core device receives a packet to be

transmitted via an Internet link to be selected from the

plurality of Internet links. The first core sends to a

second core of the multi-core device a request for

persistence information responsive to identifying that

the second core is an owner core of a session for

persistence based on the persistence type. The first core

receives the persistence information from the second

core and determines to transmit the packet to the

Internet link previously selected based on the

persistence information received from the second core.

T. Abdelzaher, K. Shin[10] proposed the Internet is

undergoing substantial changes from a communication

and browsing infrastructure to a medium for conducting

business and marketing a myriad of services. The

World Wide Web provides a uniform and widely-

accepted application interface used by these services to

reach multitudes of clients. These changes place the

Web server at the center of a gradually emerging e-

service infrastructure with increasing requirements for

service quality and reliability guarantees in an

unpredictable and highly-dynamic environment. This

paper describes performance control of a Web server

using classical feedback control theory. We use

feedback control theory to achieve overload protection,

performance guarantees, and service differentiation in

the presence of load unpredictability. We show that

feedback control theory offers a promising analytic

foundation for providing service differentiation and

performance guarantees. We demonstrate how a general

Web server may be modeled for purposes of

performance control, present the equivalents of sensors

and actuators, formulate a simple feedback loop,

describe how it can leverage on real-time scheduling

and feedback-control theories to achieve perclass

response-time and throughput guarantees, and evaluate

the efficacy of the scheme on an experimental testbed

using the most popular Web server, Apache.

Experimental results indicate that control-theoretic

techniques offer a sound way of achieving desired

performance in performance-critical Internet

applications. Our QoS (Quality-of-Service)

management solutions can be implemented either in

middleware that is transparent to the server, or as a

library called by server code

JH Kim, GS Choi [11] proposed load balancing scheme

for cluster-based secure network servers. Although the

secure sockets layer (SSL) is the most popular protocol

to provide a secure channel between a client and a

cluster-based network server, its high overhead

degrades the server performance considerably, and thus,

affects the server scalability. Therefore, improving the

performance of SSL-enabled network servers is critical

for designing scalable and high performance data

centers. In this paper, we examine the impact of SSL

offering and SSL-session aware distribution in cluster-

based network servers. We propose a backend

forwarding scheme, called

SSL_WITH_BF that employs a low-overhead user-

level communication mechanism like VIA to achieve

good load balance among server nodes. We compare

three distribution models for network servers: Round

Robin (RR), SSL_With_Session and SSL_WITH_BF

through simulation. The experimental results with 16-

node and

32-node cluster configurations show that while session

reuse of SSL_With_Session is critical to improve the

performance of application servers, the proposed

backend forwarding scheme can further enhance the

http://www.ijcstjournal.org/
http://scholar.google.co.in/citations?user=fKTUEscAAAAJ&hl=en&oi=sra
http://scholar.google.co.in/citations?user=fKTUEscAAAAJ&hl=en&oi=sra
http://scholar.google.co.in/citations?user=SCUwyrwAAAAJ&hl=en&oi=sra
http://scholar.google.co.in/citations?user=SCUwyrwAAAAJ&hl=en&oi=sra
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154099
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154099
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154099
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154099
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154099
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4154099

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 40

performance due to better load balancing. The

SSL_With_BF scheme can minimize average latency

by about 40% and improve throughput across a variety

of workloads.

Mohit Aron Peter Druschel Willy Zwaenepoel [12]

Proposed a resource management framework for

providing predictable quality of service (QoS) in Web

servers. The framework allows Web server and proxy

operators to ensure a probabilistic minimal QoS level,

expressed as an average request rate, for a certain class

of requests (called a Service), irrespective of the load

imposed by other requests. A measurement-based

admission control framework determines whether a

service can be hosted on a given server or proxy, based

on the measured statistics of the resource consumptions

and the desired QoS levels of all the co-located

services. In addition, we present a feedback-based

resource scheduling framework that ensures that QoS

levels are maintained among admitted, co-located

services. Experimental results obtained with a prototype

implementation of our framework on trace-based

workloads show its effectiveness in providing desired

QoS levels with high confidence, while achieving high

average utilization of the hardware.

