
International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 5, Sep-Oct 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 24

CAMPLAND - A Registration and validation portal for Campsites
Koganti Aditya [1], Vinod Rongala [2]

CSE, Vellore Institute of Technology, Vellore, Tamil Nadu - India

ABSTRACT

When we have to book a place for hosting a picnic/ gathering we don’t find all the relevant info in one place. After finding a

venue for the event, it has to be verified by actually visiting the place or inquiring through third parties. The user has to rely on

the information provided by these unknown agents or any other source providers. As we do not proper source, the person has to

validate the accuracy of inform by visiting personally. There is also no sophisticated online payment system for booking. An

online booking system can solve the above issues and provide a platform where users can view the places that match their

requirements, in this paper, was presented an idea of implementing a node js web application using secure authentications and

databases used.
Keywords — NodeJS, databases, authentication

I. INTRODUCTION

Many people are showing great enthusiasm towards outdoor

activities such as hiking, campaigning, and other adventurous

rides they crave for. And there are so many places people

want to visit and some people want to share as they meet

great places in wild or campaign in regions where no one has

gone before and so there is no way no do so. Further, some

people have no clue about the certain region they are thinking

of visiting as they have no clue to know due to differential

geography and language communications and also for the

people who want to visit new places to live up to their

curiosity.

For these kinds of situations, many tried to find various ways

Like hiring a professional tourist for guiding through these

kinds of unknown places and other assistances and here

comes the problems since the foreigner who hired the guide

doesn’t know the native workings may end up getting

cheated or suffer other kinds of losses, This not only limited

to a single person such as guides but also organizations such

which tells it provides support for tourists may fall prey to

these firms thus a more realistic solution is needed for this

problem.

In this paper, we provide a solution to overcome the above

problems through a web application and introduce you to the

latest technologies that provide better efficiency compared to

the prior.

II. PROPOSED WORK

The following web-based application will be drawn upon

MEN stack representing M for Mongo dB, E for Express.js,

and N for node based on Node.js – A JavaScript runtime

environment used for backend application. This was

implemented for various reasons such as listed below:

A.A.1 MVC SUPPORT

One of the best reasons for proposing node.js is that it

supports the MVC pattern. This is useful for working on each

area separately, such as, as the term implies models, views,

and control, we can work independently without too much of

each component influencing the other. The model module

works as the blueprint of database structure and the view

component represents the front-end part loaded based on the

front-end frameworks from a database or templating engines

while the controller part as the name implies it manages the

control over all other components where it contains all the

server-side logic such as maintaining the database and

requests from a user from client-side and all business logic

A.A.2 Solitary Language

Having learned this language has a unique benefit in that it

is its whole language is built upon a single language

“JavaScript”. As we generally know how common JavaScript

is used and how popular it is, hence having the same language

for the backend is a huge benefit such as we can avoid the

tiring process of learning a new language and since we work

on the frontend on JavaScript and also in other frameworks we

can easily inject and switch with the codes.

B. Authentication & Authorization:

As much as we know we have heard technologies such as

PHP which use SQL databases for building credential

management these generally store data (such as

username/email-Id and password) as to how it is passed like

any other data it processed into the application database, these

considered as high vulnerability which may easily be lead to

the data leak, Though there are many ways found to prevent to

this hack, they are quite complicated to implement and not

flexible enough, and this is where the passport.js comes.

Passport.js is a well-used module among the various other

libraries, this plays the role of middleware for authenticating

the user and is not just limited to that, can authorize specified

users or authorization requirement tasks on specific operations.

Since this was written in JavaScript it provides ease of use and

RESEARCH ARTICLE OPEN ACCESS

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 5, Sep-Oct 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 25

is smoothly injected with along with other libraries or

frameworks used. Even with all these functionalities these

were not the major reason for its use here as there is another

huge functionality, was that its ability to encode the provided

data (password consider here) to generate into the values of

salt and hash.

C. DATABASE(NoSQL)

Though we know how popular the SQL was used, it was

inferior to the latest technology based on NoSQL in certain

cases. It is MongoDB. Although it may seem too overrated to

say it supplanted the traditional database it is spreading across

multiple technologies as for its wide known popularity for the

great difference in speeds comparatively with SQL

There are certain factors for the cause of implementing this

data model for the API over most-used RDBMS for instance

for its most popular reason of schema-less form. This alone

places a huge difference with SQL which use the RDBMS to

manage its database to logic for applying various relations and

table. MongoDB is free from such complexity, it completely

removed from that concept but its workings are more like a

partial schema this is was because the schema applies when

the data was read or retrieved.

Further, there are also many others such as its non-compulsory

requirement to fill all fields of the model, as such we can

leave some blank which shows its flexible nature(like size,

data type, etc.,) and also contrasts to the SQL database it does

not rely on a relational function to access or modify data, it

calls a specified data element through a unique id generated

through mongo stored alongside with its other elements in the

format of JSON, In this project, we proposed to use mongoose

a node.js associated framework built on top of MongoDB as

its origin which was designed for ease of use with NodeJS.

This provides various advantages such as we can use a

predefined model on the collections and clean organization

and use in project structure along with all the other

functionalities mongo dB provides.

Nodejs has terms called frameworks (such as mongoose and

passport) which will be used for building the applications this

Is varyingly different from the typical known libraries. That is

it is much faster in speeds comparatively with these libraries

although they are similar to in the usage with an import code

used in applications we can say the difference is “we are

calling the function and function calling you”, this implies

libraries are the whole bunch of code with predefined

functions which we will be using for usages whereas

frameworks are codes which will be left to write by user

mostly and control is steered by the developer rather than

already defined functionality in the libraries

CRUD Operations:

As we generally know currently only two requests are capable

of working on the web (“GET and POST”). This will severely

limit an application's capability; hence we overcame this using

a module called “method-override”. This does not add new

verbs such as put and delete but makes a query that the client

asks to perform, which is popularly heard as RESTful routing

which is wrapped along with express module and acts as a

middleware-like functionality.

Route configuration

We will be using express.js a popular lightweight framework

this has been chosen not just because it is immensely rated

across people but because there is more community working

with this framework as such it will be advantageous it ways

such finding solutions and tutorials to all problems and as

such will be its ever-increasing development on this

framework from the creators.

III. IMPLEMENTATION

Here we will be creating a database on 4 types of collections

named campground, comment, to-dos, and users we will be

assigning each page dedicated to each collection and some are

based on specified data in a collection, there are some

referenced objects in another which on whole basis co-

dependent on each other.

The plan is as follows:

➢ On the first page, the user will be welcomed with a

reference link to enter the home page

➢ Every page has a common nav bar for identifying the

page he is in and the status of the user for also to log

in or register or logout dependent on the status

➢ At first, a non-user will be having the capabilities to

collectively see the campgrounds on the home page

and can enter the specified camp on inquiring for

more details.

➢ Here he will be able to see expanded details about the

camp, user uploaded and cost of renting the place

along with the comments of other users about the

camp.

➢ For more privileges client will have to sign in/up for

more capabilities such as the applications that allow

for the user to have posted a new campground and

also the right to comment upon an existing camp.

This implies the permission publish about a

campground user knows upon and specify

information and price costs it would take and

comment for the experience he already visited or

something else.

➢ Ability to also edit or remove the existing

campground posted by the user

A. Routes and configurations:

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 5, Sep-Oct 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 26

Express is used for routing, routes are for listening to what the

client-side was requested such as sending the data and also

getting the data from the user posted

Here we have deployed the database on the cloud and also

could be worked on a local server and I will be explaining you

on the local server basis. Routes are addressed to send to

receive hence require a dedicated reference to differentiate

between each page as we are working on a local basis here the

home page will be available to the client through

“https:localhost:3000/”(where 3000 is port-number for data-

based linkage and app deployment) which implies a get

request ‘/’.

Fig. 0 Representation of how the database is organized

As stated MongoDB is a schema-less database but as we can

see from figure 1 it provides a schema on several collections

in the database, what type of format the values are taken, and

how the data values are interrelated to other collections values

but this is not a schema as to how it appears similar to the

SQL, we are not mandated to assign all the inputs or restricted

to only given values, it is a way to organized way to structure

the database and application as we don’t constraints as in SQL.

And thus, routes are assigned as follows:

Routes have been classified into the following 3 major

categories:

❖ Campgrounds:

➢ ‘/camps’ or ‘https://localhost:3000/camps’ are

divided into two categories:

▪ Get request where it will retrieve all

campgrounds with title and images loaded as

card form

▪ Post request will be enabled only on user login

where the user gains the ability to post the form

details and redirecting the user to the home page

with updated details.

➢ ‘/camps/new’ or ‘https://localhost:3000/camps/new

▪ ‘Get’ has only this one request has only access to

signed-in users to display the form for

submitting the details that will be later sent

through the post request stated prior.

➢ ‘/camps/:id’ or ‘https://localhost:3000/camps/:id’

while this was divided into 4 broad categories

➢

▪ ‘Get’ – draws over the details of a specific

campground on the selection using unique id

generated with elaborated details along with the

comments

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 5, Sep-Oct 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 27

▪ ‘Put’ – this is from one of the CRUD operations

(create, read, update, and delete) where a

selective campground is updated

▪ ‘Delete’ – similarly from method-override

functionality deletes the item based on ID.

➢ ‘/camps/:id’ or ‘https://localhost:3000/camps/id’

▪ As for the above-stated update (PUT)

functionality to work, a necessary “form” page

similar to the new campground form is requested.