Suresha and Jayant R. Haritsa [13] proposed techniques

on reducing Dynamic Web Page Construction Times

Many web sites incorporate dynamic web pages to

deliver customized contents to their users. However,

dynamic pages result in increased user response times

due to their construction overheads. They proposed

mechanisms for reducing these overheads by utilizing

the excess capacity with which web servers are

typically provisioned. Specifically, we present a

caching technique that integrates fragment caching with

anticipatory page pre-generation in order to deliver

dynamic pages faster during normal operating

situations. A feedback mechanism is used to tune the

page pre-generation process to match the current system

load. The experimental results from a detailed

simulation study of our technique indicate that, given a

fixed cache budget, page construction speedups of more

than fifty percent can be consistently achieved as

compared to a pure fragment caching approach. We

have proposed a hybrid approach to reduce dynamic

web page construction times by integrating fragment

caching with page pre-generation, utilizing the spare

capacity with which web servers are typically

provisioned. Through the use of a simple linear

feedback mechanism, we ensure that the peak load

performance is no worse than that of pure fragment

caching. A detailed study of the hybrid approach over a

range of cache ability levels and prediction accuracies,

for a given cache budget. Experimental results show

that an even 50-50 partitioning between the page cache

and the fragment cache works very well across all

environments. With this partitioning, we are able to

achieve over fifty percent reduction in server latencies

as compared to fragment caching. This approach

achieves both the long-term benefit through fragment

caching and the immediate benefit through anticipatory

page pre-generation. An investigation can be done on

the performance effects of pre-generating a set of pages,

rather than just a single page.

J Guitart, D Carrera, V Beltran, J Torres [14] proposed

Session-Based Adaptive Overload Control for Secure

Dynamic Web Applications. As dynamic web content

and security capabilities are becoming popular in

current web sites, the performance demand on

application servers that host the sites is increasing,

leading sometimes these servers to overload. As a

result, response times may grow to unacceptable levels

and the server may saturate or even crash. In this paper

we present a session-based adaptive overload control

mechanism based on SSL (Secure Socket Layer)

connections differentiation and admission control. The

SSL connections differentiation is a key factor because

the cost of establishing a new SSL connection is much

greater than establishing a resumed SSL connection (it

reuses an existing SSL session on server). Considering

this big difference, we have implemented an admission

control algorithm that Prioritizes the resumed SSL

connections to maximize performance on session-based

environments and limits dynamically the number of

new SSL connections accepted depending on the

available resources and the current number of

connections in the system to avoid server overload. In

order to allow the differentiation of resumed SSL

connections from new SSL connections. They proposed

a possible extension of the Java Secure

Sockets Extension (JSSE) API. Their evaluation on

Tomcat server demonstrates the benefit of our

proposal for preventing server overload.

T. Abdelzaher, K. Shin [15] proposed mechanisms and

policies for supporting HTTP/1.1 persistent connections

in cluster-based Web servers that employ content-based

request distribution. We present two mechanisms for

the efficient, content-based distribution of HTTP/1.1

requests among the back-end nodes of a cluster server.

A trace-driven simulation shows that these mechanisms,

combined with an extension of the locality-aware

request distribution (LARD) policy, are effective in

yielding scalable performance for HTTP/1.1 requests.

We implemented the simpler of these two mechanisms,

back-end forwarding. Measurements of this mechanism

in connection with extended LARD on a prototype

http://www.ijcstjournal.org/

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 41

cluster, driven with traces from actual Web servers,

confirm the simulation results. The throughput of the

prototype is up to four times better than that achieved

by conventional weighted round-robin request

distribution. In addition, throughput with persistent

connections is up to 26% better than without.

J Brendel, CJ Kring, Z Liu, CC Marino [16] proposed

world-wide-web server with delayed resource-binding

for resource-based load balancing on a distributed

resource multi-node network. A multi-node server

transmits world-wide-web pages to network-based

browser clients. A load balancer receives all requests

from clients because they use a virtual address for the

entire site. The load balancer makes a connection with

the client and waits for the URL from the client. The

URL specifies the requested resource. The load

balancer waits to perform load balancing until after the

location of the requested resource is known. The

connection and URL request are passed from the load

balancer to a second node having the requested

resource. The load balancer re-plays the initial

connection packet sequence to the second node, but

modifies the address to that for the second node. The

network software is modified to generate the physical

network address of the second node, but then changes

the destination address back to the virtual address. The

second node transmits the requested resource directly to

the client, with the virtual address as its source. Since

all requests are first received by the load balancer which

determines the physical location of the requested

resource, nodes may contain different resources. The

entire contents of the web site are not mirrored onto all

nodes. Network bottlenecks are avoided since the nodes

transmit the large files back to the client directly,

bypassing the load balancer. Client browsers can cache

the virtual address, even though different nodes with

different physical addresses service requests.

Deniz Ersoz, Mazin S. Yousif and Chita R. Das

proposed [17] Characterizing Network Traffic in a

Cluster-based, Multi-tier Data Centre. With the

increasing use of various Web-based services, design of

high performance, scalable and dependable datacentres

has become a critical issue. Recent studies show that a

clustered, multi-tier architecture is a cost-effective

approach to design such servers. Since these servers are

highly distributed and complex, understanding the

workloads driving them is crucial for the success of the

ongoing research to improve them. In view of this, there

has been a significant amount of work to characterize

the workloads of Web-based services. However, all of

the previous studies focus on a high level view of these

servers, and analyse request-based or session-based

characteristics of the workloads. In this paper, we focus

on the characteristics of the network behaviour within a

clustered, multi-tiered data centre. Using a real

implementation of a clustered three-tier data centre, we

analyse the arrival rate and inter-arrival time

distribution of the requests to individual server nodes,

the network traffic between tiers, and the average size

of messages exchanged between tiers. The main results

of this study are; (1) in most cases, the request inter-

arrival rates follow log-normal distribution, and self-

similarity exists when the data centre is heavily loaded,

(2) message sizes can be modelled by the log-normal

distribution, and (3) Service times fit reasonably well

with the Pareto distribution and show heavy tailed

behaviour at heavy loads.

V. PROPOSED METHOD

The proposed system is designed to increase throughput

and balance the servers based on different workloads.

The traditional method has flaws in the load balancing

of the server but with the new implanted technique on

the server improves the performance during the high

load. The secure socket layer with Load balancing

scheme has been introduced to overcome server load

problems. Storing and serving effectively and securely

is more important so that desired algorithm is going to

implement for load distribution and security

enhancement named as Secure Socket Layer with Load

Balancing and RSA Security algorithm respectively.

The results are reviewed with 16 and 32 node cluster

system. With new technique the latency of system has

been decreased by the 40 % and throughput of the

system is extremely better than classical balancing

technique. We provide algorithm analysis of a threshold

based job allocation and load balancing policy for

heterogeneous system where all incoming jobs are

judiciously and transparently distributed among sharing

nodes on the basis of jobs’ requirement and processor

capability for the maximization of performance and

decline in execution time.

VI. CONCLUSION

The performance implications of the SSL protocol for

providing a secure service in a cluster-based application

server will be investigated and proposed a back-end

forwarding scheme for improving server performance

through a better load balance. The proposed scheme

exploits the underlying user-level communication in

order to minimize the intracluster communication

overhead. The prosed system will be more robust in

handling variable file sizes.

http://www.ijcstjournal.org/
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660

 International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 4, Jul-Aug 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 42

REFERENCES

[1] Anoop Reddy, Rama Rao Katta, Bhanu Prakash

Valluri, Craig Anderson, Ratnesh Singh Thakur:

Protect applications from session

stealing/hijacking attacks by tracking and

blocking anomalies in end point characteristics,

published on November 26, 2011 in Search

International and National Patent collections,

No.WO2015179310.

[2] Dipesh Gupta, Hardeep Singh: Review on TLS

or SSL session sharing based web cluster load

balancing. In proceedings of International

Journal of Research in

 Engineering and Technology Volume: 03 Issue:

11, Nov-2014.