❖ Comment section:

Similarly, as stated above, this above stated for the

campground is applied to the comment section. It was

divided according to the components based on RESTful

routing is present in the below table:

URLs are predefined with

“https://localhost:3000/camps/:id/comments” then added

with the following table:

TABLE I

Request URL Action

Get “/new”

(Figure 2.1)

Form submission for a

new comment

Post “/” Posting logic of the

comment submitted

through the form

GET “/:id2c/edit”

(Figure 2.2)

Form for updating/editing

previous comment

PUT “/:id2c”

Update logic for edited

comment

DELETE “/:id2c”

Deleting the comment

Fig. 2.1

Fig. 2.2

• User Section (&Index):

These routes are mostly compromised of authorization for a

user. The routes were defined in Table II as shown consists of

a total of 5 for login and register excluding the landing page,

the routes are priorly added to the link ‘https://localhost:3000’

alike to the campgrounds and comments and exported through

the router module and imported and combined in the main app.

TABLE II

Request URL Action

GET ‘/’ Shows welcome page

Get “/login” Form filling for signing

in

Post “/login” Posting logic of the login

submitted through the

form

GET “/register” Form for signing up for a

new user

POST “/register” Post logic for registering

and adding the user to the

database

GET “/logout” Signing out the user

This plays a significant role in the application in the area of

authorization and authentication.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 5, Sep-Oct 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 28

FIGURE 2.1

As for the provided routes above for the campground and

comment section, not all routes are accessible but were

assigned with certain constraints given below:

• As introduced at the start of the section for non-users can

view campgrounds and comments and for posting, users

must be signed up or logged in, so is for the

commentating upon a campground

• This was added as a middleware functionality imported

from another JavaScript file for common functionality for

all (such as checking if the user was logged in for posting)

As shown in figure 2.1

• It is also secured that no user who does not have

ownership over the comments or camps he posted will be

not authorized to do so, this is the authorization

functionality that was implemented with help of

passport.js (i.e., application requests for the user for

username crosschecks with the user logged in for granting

rights upon which the user has access to modify or delete)

Based on the order of Table II representation of application:

Fig. 3.2

Fig. 3.3

Fig. 3.4

Skeletal Working:

FIG. 4

❖ There is also one more collection named notes that had

been added to the application this is only accessed by the

user login status and the values displayed are exclusive to

the user. This was added as additional functionality for

the user for making a to-do type list that can be added or

deleted with the neat UI using jQuery.

http://www.ijcstjournal.org/

International Journal of Computer Science Trends and Technology (IJCST) – Volume 9 Issue 5, Sep-Oct 2021

ISSN: 2347-8578 www.ijcstjournal.org Page 29

D. Database

MongoDB has provided cloud support for a developer to

host applications and collects different types of metrics/status

of database interaction and modifications over the internet by

the users

Fig. 5.1

Figure 3 shows certain details about the cluster encounter

modifications in the last 1 hour (can be filtered by our

requirements) and also network interaction over the same time

And also we can even create multiple profiles of the same

cluster and use our application as secondary users in the form

of API shown in figure 4

FIG. 5.2

The application was deployed using Heroku and metrics were

collected using from the API MongoDB given connected

through the deployed app

CONCLUSION
Though there are many sources it is more efficient and

accurate for using a web application for these kinds of

problems and also the several technologies were indeed

implemented in the past, there is always room to get better

here NodeJS played the role that overcame the prior

technologies through various better structure and solutions for

the real-world problems as such is in the paper. In future work,

we thought of implementing declarative programming using

front-end frameworks (such as react) which enables us to use

asynchronous methods to call backend without disturbing the

client’s UI, such as these will enable us to skip through the

post calls rendering pages async.

REFERENCES

[1] Dayley, B., Dayley, B., & Dayley, C. (2017). Node.

js, MongoDB, and Angular Web Development: The definitive

guide to using the MEAN stack to build web applications.

Addison-Wesley Professional.

[2] KUMAR, C. (2021). TOURISM WEB

APPLICATION.

[3] Callejo, A. M., & Singun, A. P. Abra iTour: A

Semantic Web Recommender Using Hybrid Algorithm.

[4] van Deursen, A., Aniche, M., & Aué, J. (2016). Delft

Students on Software Architecture: DESOSA 2016. Delft

University of Technology.

[5] Subramani, K., Hemapriya, V., Libertina, A. A., &

Yazhini, V. R. (2016). Node JS: Building an High

Performance Event Manager in Android Platform. Australian

Journal of Basic and Applied Sciences, 10(1), 174-177.

[6] Vu, B. (2016). Developing pilot API application

using NODE JS: a case study of 1UP media Oy.

[7] Learn to Create Robust RESTful Web Services with

Node.js, MongoDB, and Express.js, 3rd Edition By Valentin

Bojinov · 2018

[8] Node.js Security, Verbitskiy, Ilya, January 1, 2017

[9] Developing a User Management Dashboard with

Fullstack Javascript Le, Duy (2019)

[10] Anssi Hautaviita DEVELOPING A WEB

APPLICATION ON THE MEVN STACK

http://www.ijcstjournal.org/