[3] Robson Eduardo, De Grande: Dynamic Load

Balancing Schemes for Large Scale HLA Based

Simulations. In proceedings of 15th IEEE/ACM

International Symposium on Distributed

Simulation and Real time Applications,

Published on September

 2011, pp.4 – 11.

[4] S Annamalaisami, R Holla: Systems and

methods for supporting a snmp request over a

cluster, Published on Dec 19, 2013, Citrix

Systems, No. WO2013188780 A1.

[5] K. Kungumaraj, T. Ravichandran: Load

balancing as a strategy learning task. In

proceedings Scholarly Journal of Scientific

Research and Essay (SJSRE) Vol. 1(2) on, April

2012, pp. 30-34
[6] Branko Radojević MIPRO: Analysis of issues

with load balancing algorithms in hosted (cloud)

environments, proceedings in 34th International

Convention 2011, on May 23-27, pp. 416 – 420

[7] Archana B.Saxena1 and Deepti Sharma:

Analysis Of Threshold Based Centralized

 Load Balancing Policy For Heterogeneous

Machines. In proceedings International Journal

of Advanced Information

 Technology (IJAIT) Vol. 1, No.5, October 2011

[8] P Rafiq, J Kann : Systems and methods for self-

loading balancing access gateways, published on

May 19, 2015

[9] D Goel, JR Kurma: Citrix Systems, IncSystems

and methods for link load balancing on a multi-

core device, published on Jan 12, 2012

[10] T. Abdelzaher, K. Shin and N. Bhatti.

Performance Guarantees for Web Server End-

Systems: A Control-Theoretical Approach. IEEE

Transactions on Parallel and Distributed Systems

Vol. 13 (1), pp. 80-96. January 2002.

[11] JH Kim, GS Choi, CR Das: A Load

Balancing Scheme for Cluster-based Secure

Network Servers, proceedings in IEEE

 International Conference on Cluster Computing,

on September 2005,pp. 1-10

[12] Mohit Aron Peter Druschel Willy

Zwaenepoel. A resource management framework

for providing predictable quality of service

(QoS) in Web servers Available online :

www.researchgate.net /publication/228537697

[13] Suresha and Jayant R. Haritsa: Techniques on

reducing Dynamic Web Page Construction

Times Volume 3007 of the series Lecture Notes

in Computer Science, pp. 722-731. Available

online: link.springer.com/chapter/10.1007

[14] J Guitart, D Carrera, V Beltran, J Torres:

Session-based adaptive overload control for

secure dynamic Web applications. In

proceedings International Conference on Parallel

Processing (ICPP), on June 2005, pp.341 - 349

[15] T. Abdelzaher, K. Shin and N. Bhatti Efficient

Support for P-Http in ClusterBasedweb Servers.

In proceedings USENIX Annual Technical

Conference,Monterey, California, USA, June 6-

11, 1999.

[16] J Brendel, CJ Kring, Z Liu, CC Marino: world-

wide-web server with delayed resource-binding

for resource-based load balancing on a

distributed resource multinode network,

published on Jun 30, 1998, Patent no. 5,774,660.

[17] Deniz Ersoz, Mazin S. Yousif and Chita R. Das:

Characterizing Network Traffic in a Cluster-

based, Multi-tier Data Centre. In proceedings

27th International Conference on Distributed

Computing Systems (ICDCS '07), published on

June 2007, pp-59.

http://www.ijcstjournal.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Branko%20Radojevi.AND..HSH.x0107;.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Branko%20Radojevi.AND..HSH.x0107;.QT.&newsearch=true
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/patents/US9037712
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=inassignee:%22Citrix+Systems,+Inc.%22
http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=inassignee:%22Citrix+Systems,+Inc.%22
http://www.google.com/patents/US9019834
http://www.google.com/patents/US9019834
http://www.google.com/patents/US9019834
http://www.google.com/patents/US9019834
http://www.google.com/patents/US9019834
http://www.google.com/patents/US9019834
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660
http://www.google.com/patents/US5774660

